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Abstract
We propose an approach to reconstructing tree struc-

tures that evolve over time in 2D images and 3D image
stacks such as neuronal axons or plant branches. Instead
of reconstructing structures in each image independently,
we do so for all images simultaneously to take advantage of
temporal-consistency constraints.

We show that this problem can be formulated as a
Quadratic Mixed Integer Program and solved efficiently.
The outcome of our approach is a framework that pro-
vides substantial improvements in reconstructions over tra-
ditional single time-instance formulations. Furthermore, an
added benefit of our approach is the ability to automatically
detect places where significant changes have occurred over
time, which is challenging when considering large amounts
of data.

1. Introduction
Reliably reconstructing networks of curvilinear struc-

tures from images remains an open computer vision prob-
lem. So far, it has mostly been addressed in terms of mod-
eling structures that have been captured at a specific mo-
ment in time. However, these networks, be they made of
axons and dendrites seen in vivo in optical microscopy im-
age stacks [10], blood vessels in retinal-scans [16], plant
roots in time-lapse imagery, or roads in aerial images taken
at long intervals, evolve over time. Modeling this evolution
is of great value in many scientific domains to help under-
stand underlying processes and analyzing the effects of bi-
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ological [15] or geographic environmental conditions [20].
In this paper, we propose an approach to reconstructing

evolving tree structures simultaneously in all images. In this
way, we can enforce temporal consistency over stable parts
of the structure and reliably detect changes elsewhere. This
is in contrast to recovering the relevant structures in each
image individually and only then comparing them, which
we will show to be far less effective.

To this end, we first process individual images to find
pixels or voxels that are very likely to be on the centerlines
of linear structures. Finding tree structures in individual im-
ages could then be achieved by solving a Quadratic Mixed
Integer Program (QMIP) to minimize an appropriate objec-
tive function [24]. Instead, we find centerline points that
correspond to identical features across time instances by
means of a Gaussian Precess Regression (GPR) model [21]
and connect these temporal correspondences by temporal
edges. Combining both types of edges yields a spatio-
temporal graph that lets us incorporate into our objective
function terms that enforce temporal consistency. Conve-
niently, this optimization problem remains a QMIP that can
be solved efficiently.

Our contribution is therefore a novel approach to model-
ing trees over several images simultaneously while enforc-
ing temporal consistency. Not only is this more reliable than
doing so over individual images but has the added benefit
of making it easy to spot the regions that have significantly
changed, which is tedious and hard to do for human opera-
tors. We demonstrate the power of our approach on a time-
lapse sequence of a growing bean plant and on sequences of
in vivo two-photon micrographs of neuronal networks.

2. Related Work

For most automatic reconstruction techniques of tree-
like structures, the process begins by estimating a local
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measure of tubularity, i.e. the likelihood that a point sits
along the centerline of a tubular structure [5, 12, 17].
Matched filters [1, 28], Hessian and Oriented Flux func-
tionals [7, 13, 14, 22], and classification scores derived from
steerable filter responses [8, 11] have all been used for this
purpose.

These tubular measures are then used within a search or
optimization framework to reconstruct tree structures im-
age by image. In this context, the search techniques come
in one of two forms, either local or global. Local meth-
ods reconstruct the tree structure piece by piece in a greedy
fashion, making them extremely efficient [1, 3, 26] but less
robust to image noise and prone to errors when there are
large gaps separating filaments. Conversely, global meth-
ods optimize the entire tree in one shot making them more
computationally demanding but also more robust. This typ-
ically involves connecting high tubularity points to form a
weighted graph and then finding a tree within that graph
by optimizing an objective function. This last step can be
done using Minimum Spanning Trees (MST) [6, 26, 28],
Shortest Path Trees (SPT) [19], k-Minimum Spanning Trees
(k-MST) [25], and Quadratic Mixed Integer Programming
(QMIP) [24].

Yet, by and large, existing strategies reconstruct struc-
tures one instance at a time. As we will show in our
experiments, using temporal information to enforce time-
consistency can significantly improve performance. This is
well known in a number of applications [4, 15, 18] but has
not yet to be exploited for the purpose of tree structure re-
construction.

3. Approach
For many tree structures that evolve over time, signifi-

cant changes from one frame to the next tend to be fairly
localized, while the general topology and geometry remain
relatively stable up to minor local deformations. Consider,
for example, a real-world tree whose branches are growing
over time. In images taken at sufficiently long time inter-
vals, there may be significant changes at the tips of exist-
ing branches while the rest remains largely unchanged. The
same principle applies in the case of the neuronal network
of Fig. 1 captured in vivo at intervals of a week. Most of the
structure is preserved over time, except for a few branches
that have either grown to form new connections, retracted
or moved to new positions. To exploit the overall consis-
tency while allowing some degree of change, we propose
the following approach.

Given N , D-dimensional images I = {In}Nn=1 taken in
sequence and showing an evolving tree structure, our goal
is to reconstruct a tree in each individual image such that
they collectively form a temporally consistent sequence. By
this, we mean that branches do not appear or disappear ran-
domly. As a starting point, we find corresponding points

across images and use them as nodes of a graph whose
edges can either connect to nodes within the same image
or to other images. As in [24], the final set of trees can then
be reconstructed by solving a QMIP problem.

We now briefly outline how to reconstruct trees using the
QMIP formulation in single images and then introduce our
own framework.

3.1. Reconstruction in a Single Image

For an image I , the procedure of [24] starts by comput-
ing a tubularity at all image locations xi ∈ I . It then se-
lects regularly spaced local-maxima of tubularity and con-
nects them to their neighbors by high-probability paths to
which are assigned image-based quality scores. This pro-
duces a spatial graph, G = (X , E), whose nodes X = {xi}
are the selected local maxima and whose spatial edges
E = {eij = (xi,xj)} represent connections between nodes
xi and xj . Then an image-based probability pijk is associ-
ated to each edge pair connected by a common node, e.g.
edges eij and ejk. This probability corresponds to the like-
lihood that the edge pair is indeed part of a larger curvilinear
structure.

Given this curvilinear graph, the final tree or set of trees
can then be reconstructed by selecting an appropriate set of
spatial edges that minimize a function of the pijk [24]. That
is, the produced solution is a set of directed edges that stem
from a root node and which together form a tree.

3.2. Reconstruction in all Images Simultaneously

Repeating the above procedure for each image In would
yield N distinct trees that would be difficult to compare to
other trees, as it is unlikely for their nodes to be at the same
locations in different images. To avoid this problem and
to enforce temporal consistency constraints, we modify the
framework in two key ways:

First, we find temporally consistent nodes xn
i in all im-

ages by looking for local-maxima of tubularity in one image
and then finding corresponding high-tubularity points in the
others. This lets us create temporal edges en1,n2

ij between
node xn1

i found in In1 and its matched node xn2
j in In2 .

Second, we build a spatio-temporal graph whose edges
are both the spatial edges as in [24] and temporal edges
that connect nodes from one individual image to another.
In such a graph, minimizing an objective function that only
considers the spatial edges, as described in the previous sub-
section, would yield the same result as before. However,
we can use the temporal edges to add terms favoring edges
persistent between time instances, thus enforcing time con-
sistency. Minimizing this extended objective function can
still be expressed as a QMIP. Our approach therefore goes
through the following steps:

1. Find graph nodes in individual images as tubularity
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Figure 1. Key steps of the algorithm, best viewed in color. (a) Maximum intensity projection of one of three in vivo image-stacks of a
neural network taken at one week intervals. (b) Corresponding tubularity image. (c) Maxima of tubularity selected as graph nodes in two
different stacks. Those shown in green have been determined to correspond to the same location in both, while those in red or blue appear
in only one. (d) Connecting neighboring nodes by high-tubularity paths produces a spatial graph in each image. High-quality paths are
shown as red while low quality ones appear as blue. (e) Connecting the corresponding vertices across images turns the spatial graphs into a
single spatio-temporal one and solving the corresponding QMIP problem yields two temporally consistent trees. (f) The red tree from the
first image can be deformed and superposed on the blue tree in the second one, making the changes highlighted in red easy to detect.

maxima and corresponding nodes, if any, in other im-
ages, as in Fig. 1(b-c).

2. Build a spatio-temporal graph such as the one depicted
in Fig. 1(d) by linking nodes both within images when
they are close enough and across images when they
match.

3. Solve an extended QMIP problem to find a set of
temporally-consistent trees, such as those of Fig. 1(e).

4. Align these trees spatially to identify places where
substantial changes have occurred, as can be seen in
Fig. 1(f).

In the following two sections, we first describe the construc-
tion of our spatio-temporal graphs in more detail. We then
define our QMIP problem and the corresponding objective
function.

4. Building Spatio-Temporal Graphs

The first step in building our spatio-temporal graph is
to find corresponding nodes across images, such as those
shown in Fig. 1(c). As discussed above, we assume that
there may be some non-linear deformation from one image
to the next but that it is smooth.

Finding an Initial Set of Correspondences We first use
the Optimally Oriented Flux [14] filter to compute a tubu-
larity measure in each image independently.

Then, for m = 1, . . . ,M iterations, we find the point
xn
m that maximizes tubularity across all images, where n

refers to the image in which it was found. Then for each
of the remaining images I n̄ ∈ I\In, we compute the Nor-
malized Cross Correlation (NCC) score of a square or cubic
patch centered on a point xn

m and a neighbourhood of lo-
cations around xn̄

m. Within each evaluated neighbourhood,
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Figure 2. Iterating until a stable correspondence set has been found. (Initialization) A set of corresponding points with possible inconsis-
tencies in the transformation model is found in each image using high-tubularity locations and NCC. (Iteration #1) A set of corresponding
points (shown in green) with the highest tubularity likelihoods has been selected, which are then used to instantiate a GPR that maps the
remaining red points in image n to the red locations in image n + 1. The blue points in image n + 1 that are close enough to these red
locations and correlate well with the original red points in image n are taken to form new correspondences. (Iterations #2 and #3) They are
added to the set of correspondences, shown in green. The process is then repeated.

we associate the location xn̄
m with the maximum computed

NCC score provided it is above a given minimum thresh-
old. From this set, we keep all the consecutive pairs of
points {xn′

m ↔ xn′+1
m }1≤n′≤N−1 as correspondences, as

illustrated by the green points of Fig. 1(c). Once computed,
the tubularity is set to zero in both the neighborhood of xn

m

and that of the found corresponding points. The procedure
is then iterated until the tubularity of the selected point xn

m

is below a certain value.
Enforcing Geometric Consistency The procedure de-
scribed above relies solely on the NCC scores computed
locally and does not guarantee that the displacements of
neighboring points are spatially consistent with each other.
To enforce this and remove potential mismatches, we use a
Gaussian Processes Regression (GPR) [21] to remove cor-
respondences that are not consistent with a non-linear but
locally smooth deformation model.

Hence, to find a geometrically consistent set of corre-
spondences Sn between images In and In+1, we first select
from our correspondences a set S0

n = {xn
l ↔ xn+1

l }1≤l≤L
of the L points with the highest average local tubularity. In
the example of Fig. 2 (Iteration #1), the selected xn

l points
are shown in green. We treat S0

n as being a reliable set and
use the GPR to estimate the mean and covariance of the lo-
cation of a point xn in In+1. This can be computed as

mS0
n
(xn) = k′Γ−1

S0
n
Xn+1
S0
n

, (1)

σ2
S0
n
(xn) = k(xn,xn) + β−1 − k′Γ−1

S0
n
k ,

where k is a kernel function that implicitly defines a
mapping composed of an affine and a non-linear trans-
formation as in [23, 27], β−1 is a measurement noise
variance, ΓS0

n
is the L × L symmetric matrix with el-

ements Γi,j = k(xn
i ,x

n
j ) + β−1δi,j , k is the vector

[k(xn
1 ,x

n), . . . , k(xn
L,x

n)]T and Xn+1
S0
n

is the L×D matrix

[xn+1
1 , . . . ,xn+1

L ]T .
We then add all correspondences that are consistent with

this GPR to S0
n, which is determined when the Mahalanobis

distance between corresponding points xn+1 and mS0
n
(xn)

is sufficiently small. This gives us an augmented set of cor-
respondence S1

n, such as the one depicted by Fig. 2 (Itera-
tion #2). We then repeat the process using S1

n to compute
the regression of Eq. 1 and iterate until the set stabilizes,
typically after 4 to 5 iterations, as shown in Fig. 2 (Iteration
#3).

This is performed for each consecutive image pair, which
yields sets of points in each image Xn = {xn

i } and sets
of geometrically consistent correspondences Sn across con-
secutive images.
Building the Graph We treat points in all the Xn as
nodes of our graph and create two kinds of edges. As
in the single-image case of Section 3.1, the spatial edges
Ens = {en

ij = (xn
i ,x

n
j )} correspond to edges connecting

points within In and consecutive pairs of such edges are
assigned an image-based probability of being part of the fi-
nal curvilinear structure. To these, we add temporal edges
Ent = {en,n+1

ij = (xn
i ,x

n+1
j ) | (xn

i ↔ xn+1
j ) ∈ Sn} that



connect nodes in In and In+1 that belong to the set Sn of
geometrically consistent correspondences.

5. Finding Temporally Consistent Trees
Given a spatio-temporal graph G = (X , E), where X =

{
⋃N

n=1 Xn} and E = Es ∪Et = {
⋃N

n=1 Ens } ∪ {
⋃N−1

n=1 Ent }
such as the one discussed in the previous section, our goal
now is to find a subgraph forming a set of trees that evolve
consistently over time. For every image in the sequence, the
locations of the tree roots are provided by an operator and
are added to the set of graph nodes. An additional imagi-
nary root xr is created and connected to all these root nodes
in all time instances. This way, reconstructing the trees in
all images can be achieved by finding the most likely ar-
borescence rooted in xr.

5.1. Objective Function

Reconstructing the trees of interest means making a de-
cision as to whether each edge of the graph G should be part
of the solution or not. To this end, we take Bayesian point
of view as in [24]. Let Yij ∈ {0, 1} be a binary random
variable denoting the presence or absence of the edge eij in
the final solution and Y be the set of all Yij variables. Our
goal is to infer the most likely tree Y .

To obtain the most likely Y while enforcing temporal
consistency between reconstructions across time, we intro-
duce a constant q that denotes the edge persistence prob-
ability. That is, for a given pair of edges (en

ij , e
n+1
kl ), we

assume that the probability of both edges being part, or not,
of the final solution is equal to q. Conversely, the proba-
bility that one of the edges is part of the solution while the
other is not is equal to 1 − q. And let us therefore denote
Ēt = {(en

ij , e
n+1
kl )|en

ij , e
n+1
kl ∈ Es ∧ en,n+1

ik , en,n+1
jl ∈ Et}

be the set of all pairs of spacial edges in consecutive time
frames whose endpoints are connected with temporal edges.

With this, describing the posterior distribution of Y
given the spatial edges Es and the temporal edges Et can
then be expressed as

P (Y = y|I,X , Es, Et) ∝ P (I,X , Es|Y = y)P (Y = y|Et) ,

assuming that the image data and the spatial edges are con-
ditionally independent of the temporal edges given Y . Fol-
lowing similar steps as in [24], computing the optimal tree
involves solving the maximum a posteriori problem,

y∗ = arg min
y∈Y

P (I,X , Es|Y = y)P (Y = y|Et) , (2)

= arg min
y∈Y

∑
en
ij ,e

n
jk∈Es

wijkyijyjk

+
∑

(en
ij ,e

n+1
kl )∈Ēt

wp (2yijykl − yij − ykl) , (3)

where wijk = − log
pijk

1−pijk
, wp = − log q

1−q , pijk is the
probability that the edge pair (en

ij , e
n
jk) is a part of a tubu-

lar structure and Y is the set of all feasible trees with root
xr. The complete derivation of Eq. (3) can be found in the
appendix.

Note that the temporal constant 0.5 ≤ q < 1 allows
flexibility in the amount of time consistency desired across
time instances, i.e. higher values enforce more consistent
results. In the special case where q = 0.5 the persistence
weight wp is equal to 0 and the problem is reduced to that
of [24].

5.2. Finding the Optimal Tree

To find a tree that minimizes the objective function de-
fined above, we solve the quadratic mixed integer program
(QMIP) as described in [24] using a max-flow min-cut for-
mulation of the minimum arborescence problem using [9].
Note that in this formulation, the input graph must have di-
rected edges in order to compute the flow of a given solu-
tion. Hence, as in [24], we treat each possible spatial edge
pair (en

ij , e
n
jk) with associated weight pijk, as a directed

path and also give the opposite directed edge pair (en
kj , e

n
ji)

the weight pijk. As a result, the solution is a directed tree
with root node xr, connected to a sub-tree in each image
In, as depicted in Fig. 1(e).

5.3. Fine Alignment and Change Detection

Having both the set of temporally corresponding vertices
Sn and the reconstructed trees for each image, we can now
construct a large set of correspondences between trees in
In and In+1. To do this, we use the method of [23], which
uses a GPR to assign correspondences between separate tree
instances, in a similar way as described in Section 4, but
initializing the set of correspondences with the previously
found assignments Sn. In Fig. 1(f) we show sets of lo-
cally concentrated outliers, whose projected locations differ
greatly from the tree location.

6. Experiments and Results
We evaluate our method on 3D 2-photon images of axons

in the brain of a mouse, and on 2D time-lapse images of a
growing runner bean. We use the DIADEM metric [2] to
quantify our results.

Throughout the experiments, we suppress all tubularity
values below 30% of the highest observed value, and set the
initial number of values in Sn to be L = 10. In this section,
we use q = 0.75 as our edge persistence probability and
have observed that the results are very similar for q in the
range 0.65 to 0.8.

6.1. Change Detection in Plant Growing Time Lapse

We first tested our algorithm on a simple time lapse se-
quence of a growing runner bean. Monitoring the growth
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Figure 3. Results for the reconstruction and automatic change detection for the growing runner bean images. (a), (b) and (c) are the original
images and (e), (f) and (g) present the reconstructed trees. (d) and (h) depict the result of the automatic change detection from (e) to (f) and
from (f) to (g), respectively.

of a plant has many uses. These include testing different
environmental conditions, getting to understand the influ-
ence of specific pesticides or other agricultural products, or
evaluating models of plant development and growth [20].

Here, we trained the path classifier using 20000 posi-
tive samples and 20000 negative samples, extracted from
six images from the sequence. These training images were
selected at random and we manually traced the tree in each
one to produce positive samples.

Fig. 3 depicts the results. The branch structure is cor-
rectly reconstructed and the important topological changes
are automatically found. In Fig. 3(d) in particular, one can
see that there is nonlinear deformation between the struc-
tures over time. Initially the plant is partially bent and then
straightens. Nonetheless, since the GPR allows for nonlin-
earity, the correct correspondence between the tree struc-
tures are found and the tree reconstructions and registration
are achieved accurately.

6.2. Automatic Change Detection in Brain Circuits

Long-term memory is thought to be stored in the con-
figuration of the synaptic wiring diagram of brain circuits.
The synaptic connections between neurons are found on
tree-like dendrites and axons through which they receive in-

put and provide output respectively. The complex nature of
dendrites and axons allows neurons to gather and distribute
information from and to a plethora of other neurons that
reside in spatially segregated areas. The rewiring of synap-
tic circuits could be accomplished by structural changes in
the branches of those input and output trees, which would
thereby reprogram the circuits function. This may be im-
portant for learning and memory formation. We collaborate
with neuroscientists who aim at mapping structural circuit
changes in the mouse brain during the learning processes.

To this end they acquire large-scale 2-photon laser scan-
ning microscopy images of a sparse set of fluorescently la-
beled neurons in the neocortex. Images are taken through
a permanently implanted cranial window, which lets them
track specific structures over months during which the
mouse learns new tasks or undergoes new experiences.

We used four large image stacks, labeled 1 to 4, of the
same area of the brain at four different times. To train the
path classifier, we selected a region from stacks 2 and 4,
asked an expert to manually annotate them, and sampled
20000 positive and 20000 negative paths. One of the two
training stacks is depicted by Fig. 5. Three sequences of
smaller volumes were then selected from image stacks 1, 2
and 3 for testing. A single test sequence consists of three
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Figure 4. Results for the reconstruction using the images featuring brain circuits of dataset DS2. Automated reconstruction on DS2. (a,b,c)
Maximum intensity projection of the images. (d,e,f) Reconstructions with DIADEM scores of 0.8471, 0.6422 and 0.5248, respectively.
Note that the DIADEM score penalizes heavily even the relatively small errors in (f).

Figure 5. One of the volumes used for training.

Single [24] Pair Triplet

Image #1 0.0944 0.9473 0.9770
DS1 Image #2 0.1828 0.8720 0.8734

Image #3 0.2985 0.9413 0.9496

Image #1 0.2312 0.8471 0.8471
DS2 Image #2 0.1712 0.5475 0.6422

Image #3 0.0165 0.6236 0.5248

Image #1 0.3369 0.5507 0.7103
DS3 Image #2 0.3177 0.6819 0.6593

Image #3 0.2423 0.6905 0.6905

Table 1. Tree reconstruction DIADEM score [2] on our three
datasets. These scores were obtained using either single images
without temporal consistency or image pairs and triplets and en-
forcing time consistency.

volumes representing roughly the same brain area, each one
taken from a different stack. We will refer to them as DS1,
DS2, and DS3.

For each volume in a dataset, we evaluated the recon-

struction performance of our approach when using either
zero, one, or two additional time instances. When no ad-
ditional time instance is used, we simply pick regularly
spaced high-tubularity points for the vertices of the graph
and our approach reduces to that of [24]. Figs. 1 and 4 de-
pict our results when using all three images simultaneously
on DS1 and DS2, respectively.

In Table 1, we show the resulting DIADEM scores,
which can range from 0.0 to 1.0 with 1.0 being best. That
is in each entry of the table, we show the reconstruction
score obtained for each image when using a specific number
of additional time instances to reconstruct the neural struc-
tures. Note that our approach consistently produces more
reliable reconstructions than those obtained using a single
instance.

To further quantify the impact of the different compo-
nents of our approach, we reran our algorithm using multi-
ple image instances but setting q = 0.5, which is the only
time we changed the value of q. Recall that this implies
that the temporal inconsistencies are not penalized in the
QMIP. Hence, in this configuration, any difference in per-
formance between using one, two, or three images can be
attributed to the strategy used to select vertices across multi-
ple images, as discussed in Section 4. When using the three
images of the DS1 dataset, this yields DIADEM scores of
0.9485, 0.8734, and 0.5528 for images #1,#2 and #3 re-
spectively. This is lower than what we get when enforc-
ing the time-consistency constrains but considerably higher
than the scores obtained for single images with traditional
sampling. In other words, using our approach to generate
stable sets of correspondences, regardless of whether we



also enforce temporal consistency during the optimization,
already has a very significant impact.

7. Conclusion
We have proposed a novel framework for extracting and

reconstructing trees from networks of curvilinear structures
across multiple time instances. The heart of our approach
lies in finding local and stable structures that are consistent
over time, and which can be used to disambiguate cases
where individual time-instance reconstructions would fail.
These additional time constraints are combined with more
spatial constraints as inputs to a Quadratic Mixed Integer
Program, and allow all time instance trees to be recon-
structed at once.

We showed experimentally that our approach success-
fully takes advantage of temporal information to produce
more reliable and accurate reconstructions of tree struc-
tures. In addition, we showed that our approach has the
added benefit of automatically detecting regions of signifi-
cant change in tree structures.
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