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Abstract

Scan-line optimization via cost accumulation has be-
come very popular for stereo estimation in computer vision
applications and is often combined with a semi-global cost
integration strategy, known as SGM.

This paper introduces this combination as a general and
effective optimization technique. It is the first time that this
concept is applied to 3D medical image registration.

The presented algorithm, SGM-3D, employs a coarse-
to-fine strategy and reduces the search space dimension for
consecutive pyramid levels by a fixed linear rate. This al-
lows it to handle large displacements to an extent that is
required for clinical applications in high dimensional data.

SGM-3D is evaluated in context of pulmonary motion
analysis on the recently extended DIR-lab benchmark that
provides ten 4D computed tomography (CT) image data
sets, as well as ten challenging 3D CT scan pairs from the
COPDgene study archive. Results show that both registra-
tion errors as well as run-time performance are very com-
petitive with current state-of-the-art methods.

1. Introduction

Accurate, robust, and run-time efficient non-linear image
registration is a requirement for many clinical applications.
For example, pulmonary motion estimation in 4D CT data
has recently received much attention due to its great po-
tential for breathing induced motion correction in radiation
therapy [6]. Figure|[T]illustrates the general application con-
text of 3D lung CT registration that is used for evaluation
purposes in this paper.

Many methods in this field follow a variational approach
and often utilize prior knowledge, such as lung segmenta-
tion masks [ 1,117,116, 124,122, 126]], an initial solution from an
affine-linear pre-registration [24]], a sparse set of landmark
pairs for initialization [22]], or they incorporate a diffeomor-
phic motion assumption into the energy model [1, 26] and
perform symmetric registration [} [13]]. Results of a recent
challenge and study presented in [20] established a compre-
hensive overview of general state-of-the-art methods. More
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details on currenﬂ state-of-the-art approaches, which serve
as methods of comparison in this paper are given in the eval-
uation Section [£.3]

In contrast to variational registration schemes, discrete
methods, which are formulated as an optimal labeling prob-
lem, constitute ‘an important new trend in medical im-
age registration’ [10]. Recently published discrete ap-
proaches [13}114119,[10] however, are exclusively based on
Markov random fields (MRF) and utilize some sort of
sparse graph node distribution, either by selecting statisti-
cally descriptive image locations or in form of a uniform
sampling across the image domain. Those methods are tar-
geted to update control points of a dense transformation
model.

An alternative to MRF approaches is scan-line optimiza-
tion, which was introduced in [25] as a simplified version of
scan-line dynamic programming for the task of stereo esti-
mation [21]]. It has recently become very popular in combi-
nation with a semi-global integration strategy [[18], known
as semi-global stereo matching (SGM). Due to its computa-
tional efficiency and robustness, SGM is nowadays utilized
in many industrial applications, such as commercial driver
assistance systems [8].

Scan-line optimization is almost exclusively applied for
disparity estimation in rectified stereo pairs, i.e. finding an
optimal 1D displacement field in 2D images. However, a
few methods address dynamic programming for 2D motion
estimation, e.g. [23}128]], but the first method that was able to
deal with reasonable large 2D displacement fields was pro-
posed in [12] and was then extended for scene flow estima-
tion in [11]. Still, both methods are restricted to deal with
displacement vectors of only 25 and 10 pixels, respectively.
To overcome even large pixel displacements on high resolu-
tion images, a recently published method called fSGM [[15]]
embeds scan-line optimization for 2D optical flow estima-
tion into a pyramidal scheme. At the time of publica-
tion, fSGM ranked second on the KITTI Vision Benchmark
SuiteE] ahead of all submitted variational approaches.

This paper is motivated by the promising results pre-

! published within the last 12 months
2http://www.cvlibs.net/datasets/kitti/
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(a) Lung at end-inspiration

(b) Lung at end-expiration

(c) Lung overlay before registration

(d) Lung overlay after registration

Figure 1. Illustration of 3D lung CT data in context of image registration for pulmonary motion analysis. Images [I(a)] and [I(b)] show
coronal views of lung CT images at end-inspiration and end-expiration. Image [I(c)] visualizes intensity differences due to unaligned lung
structures when images|[T(a)]and[I(b)|are overlaid. Those structures need to be registered via a non-linear transformation. The resulting 3D
vector field is interpreted as the lung motion of an inhalation/exhalation cycle of the patient. Figure[T(d)]shows the intensity differences

after image registration with SGM-3D.

sented in [I35] and introduces SGM-3D, a novel discrete
optimization algorithm for dense 3D medical image reg-
istration. It employs the pyramidal concept of fSGM, but
couples it with a linear search space reduction strategy.
The evaluation in Section [4] shows that it currently ranks
amongst the best performing algorithms with respect to both
registration accuracy and run-time performance. This high-
lights the application potential of scan-line optimization for
a clinical environment and indicates, that it can successfully
be applied to general labeling problems in high dimensional
data and is not restricted to stereo estimation.

This paper is structured as follows. Section [2| in-
troduces scan-line optimization for image registration in
n-dimensional data. Implementation details for the 3D med-
ical case are given in Section 3] followed by a performance
evaluation and discussion in Sectionl Section[3]concludes
this paper.

2. Scan-Line Optimization

This section gives a formal and general introduction to
pyramidal scan-line optimization in context of non-linear
motion estimation. This technique is still uncommon for
optical flow estimation in computer vision applications and
a novelty in 3D medical image registration.

2.1. Basic Notations

Let I, and I; be two consecutive frames of an image se-
quence, defined on an n-dimensional discrete image grid
Q cCc N*with I : Q — R. I, and I; are referred to as
reference and target image, with respective image domains
Q, and €);. A point p € 2 describes a position (or pixel) on
the image grid and I|[p] refers to the intensity of an image
I at p. The output is a pixel discrete n-dimensional vector
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field

u:Q, —7Z" pr—ulp

)

that describes the pixel displacement from I,. to I;. For the
task of 3D medical image registration itis n = 3.

2.2. Label Set and Search Space

Let L = {0,...,lmax — 1} C N be a set of labels of
non-negative integers. Each label [ € L is associated with
one unique displacement vector d € Z". A unique corre-
spondence between a label [ and a displacement vector d is
defined by a bijective discrete mapping

9:L—S, I—939(1)=d 2)
and its inverse mapping
9SS —L, d— o9 l(d) =1 3)

where S C Z" is defined by a vector f € N™ with positive
integer entries f; as the finite offset domain of all possible
displacements with

S={deZ": || < fi A Ald] < fu} @

and is referred to as search space.

2.3. Pixel Matching Cost and Local Matching

To establish correspondences between pixels of refer-
ence and target image, a cost function p is required that
defines the matching cost for a pixel pair (p, q) € Q, X Q4.

In practice, a cost function is used to establish a
cost matrix that holds for each pixel p € €2, all matching
costs of a finite set of pixels q € §2;. In this paper, a generic
cost matrix is defined as

C(p.1) = p(p,p +1[p] + 9(1)) (5)



where p : Q. x ; — R assigns a matching cost between
the two pixels p € Q, and p + a[p] + ¥(1) € Q; that
represents their dissimilarity.

A fixed initial motion field G defines for every pixel
p € €, the origin in €2; around which all matchings costs
within the search space S are calculated via J(I). An initial
motion field a refers in this paper to an upscaled scan-line
optimization result from a lower pyramid level, but can of
course be of arbitrary origin.

In the following, the notation Cp 4[] is used for
C(p,1,1) to highlight that a cost matrix Cg holds for all
pixels p € €2, a cost vector Cp, i With [ ;5 matching costs,
which depend on a fixed prior solution 1, and is indexed by
labels [ € L.

The displacement field u that minimizes locally the pixel
matching costs over the entire image domain is then defined

for every pixel p € €, as
{C’p,ﬁ[k]}>

In words, the cost matrix establishes at each pixel p € €,
the matching cost for all displacement vectors, which are
defined by the sum of an initial solution @[p] and the
vector J(1). The label k£ € L, that indexes the minimum
matching cost in Cy, ; defines the displacement vector ¥(k)
that updates the initial solution G[p].

(6)

arg min

ulp] = dlp] + ﬁ( g

2.4. Cost Accumulation and Integration

Let Cp q and Cq 4 be two cost vectors of length [, at
adjacent pixels of a cost matrix Cy calculated with respect
to a cost function p. Energy minimization at an individ-
ual pixel location, as defined in Equation @, does not en-
force any consistency between adjacent displacement vec-
tors u[p| and u[q].

Consider a new cost vector Sp defined by
Sp.all] = Cpalll + Cqall], i.e. the sum of the corre-
spondence costs of the current pixel p and the neighboring
pixel q. Because Sp,  incorporates the matching costs of q,
the likelihood that Sy, 3 has its cost minimum at the same
label as Cq 4 is greater than for Cp, . In other words, the
solutions for p and q are more likely to be consistent. The
data costs at q can therefore be interpreted as regularization
costs for the pixel matching costs at p.

Scan-line optimization via cost accumulation is based on
that principle, i.e. data costs of previous pixels along a scan-
line are considered to regularize data costs at the current
pixel in order to enforce consistent solutions.

The general approach for scan-line optimization recur-
sively defines an accumulation matrix Sy of pixel matching
costs, which are integrated along multiple 1D paths that run
across the image domain £2,.. The vector Sp, 4 holds the
accumulated costs, which are used for regularization at the
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subsequent pixel along the path. It is defined for a pixel lo-
cation p; and all labels [ € IL and is based on the scan-line
segment pg, P1,-- -, Pi, Where pg is located at the image
border, and p; € 2,.. The cost at Sp,, [!] is then recursively
defined fori =1,2,...,n, as

Spi,ﬁ[l] = Cpi,ﬁ[l] +

- {X(Spu,m o)1) — minger (Sp,_, [

T
with Sp, all] = Cp,.all]. Xx is a generic cost restriction
function that reduces the accumulated costs of the previous
pixel, based on the spatial relationship between labels inside
the search space domain S.

The function ¢ : Z™ x L. — L;,, maps corresponding
labels of matching costs for the same displacement vector.
This is required in case that initial flow vectors differ for
two consecutive pixels.

Let Li,y = L U {liny }, where i,y is a unique label that
refers to an invalid displacement. The function ¢ is then
defined with Equations (2) and (3) and with v € Z" as

QZ)(Va l) = {

where [i,, is associated with a high constant matching
cost ciny. The function ¢ is applied in Equation (13).

Generally speaking, scan-line accumulation is based on
adding up two cost vectors. The regularization costs adjust
the data costs at the current pixel, and the data costs update
the regularization costs for subsequent processing.

The truncation threshold 7 defines the maximum regu-
larization cost. An additional cost restriction function y im-
poses cost limits based on the proximity of labels within S.
This limits relative cost differences of spatially close labels.
Subtracting the minimum cost value of the last pixel keeps
regularization costs at a certain level and ensures that accu-
mulation costs can either increase or decrease, depending
on the data cost distribution.

)

9= (v + (D)),

linv

ifv+9() €S
otherwise

®)

2.4.1 Semi-Global Scan-Line Integration

This paper employs the cost integration strategy of
SGM [18], which means that a global minimum is approx-
imated in a semi-global fashion to enforce consistency not
only along 1D scan-lines but over the entire (here 3D) image
domain €2,.. In SGM, accumulated costs of multiple scan-
lines following different directions A are integrated into an
integration matrix, which is defined for every p € (2, as

Apall] =Y Spall] )
A



where the angles between directions A are evenly spaced
and it is ensured that pixel matching costs are accumulated
in opposite directions for symmetry purposes. The final so-
lution is established as in Equation () as

{Ap,ﬁ[k]}) (10)

In practice, the integration matrix is directly used as accu-
mulation matrix, i.e. A = S, and accumulation directions
are chosen to run at least along the image axes.

arg min
kel

MMZﬁM+ﬁ(

3. Implementation Details

The particular choices for cost function p and cost re-
striction function x of Equations (3) and (7)) are specified
for the 3D medical image registration context.

3.1. The Census Cost Function

The census cost function is employed to establish pixel
matching costs and is based on the census transform, which
was introduced in [29]]. The census transform is a binary
representation of all intensity differences between a refer-
ence pixel and its immediate neighbourhood. It is based
on ordering statistics; it encodes the spatial relationship be-
tween the considered pixels. A binary signature vector ¢)(x)
is assigned to an image position x and is calculated based
on the ordinal characteristic of I[x] in relation to intensities
within a defined neighbourhood Ny of x. It is generated as
follows:

vx) = (2[160 = 1(y)]) e {0,131

Y € Nx

(1)

where @[] returns 1 if true, and 0 otherwise. The matching
cost p is the Hamming distance of two signature vectors
which are {0, 1}-sequences of length | Ny|. This distance is
calculated as

| Vx|

peensus(@,B) = > (1 () & (b))

i=1

(12)

where @ refers to an ‘exclusive or’ operation (XOR) be-
tween two binary signatures. The final matching cost is the
sum of all 1’s in the resulting signature vector. Its compo-
nents are indexed by the subscript <.

3.2. Truncated Linear Regularization

A truncated linear cost restriction function is chosen for
SGM-3D. The following efficient implementation is based
on a distance transformation concept and was proposed by
Felzenszwalb and Huttenlocher [7]].

The cost vector x (Sp,_,.a,)[l] of Equation (7) is cal-
culated for every [ € IL in a forward and a backward pass as
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follows:
S;V,Vﬁwil( (d1,d2,d3))] =
p.al¢(alp;] —alpi—1], 971 ((d1, dz, d3)))]
Sﬁ”[ﬂ Y((dy —1,da,d3))] + Tx
SE[0 ((dy, da — 1,d3) )] + Tx
wa Al 1((d1,d2, 3 — 1))+ Ta
(13)

where d; run from —f; + 1,...
backward pass is defined as:

,fi, fori = 1,2,3. The

ng[ﬁfl( (d1,dg,d3))] =

S [0 ((da, do, ds) )]
_ Sbw LT ((dy + 1, d2, ds) )] + T (14)
T et (dds +1,d5))) + T
Sbw A Y((dy,dg,d3 +1))] + T

where d; run backwards from f; — 1,...,
mentation of S,, 4[!] of Equation (7) is

— fi. The imple-

Spi,fl[l] = Cpi,fl[l] +

min {

where 7T represents the slope of the linear restriction func-
tion y and the factor 7 defines the upper limit of the regu-
larization costs.

Sbw

pi—1,0

TaT-

[l] - minkG]L (Spi—hﬁ[k])

15)

4. Performance Evaluation

The performance of SGM-3D is evaluated for all pub-
licly available thoracic CT data sets, provided as benchmark
data by the DIR-lalﬂ of The University of Texas M.D. An-
derson Cancer Center (Houston, USA).

4.1. Dir-lab Benchmark Data

The DIR-lab provides currently two sets of benchmark
data. The first set contains ten thoracic 4D CT images con-
sisting of ten 3D CT scans, which are used for the treatment
planning process of thoracic tumors at the Anderson Cancer
Center of The University of Texas [5) 3]. The dimensions
of the 4D data range from 256 x256x94 and 512x512x 136
pixels, with a resolution between 0.97x0.97x2.5 mm?® and
1.16x1.16x2.5 mm?.

The second set originates from the National Heart Lung
Blood Institute COPDgene study archive[z_f] and contains ten

3http://www.dir-lab.com
4 http://www.copdgene.org
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(a) Visualization of the estimated 3D motion field

(b) Visualization of the 300 registered landmarks

Figure 2. Image [2(a)] visualizes the 3D vector field obtained by SGM-3D for the COPD data set 04, which is the data set with the worst
performance for SGM-3D. The color is defined by the hue color scale and ranges from red to blue, indicating large (> 42 mm) to small
motion amplitudes. Image [2(b)] shows the corresponding set of landmark pairs. Blue refers to a landmark of the reference image. The
corresponding landmark in the target image is either colored in green or red, depending on whether the registration error is above (red) or

below (green) an error threshold of 2.5mm.

inspiratory/expiratory breath-hold 3D CT image pairs [4].
The dimension of the image pairs are 512x512x102/135
with a resolution between 0.586x0.586x2.5 mm® and
0.742x0.742 x2.5 mm?3,

Each scan pair of the COPDgene study (in the follow-
ing referred to as COPD data) and each end-inspiration/-
expiration pair of the 4D CT data sets comes with 300 pub-
licly available anatomical landmark pairs to be used for
quantitative evaluations. These landmarks were manually
annotated by medical experts and are usually located at
prominent bifurcations of the bronchial or vessel trees. The
registration error is calculated as the Euclidean distance be-
tween a landmark pair in world coordinates. Figure[2]shows
an example of a registration result and the corresponding set
of landmark pairs.

However, there are two slightly different evaluation ap-
proaches in current literature. The first approach adds the
corresponding 3D displacement vector to the 3D position
of the reference landmark and calculates the Euclidean dis-
tance to the position of the target landmark. This straight
forward approach is in the following referred to as direct
evaluation. The DIR-lab shifts the translated reference
landmark to the closest pixel center on the image grid be-
fore calculating the Euclidean distance. This snap-to-pixel
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evaluation is based on the argument that human observers
select discrete pixel locations in image pairs when identi-
fying the landmark sets. This paper follows snap-to-pixel
evaluation for the 4D CT data and direct evaluation for the
COPD data. The reason for this is based on the fact that
the best published results in current literature follow these
approaches on respective data sets.

4.2. Algorithm Configuration

SGM-3D is a coarse-to-fine approach that employs
Gauss pyramids with a fixed number of three pyramid lev-
els, where ¢ = 1 refers to the finest level. The displacement
field at the coarsest level is initialized with zero, and the re-
sult of each level is used as initial solution for the scan-line
optimization at the next higher image resolution.

The search space S, as defined in Equation (@), represents
a 3D cube with a dimension that is set to (2- f,, +1)3, with
fi = fo = f3 = fm. In order to cope with the memory
complexity, the search space is linearly decreasing for each
pyramid level with f,,, = 3 - £.

To restrict the registration process to lung regions only,
binary lung segmentation masks are generated to crop the
input images and to set image intensities outside the lungs to
zero. This is a common strategy to deal with strong motion



4DCT w/o observer SGM-3D cEPE c¢TVL1 NLR SWE

# registr. error [new approach] [16]] [17] [24] [26]

01 3.89 718) 0.85 (1.24) 0.76 (0.92) 0.80 (0.92) 0.78 0.92) 0.78 0.91) 0.87 (0.93)
02 4.34 3.90) 0.70 0.99) 0.72 (0.87) 0.77 0.92) 0.78 0.92) 0.74 0.87) 0.84 (0.95)
03 6.94 (4.05) 0.77 a.o1) 0.94 (1.07) 0.92 (1.10) 0.93 (1.09) 0.94 (1.07) 1.02 1.13)
04 9.83 (4.86) 1.13 a1.27) 1.24 (1.26) 1.22 1.24) 1.24 (1.30) 1.26 (1.26) 1.35 a.27)
05 7.48 (5.51) 0.92 (1.16) 1.15 a.42) 1.21 a.47) 1.22 1.43) 1.22 (1.48) 1.39 (1.47)
06 10.89 6.97) 0.97 (1.38) 0.90 (0.98) 0.90 (1.00) 0.94 0.99) 0.97 (1.03) 1.25 (1.14)
07 11.03 (7.43) 0.81 (1.32) 0.89 (0.95) 0.98 (.01 1.01 (0.96) 0.91 (1.00 1.19 (1.12)
08 14.99 .01 1.03 2.19) 1.13 (1.40) 1.16 (1.45) 1.11 1.28) 1.07 a.29) 2.55 3.70)
09 7.92 (3.98) 0.75 (1.09) 0.91 (0.93) 1.00 0.97) 0.98 (1.00) 1.03 (1.0n) 1.23 (1.16)
10 7.30 (6.35) 0.86 (1.45) 0.83 (0.92) 0.99 (1.28) 0.94 (1.03) 0.98 (1.10) 1.15 (1.25)
Deorr 8.46 (6.58) 0.88 (1.31) 0.95 1.07) 0.99 (1.13) 0.99 (1.09) 0.99 (1.10) 1.29 (.41
Diime - - 98 s 46 s 110 s 104 s 64 min

Table 1. A list of the currently lowest published landmark-based mean registration errors after registration of the end-inspiration to end-
expiration images of the DIR-lab 4D CT data sets. Standard deviations are given in small brackets. All values are in mm, following the

snap-to-pixel evaluation.

discontinuities that often occur near lung borders.

The data resolution specifications in Section [4.1] high-
light that CT data usually features a high spatial resolution
along the x- and y-axis but often has a significantly lower
resolution along the z-axis. To deal with the anisotropic na-
ture of the data, a census neighborhood of 5x5x3 is used to
reduce the spatial impact of the data term along the z-axis.
Additionally, the COPD data is scaled down by 50% along
the x- and y-axis as pixel resolution differences are particu-
larly high for this data set.

The result of each level is first filtered by a 3x3x3 me-
dian filter, followed by a 5x5 x5 Gauss filter with o = 1.0.

The parameters that define the truncated linear cost reg-
ularization are set to 7y, = 14.8 and 7, = 14.8 and six
scan-line directions along the image axes were chosen.

4.3. Result Tables and Methods of Comparison

Tables [T] and 2] list mean registration errors of SGM-3D
for each data set of the 4D CT benchmark and the COPD
benchmark, along with some of the lowest reported error
values in current literature. The minimum error value for
each data set is highlighted with bold letters and a gray
background. In case of two identical mean values, the min-
imum is identified by the standard deviation, which is given
in brackets behind each error value.

The mean landmark distances, which are obtained with-
out registration, are listed in the first column and give an
indication of the mean motion amplitudes for each data set.
The larger those values, the bigger the assumed lung defor-
mation and the harder the registration task.
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The observer error in the second column of the tables is
provided by the DIR-lab websiteE] and describes the mean
landmark deviation that resulted from multiple annotations
of a defined subset of landmarks by three different human
observers. The registration goal is to get close or below this
error value.

In the following, the methods of comparison are de-
scribed. ¢TVLI [17] and cEPE [16] refer to methods, which
minimize an L; energy and employ total variation regular-
ization following the numerical schemes of Zach et al. [30]
(cTVL1) and Brox et al. [2] (cEPE). Both methods utilize
the census cost function in the data term. The error values
of SWE [26] are taken from [[17]]. It is a diffeomorphic vari-
ational scheme that minimizes a normalized variant of the
sum of squared intensity differences and employs diffusion
regularization. The method currently ranks amongst the top
ten methods on the EMPIRE10 websiteﬂ which started off
as a pulmonary image registration challenge in 2010 [20],
and continues as another benchmark for performance eval-
uation in that field.

The method named NLR currently ranks fourth on
EMPIRE1O0. It is described in [24] as a variational ap-
proach, which is based on second order regularization and
a data term that penalizes deviations of gradient orienta-
tions. It employs affine linear transformation prior to non-
linear registration. The method LMP [22] can be consid-
ered as a straight forward extension to NLR. It generates a
pre-registration based on a sparse set of thin plate splines

Shttp://www.dir-lab.com/ReferenceData.html
Slhttp://empirel0.isi.uu.nl


http://www.dir-lab.com/ReferenceData.html
http://empire10.isi.uu.nl

COPD w/o observer SGM-3D NLR gsyn LMP TPS

# registr. error [new approach] [24,122] 22,27, 1] [22] [22]

01 26.33 (11.44) 0.65 (0.73) 1.22 273 1.39 (1.40) 1.21 (1.36) 1.26 (1.23) 3.69 (3.79)
02 21.79 6.47) 0.70 0.99) 2.48 3.79) 2.36 (2.79) 3.01 4.46) 2.02 2.29) 4.10 3.60)
03 12.64 (6.40) 0.58 (0.87) 1.01 (0.93) 1.18 0.81) 1.24 (1.08) 1.14 0.70) 1.56 (1.07)
04 29.58 (12.95) 0.71 (0.96) 2.42 (3.56) 1.57 (1.39) 1.38 (1.14) 1.62 (1.60) 4.39 (3.89)
05 30.08 (13.36) 0.65 (0.87) 1.93 3.29) 1.44 1.14) 1.31 a.19 1.47 1.26) 3.63 3.31)
06 28.46 (9.17) 1.06 (2.38) 1.45 .42) 2.08 2.92) 1.49 (2.25) 1.38 (1.46) 2.69 (2.94)
07 21.60 (7.74) 0.65 (0.78) 1.05 (1.43) 1.18 (1.13) 1.24 (1.24) 1.22 (1.30) 2.25 (2.18)
08 26.46 (13.24) 0.96 3.07) 1.16 1.79) 1.65 (1.98) 2.09 3.32) 1.63 (2.16) 3.47 3.76)
09 14.86 (9.82) 1.01 254 0.81 (0.67) 1.13 (1.09) 1.18 1.25) 1.12 (.19 2.20 2.34)
10 21.81 (10.51) 0.87 (1.65) 1.28 (1.29) 1.44 (1.23) 1.63 (2.05) 1.45 (1.31) 4.00 (3.16)
Deorr 23.36 (10.11) 0.82 (1.54) 1.48 (2.19) 1.54 (1.59) 1.58 (1.93) 1.43 1.45) 3.20 (3.00)

Table 2. A list of the currently lowest published mean landmark-based registration errors after registration of the breath-hold pairs of the
DIR-lab COPD data sets. Standard deviations are given in small brackets. All values are in mm, following the direct evaluation. The values

for comparison are taken from the study [22].

following [19] and uses those pre-calculated landmarks as
additional constraint for the non-linear registration step. Er-
ror values for TPS refer to the result without non-linear reg-
istration.

gsyn [27] refers to a diffeomorphic variational method
that uses cross-correlation and regularization via Gauss
smoothing within a symmetric registration framework. It
ranks first on EMPIREI1O since the initial challenge phase
in 2010. Comparative values for this method were gener-
ated by Polzin et al. for the study in [22], using the pub-
licly available ANT library with the algorithm configu-
ration reported for EMPIREI1OQ in [27]. It is so far the only
work with published result values for the challenging COPD
benchmark data.

4.4. Discussion for 4D CT Data

Comparing mean registration errors of Table [I] we see
that there are no big differences between the listed methods,
not in terms of registration accuracy and, with the exception
of SWE, not in terms of run-time performance.

Considering that the majority of these methods are only
0.1 mm away from the mean observer error, the challenge of
this benchmark may be considered as close to being solved.
However, it is an important reference benchmark in current
literature and therefore included in this paper. It will stay
relevant as a baseline benchmark, and it is safe to assume
that registration results for the COPD benchmark will soon
become the next challenge for performance evaluation in
pulmonary image registration.

7Ihttp://stnava.github.io/ANTs/
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4.5. Discussion for COPD Data

Initial mean registration errors, which are listed in the
first column of Tables [I] and 2] indicate that displacement
vectors of the COPD benchmark are on average three times
larger than those of the 4D CT benchmark. The COPD data
is therefore significantly more challenging than the data of
the current 4D CT reference benchmark.

All listed methods perform very good in general, with the
exception of TPS, which was listed in [22]] only as a baseline
result. SGM-3D in particular yields very good performance
on most COPD data sets. However, registration errors for
data sets 04 and 05, which exhibit the largest motion ampli-
tudes, are significantly higher compared to all other varia-
tional based methods. This is likely to be due to the result-
ing larger deformations of the lung structures. Variational
methods based on image warping have in this case a natural
advantage over matching based methods. This argument is
supported by the fact that gsyn, which employs a symmetric
registration approach, outperforms NLR and LMP in those
particular cases.

5. Conclusions

This paper presented SGM-3D, the first method based on
scan-line optimization that was successfully applied to pul-
monary motion estimation in context of 3D medical image
registration. SGM-3D is competitive with current state-of-
the-art methods, even on the challenging and only recently
released COPD benchmark. This result indicates further,
that scan-line optimization has the potential to be applied to
general labeling problems in high dimensional data.


http://stnava.github.io/ANTs/
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