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Abstract

We consider the design of a single vector representa-

tion for an image that embeds and aggregates a set of local

patch descriptors such as SIFT. More specifically we aim to

construct a dense representation, like the Fisher Vector or

VLAD, though of small or intermediate size.

We make two contributions, both aimed at regularizing

the individual contributions of the local descriptors in the

final representation. The first is a novel embedding method

that avoids the dependency on absolute distances by encod-

ing directions. The second contribution is a “democratiza-

tion” strategy that further limits the interaction of unrelated

descriptors in the aggregation stage.

These methods are complementary and give a substantial

performance boost over the state of the art in image search

with short or mid-size vectors, as demonstrated by our ex-

periments on standard public image retrieval benchmarks.

1. Introduction

C
ONSIDER the problem of representing a set of vectors

describing an image, for example a set of SIFT de-

scriptors [18], by a single set-vector such that a simple com-

parison of two such set-vectors with cosine similarity re-

flects the similarity of the original sets. This is what is done

in the literature in the many papers on large scale image

retrieval, where the first step is to describe an image by a

set of vectors (bag-of-features) each representing sub-parts

(patches) of the image, and this set is then converted into

a single vector based on an aggregation strategy, such as

the bag-of-visual-words (BOW) representation [30], BOW

with multiple- [12, 14] or soft-assignment [25, 32], locality-

constrained linear coding [33], VLAD [13] or the Fisher

vector [22, 23]. A similar approach is also employed in

large scale image classification, but we will concentrate on

image retrieval here.

All these methods can be decomposed into two steps: the

embedding step individually maps each vector of the set to

a high-dimensional space; whilst the aggregating step pro-

duces a single vector from the set of mapped vectors, for in-

stance using sum- or max-pooling [5]. In this paper, we re-

visit these two steps and make a novel contribution to each.

Our overall objective is to design a “democratic” kernel,

such that each vector of the set contributes almost equally

to the set similarity. This objective is addressed separately

in both the embedding and aggregating stages.

First, we aim to design the embedding step φ such that,

for any pair of vectors (x, y) describing two patches, the

similarity φ(x)⊤φ(y) is close to unity if the patches match,

and close to zero if they do not, i.e., the magnitude of

φ(x)⊤φ(y) should be small for unrelated patches. To this

end, our first contribution is to introduce a triangulation em-

bedding (T-embedding) that encodes the input vector with

respect to a set of anchor points using only directions, not

magnitudes. In contrast to most similar existing techniques

[13, 17, 26], we discard the magnitude information between

the input vector and the anchor points, as we consider this

unreliable. From this point of view, our method can be seen

as a way to localize the vector with a triangulation strategy.

Our second contribution is an aggregating strategy that

explicitly takes into account the interference between the

vectors of a set to remove it, and tends to give equal weight

to each vector in the final score between two sets. This

involves an optimization problem to find weights linearly

balancing the contribution of each mapped vector in the

final vector representation, and is solved with a modified

Sinkhorn algorithm [15, 29]. This method is especially ef-

fective for relatively short representations, where it is essen-

tial to cancel the interference between the mapped vectors.

As will be demonstrated on public benchmarks for large

scale image search, both these contributions give a sig-

nificant improvement over previous techniques: our T-

embedding outperforms the Fisher vector by a large mar-

gin for a given dimensionality, and our aggregation strategy

offers a similar gain, which is also complementary to the

so-called power-law normalization [23].

This paper is organized as follows. Section 2 introduces

notation and motivates our contributions. Section 3 intro-

duces our T-embedding and Section 4 our aggregation strat-

egy. The experiments are presented in Section 5. Appen-

dices are provided as supplementary material and available

with code on the project page1.

1http://tinyurl.com/democratic-kernel



2. Preliminaries

Let us consider two sets X and Y such that card(X ) = n
and card(Y) = m. Each set consists of a set of vectors,

such as local descriptors associated with an image. We first

consider match kernels, in a framework derived from Bo

and Sminchisescu [4]2, that have the form:

K(X ,Y) =
∑

x∈X

∑

y∈Y

k(x, y) = ψ(X )⊤ψ(Y), (1)

where k(x, y) is a kernel between individual vectors of the

sets. The right term indicates that we consider more specif-

ically a vector representation for sets, such that two images

are compared based on the inner product between their rep-

resentations ψ(X ) and ψ(Y). The match kernel is also writ-

ten as

K(X ,Y) = 1
⊤
n K(X ,Y)1m (2)

where 1n = [1, . . . , 1]
︸ ︷︷ ︸

×n

, and we define the n×m matrix

K(X ,Y) =






k(x1, y1) . . . k(x1, ym)
...

. . .
...

k(xn, ym) . . . k(xn, ym)




 . (3)

This matrix typically contains all the pairwise similarities

between the local descriptors of two images. For any kernel

K, we denote its normalized counterpart

K⋆(X ,Y) = α(X ) α(Y) K(X ,Y), (4)

where the normalizer α(.) is defined such that K⋆(X ,X ) =
1, i.e., α(X ) = K(X ,X )−1/2.

2.1. Construction: embedding and aggregation

We divide the construction of K into two steps, namely

embedding and aggregation. The embedding step φ : Rd →
R

D maps each x ∈ X as

x 7→ φ(x). (5)

The aggregating step computes a single vector from the set

{φ(x1), . . . , φ(xn)} of embedded vectors through a func-

tion ψ. This function is for instance a simple summation, in

which case we denote it ψs:

ψs(X ) =
∑

x∈X

φ(x). (6)

This simple definition of ψ is implicitly used in (1). In

this case, k(x, y) = 〈φ(x)|φ(y)〉. The match kernel K is

2The only minor difference is that we do not use the same normalizers:

[4] normalize the vector representation by the number of features.

computed as the inner product between the aggregated vec-

tors:

ψs(X )⊤ψs(Y) =
∑

x∈X

∑

y∈Y

φ(x)⊤φ(y), (7)

where each possible match (x, y) contributes to the overall

set similarity, each with weight φ(x)⊤φ(y).
This formulation, considered in particular by Bo and

Sminchisescu [4] and Tolias et al. [31], encompasses many

approaches. Let us first consider the embedding step. For

a bag-of-visual-words vocabulary C of size |C| = D, a

single descriptor x of X is mapped to a D-dimensional

vector having one component equal to 1 (if not consider-

ing inverse document frequency) and the others to zero:

φBOW(x) = [. . . , 0, 1, 0, . . . ]⊤. The non-zero position is

determined based on a nearest-neighbor assignment rule.

With multiple assignment to visual words [14], several com-

ponents are set to one, while soft assignment [23, 25, 32]

gives different weights to a few components to account

for the distances to centroids. Approaches such as local

linear coding [33], the Fisher vector [22] or VLAD [13],

also give alternative definitions of φ. Power-law normaliza-

tion [11, 13, 23] modifies the function ψ by post-processing

the aggregated vector.

Remark: The embedding step resembles the coding step as

usually considered in the literature [13], and (6) is close to

the pooling step [13]. We use another terminology to avoid

confusion, because in our case all the operations applied on

a per descriptor basis are included in the embedding stage.

In this respect, the function φ already includes part of the

pooling, including geometry-based pooling such as a spatial

pyramid [16]. Consequently, in this formulation the dimen-

sionality of φ(x) is typically the same as that of the final

representation of the set X .

2.2. Interferences in match kernels

The set vectorization underpinning (6), by casting a set

of descriptor vectors into a single vector, has the advantage

of producing a vector representation compatible with lin-

ear algebra, SVM and quantization, to mention but a few.

However, this procedure gives unequal importance to the

original descriptors in the final representation. More pre-

cisely, by comparing ψs(X ) to itself, the contribution of a

given vector x to the set similarity ψs(X )⊤ψs(X ) is given

by φ(x)⊤ψs(X ):

φ(x)⊤
∑

x′∈X

φ(x′) = ‖φ(x)‖2 + φ(x)⊤
∑

x′∈X :x′ 6=x

φ(x′).

(8)

This equation suggests two important properties for φ:

1. The left term ‖φ(x)‖2 isolates the matching descrip-

tor, whose contribution strongly (i.e., quadratically)

depends on its norm.



(a) (b) (c)

Figure 1. Illustration of our T-embedding for d = 2 and |C| = 4.

(a) Distribution and learned anchor points. (b) Residual vectors

associated with a given vector x; (c) Normalized residuals R(x).

2. The right term is the “noise” polluting the contribution

of x due to its interaction with the other vectors.

This paper aims at addressing these two problems, both

in the design of the embedding function φ (in Section 3) and

in that of the aggregation function ψ (in Section 4).

3. Triangulation embedding

In this section, we introduce the T-embedding function

φ△. It offers several desirable properties motivated by the

observations raised by (8), in particular that the inner prod-

uct between two unrelated features is almost zero, except

when the features are close enough with respect to other

features drawn from the same distribution.

3.1. Construction

Given a distribution of vectors x on the d-dimensional

unit sphere, we consider a set C = {c1, . . . , c|C|}i, ci ∈

R
d, of |C| representative anchor points. This set is typically

learned by k-means and is similar to a visual vocabulary.

Yet in our context it is more related to the anchor graph

proposed for the purpose of binary encoding [17].

In contrast to most existing works, we focus on the di-

rectional information and discard the absolute distances to

the anchor points. This strategy can be related to secant

manifolds [9]. This is the key to circumvent the “bandwidth

issue”, i.e., the dependence on absolute distances, which are

generally not reliable [7]. As a result, our novel vector rep-

resentation is implicitly defined by triangulation3. This is

achieved by considering the set of normalized residual vec-

tors

rj(x) =

{
x− cj

‖x− cj‖

}

for j = 1 . . . |C|, (9)

which preserves the angular information between x and cj

while discarding the absolute magnitude. Figure 1 illus-

trates this triangulation strategy. We assume that x 6= cj

for all j, which is guaranteed for ℓ2-normalized SIFT vec-

tors if cj are obtained by k-means (k-means centroids, as

the average of distinct vectors, strictly lie inside the unit

ball). The concatenation R(x) = [r1(x)
⊤, . . . , r|C|(x)

⊤]⊤

3Triangulation only relies on angles to determine the position of a point,

in contrast to trilateration that finds point locations by measuring distances.

is an intermediate D-dimensional representation such that

D = |C| × d. It is redundant and gives too much weight to

the main directions. We subsequently whiten the represen-

tation [17] (center, rotate and scale based on eigenvalues).

More precisely, denoting by Σ the covariance matrix asso-

ciated with the random variable R(X), our T-embedding is

obtained from R(x) as

φ△(x) = Σ−1/2(R(x)− R0), (10)

where both R0 = EX [R(X)] and Σ are empirically mea-

sured on a training set.

Figure 2 depicts, in the original space, the values asso-

ciated with each eigenvector, i.e., each component of the

output descriptor φ△(x). By analogy to PCA or Laplacian

Eigenmaps [3], the largest eigenvalues are associated with

the “low frequencies”: the corresponding components vary

slowly as a function of the input descriptors. In contrast,

eigenvectors associated with small eigenvalues correspond

to high frequencies: A small variation of a given input fea-

ture has a larger impact on the corresponding output compo-

nent, as can be seen in Figure 2 where the components are

ordered from largest (left) to smallest eigenvalues (right).

As a result, our embedding compares descriptors at dif-

ferent resolutions. This is also the case in prior works like

the pyramid match kernel [8] and the vocabulary tree [21],

which implement varying resolutions by using different

quantizers. In our case, there is no quantization artifact:

the first components reflect the rough positions while the

last are more localized. In order to improve the localization

of the descriptors, we discard the d first components associ-

ated with the largest eigenvalues. This reduces the variance

of the cosine similarity between unrelated descriptors, as

discussed in Appendix A. The final dimensionality of the

embedded descriptor φ△(x) is therefore D = d× (|C|− 1).

3.2. Efficient computation with match kernels

We now consider a match kernel inherited from our T-

embedding, as introduced in Section 2. Exploiting the lin-

earity in equations (6) and (10), we compute the explicit set

representation of a vector set X comprising n vectors as

ψ(Φ△(X )) =
∑

x∈X

φ△(x) (11)

= Σ−1/2

(
∑

x∈X

R(X)

)

− nΣ−1/2R0. (12)

Computing this representation for typical parameters

(d = 128, n = 3000, |C| = 16) takes about 20 ms on

a quad-core laptop with an efficient Matlab implementa-

tion. However, it is worth normalizing φ△ before the ag-

gregation to ensure that φ△(x)⊤φ△(x) = 1. In particular,

this is important for the aggregation technique presented in

Section 4. In this case the computation is slower, as each

R(x)/‖R(x)‖ is projected separately with Σ−1/2.



Figure 2. Pictorial representation of the function φ△ for the same example as in Figure 1. The 8 components of φ△(x), where the spatial

position in each map indicates the 2-D input vector x, while the magnitude represents the output value (red=negative, blue=positive,

white=0) of a given component of φ△. The components associated with the two largest eigenvalues (on the left) are smoothly varying, and

are discarded in the final representation. Observe the locality conveyed by the other components.

3.3. Properties

By construction, and apart from singular cases of C, our

T-embedding satisfies several desirable properties. First, the

function φ△ : Rd → R
D : x 7→ φ△(x) is injective. Second,

it is continuous everywhere except at the location of the

centroids (and as noted above, for a vector distribution on

the unit sphere (as SIFT descriptors are) and anchor points

learned with k-means, it is continuous everywhere because

the centroids are strictly inside the sphere). This property

ensures that an infinitesimal change of the input vector does

not produce an abrupt change in the output space. Similarly,

the embedding function is differentiable everywhere.

Note that VLAD, LLC and the Fisher vector are also in-

jective, but bag-of-words is not. Among these three embed-

ding techniques, only Fisher is continuous.

In addition to these formal mathematical properties,

another key characteristic of our embedding, as will be

demonstrated next, is that the inner product 〈φ△(x)|φ△(y)〉
between two unrelated vectors is close to 0 with high prob-

ability. In contrast, when applied to SIFT descriptors, simi-

lar patches compared with their embedded descriptors have

a similarity much greater than 0.

Quantitative analysis on a patch dataset. We collect em-

pirical statistics of the cosine similarity for related and un-

related image patches. For this purpose, we use the datasets

Liberty and Notredame provided by Brown et al. [34]. Each

dataset consist of about 500k patches from multiple images

grouped into 150k clusters, where a cluster corresponds to

the same physical scene point. These datasets are usually

employed for learning patch descriptors [28, 34], but here

we use them for learning and evaluating embeddings, and

simply use RootSIFT [1] as the patch descriptor. Learning

(e.g., of Σ for our method) is performed on Liberty for all

methods. We test on Notredame by considering 150k pairs

of matching descriptors (a pair per cluster) and the same

number of pairs for unrelated descriptors (we take two de-

scriptors from two different clusters). Figure 3 shows the

cosine similarity for related/unrelated patches for the orig-

inal descriptors (RootSIFT), and after they are individually

mapped with Fisher vector encoding (without aggregation)

and our T-embedding (φ△).

Both Fisher and T-embedding increase the contrast be-

tween unrelated and related descriptors. In this respect, T-
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Figure 3. Histogram of the cosine similarity between related

(plain) and unrelated (dashed) patches, for RootSIFT descriptors

(top), embedded with Fisher kernel (middle, |C| = 16) and our T-

embedding (bottom, |C| = 16). The count is shown in log-scale.

embedding is better than Fisher. First, on average the simi-

larity between unrelated patches is closer to 0 with φ△, and

few unrelated pairs deviate from this behavior. Moreover,

in Fisher, a large proportion (note the log scale) of correct

matches are given a similarity close to 0. This proportion is

comparatively much lower in T-embedding.

A high φ△ cosine similarity associated with two local

descriptors x and y reliably reflects the confidence that

we have in the visual resemblance of the corresponding

patches. As a byproduct of this observation, it is possible to

determine how close patches are based on their absolute φ△
cosine similarity, as visually illustrated in Figure 4 by de-

tecting similar patterns (bursts [11]) in a given image. The

quality of the similarity measure for descriptors mapped

with T-embedding is evaluated with a ROC curve in Ap-

pendix A. Supervised learning of patch descriptors [28, 34]

would further improve the separation in all cases.

4. Democratic aggregation

Our T-embedding reduces the interferences in (8) by giv-

ing a cosine similarity that is almost 0 for unrelated pairs of

descriptors, while providing a comparatively higher posi-



Figure 4. Detection of self-similar structures by thresholding the

cosine similarity between embedded descriptors. To produce it, we

have simply thresholded the gram matrix K (with threshold 0.5)

between descriptors mapped with φ△, and performed connected

component analysis of the associated graph. We display the five

largest components (one color for each).

tive score to the true matches. However, at this stage, the

descriptors are still considered independently. In the fol-

lowing, we further limit interferences by explicitly analyz-

ing and reducing them in the aggregation stage.

A match kernel K is defined as democratic if and only if,

for any set X s.t. card(X ) = n, the corresponding matrix

K satisfies

K(X ,X )1n = C 1n, (13)

where the scaling factor C may (or not) depend on X . In

other words, a democratic kernel ensures that all the vectors

in X contribute equally to the set self-similarity. In the rest

of this section, we present the optimization problem aiming

at producing a democratic kernel from an arbitrary one in

the aggregation stage. Then we discuss convergence issues

and present a strategy to achieve convergence.

4.1. Democratization

A kernel as in (1) is normally not democratic. To achieve

this property, we modify it by including additional weights

linearly associated with each vector, as

K(X ,Y) =
∑

x∈X

∑

y∈Y

λX (x)λY(y) k(x, y). (14)

Each scalar λX (x) (respectively λY(y)) only depends on

x and the set X (respectively y and Y). Considering the

set X = {x1, . . . , xn}, the corresponding weights λi, i =
1 . . . n, are determined by solving, when possible, the set of

equations

∀xi ∈ X , λi ×
∑

xj∈X

λj k(xi, xj) = C (15)

under the constraint ∀i, λi > 0. The problem is summa-

rized in matrix form as

ΛKΛ1n = C1n, (16)

where Λ = diag(λ) = diag(λ1, . . . , λn) is a ma-

trix whose diagonal is strictly positive. Note, (14) is

equivalent to defining a new match kernel k′(x, y) =
λX (x)λY(y) k(x, y). Consider the particular case of the

match kernel “embed+aggregate” introduced in Section 2.

Equation (14) is re-written as

K(X ,Y) =
∑

x∈X

∑

y∈Y

λX (x)λY(y)φ(x)
⊤φ(y) (17)

=

(
∑

x∈X

λX (x)φ(x)

)⊤



∑

y∈Y

λY(y)φ(y)



 ,

where it can be seen that the democratization amounts to

defining an alternative function ψ, denoted ψd. More pre-

cisely, we replace the aggregation function ψs in (6) by the

weighted summation:

ψd(Φ(X )) =
∑

φi∈Φ(X )

λiφi. (18)

The weighted vector is ℓ2-normalized to produce the nor-

malized match kernel.

4.2. Modified Sinkhorn scaling algorithm

It is worth noticing that this problem resembles that of

projection to a doubly stochastic matrix [29]: It is equiv-

alent if C = 1 and K is positive. Under additional as-

sumptions (matrix K has total support and is fully inde-

composable [15]), the Sinkhorn’s algorithm converges to a

unique solution satisfying ∀i, λi > 0. It is a fixed-point

algorithm that proceeds by alternately normalizing the rows

and columns. We adopt a symmetric variant analyzed by

Knight [15] and weaken the impact of each iteration, as re-

cently suggested [14], by using a power exponent smaller

than 0.5 for a smoother convergence.

Appendix B gives pseudo-code for this optimization

strategy. Sinkhorn is an algorithm that converges quickly.

We stop it after 10 iterations for efficiency reasons. Experi-

mentally, no benefit comes from using more iterations.

4.3. General case: convergence issue and a solution

In the case of an arbitrary kernel k(., .), the assump-

tions required for convergence with Sinkhorn are generally

not satisfied (Matrix K nonnegative and fully indecompos-

able [15]). Thus, a positive solution does not necessarily

exist. Any optimization algorithm may produce negative

weights for kernels with negative values, which typically

happen if
∑

j k(xi, xj) < 0. This is not desirable be-

cause it means that the weight computation is sensitive to

new/deleted vectors in the set. We solve this problem by

adopting the following pre-processing step.

Enforcing positivity. After ℓ2-normalizing φ△(x) so that

the energy is identical for all vectors, we solve the conver-

gence issue by setting all negative values to 0 in K. The



weights computed with this new matrix K
+ are positive

with Sinkhorn’s algorithm because all rows/columns sums

are positive. The resulting embedding ψd is not strictly a

democratic kernel but tends towards more “democracy”.

4.4. Discussion

Consider the right term in (8). If the embedding per-

fectly removes it (no interaction between the descriptors of

the same set), then our democratization is a calibration such

that all the norms ‖φ(x)‖ are equal. Appendix C also shows

that our strategy is equivalent to the square-root component-

wise normalization in the case of bag-of-visual-words vec-

tors without inverse document frequency weighting.

5. Experiments

This section presents results for our democratic kernel.

The novel ingredients that form our method, namely T-

embedding and democratic aggregation, can be used sep-

arately. Therefore we evaluate their impact separately, by

performing experiments (a) with T-embedding only; (b)

with democratic aggregation applied to Fisher embedding;

(c) with our two methods. Throughout this section, we only

use the normalized kernel K⋆, meaning that the image vec-

tor is normalized to have unit Euclidean norm.

5.1. Datasets and evaluation protocol

We adopt public datasets and corresponding evaluation

protocols that are often used in the context of large scale im-

age search. All the learning stages, i.e., k-means clustering

and learning the projection for our T-embedding, are per-

formed off-line using a distinct image collection, that does

not contain the indexed database nor the query images.

Oxford5k [24] consists of 5062 images of buildings and

55 query images corresponding to 11 distinct buildings in

Oxford. The search quality is measured by the mean aver-

age precision (mAP) computed over the 55 queries. Images

are annotated as either relevant, not relevant, or junk, which

indicates that it is unclear whether a user would consider

the image as relevant or not. Following the recommended

protocol, the junk images are removed from the ranking.

For the experiments on Oxford5k, all the learning stages

are performed on the Paris6k dataset [25]. Oxford105k is

the combination of Oxford5k with 100k negative images, in

order to evaluate the search quality on a large scale.

INRIA Holidays [12]. This dataset includes 1491 photos of

different locations and objects, 500 of them being used as

queries. The search quality is measured by mAP, with the

query removed from the ranked list. To obtain the vocab-

ulary, we use the independent dataset Flickr60k provided

with Holidays. For Holidays and Oxford5k, we perform the

experiments three times for our methods (for three distinct

vocabularies) and report the mean performance.

5.2. Implementation notes

Local descriptors are extracted with the Hessian-affine de-

tector [19] and described by SIFT [18]. We have used the

same descriptors as provided in a previous paper [2]. We

use the RootSIFT variant [1], in all our experiments.

Power-law normalization. Images contain “visual bursts”

[11], meaning that numerous descriptors are almost identi-

cal within the same image, as observed in Figure 4. These

descriptors tend to dominate the similarity even in demo-

cratic kernels. As a common post-processing step [11, 23],

we apply power-law normalization on the vector image rep-

resentation, and subsequently ℓ2-normalize it. This process-

ing is parametrized by a constant α that controls the value

of the exponent when modifying a component a such that

a := |a|αsign(a). We standardly set α = 0.5 to ensure a

fair comparison between the methods. Note that this section

also includes a specific analysis for this parameter.

Rotation and Normalization (RN). The power-law nor-

malization suppresses visual bursts, but not the frequent

co-occurrences that also corrupt the similarity measure [6].

In VLAD, this problem is addressed [10] by whitening the

vectors. However, the whitening learning stage requires a

lot of input data and the smallest eigenvalues generate arti-

facts. This makes such processing suitable only when pro-

ducing very short representations. As an alternative [27],

we apply power-normalization after rotating the data with

a PCA rotation matrix learned on image vectors (from the

learning set), i.e. no whitening. This produces a simi-

lar effect to that of whitening, but is more stable and not

dependent on PCA eigenvalues. To avoid the full eigen-

decomposition and the need to use too many images for the

learning stage, we compute the first 1000 eigenvectors and

apply Gram-Schmid orthogonalization on the reminder of

the space (orthogonal complement to these first eigenvec-

tors) to produce a complete basis. After this rotation, we ap-

ply the regular power-law normalization, which then jointly

addresses the bursts and co-occurrences by selecting a basis

capturing both phenomenons on the first components.

5.3. Impact of the methods and parameters

Our methods introduce no extra parameter compared

with existing techniques, apart from constants with no

impact on performance, like the number of iterations in

Sinkhorn. The main parameters are the vocabulary size |C|
and the parameter α associated with power-law normaliza-

tion. The analysis of these parameters is shown in Figure 5

for Holidays. The analysis for Oxford5k is in Appendix D

(supplementary material). The conclusions drawn are iden-

tical on both datasets. To complement these curves, Table 1

shows the impact of our methods step by step for a fixed

vocabulary size on Oxford5k, Oxford105k and Holidays.
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Figure 5. Impact of the parameters on the Holidays’ performance

for different image vector representations: VLAD, Fisher, our T-

embedding φ△ with sum aggregation ψs, and democratic aggrega-

tion ψd (without and with RN). Left: as a function of vocabulary

size |C|; Right: as a function of the power-law normalization ex-

ponent α. Note, α = 0 amounts to binarizing the vector.

Vocabulary size. For all representations, including T-

embedding and democratic aggregation, the performance is

an increasing function of the vocabulary size. For refer-

ence, we give the performance of the improved Fisher base-

line. Note the large gain provided by our embedding for a

fixed vocabulary size. Our aggregation method gives a com-

plementary gain. The improvement tends to be smaller for

larger vocabularies: This is expected, as for larger vocabu-

laries the interaction between the descriptors is less impor-

tant than for small ones. For |C| > 128, the benefit of demo-

cratic aggregation is not worth the computational overhead.

Our aggregation strategy gives a significant boost in per-

formance with φ△. As to be expected, it improves the per-

formance when no power-law is applied. Moreover, the

analysis of the parameter α also reveals that our aggregation

method ψd is complementary to the power-law normaliza-

tion, as both methods improves the score.

Power-law normalization and RN. Power-law normaliza-

tion is less important with our methods (the right curves

φ△ + ψs and φ△ + ψd are more flat), except if we employ

RN: This normalization gives a large improvement in per-

formance when used with the (standard) parameter α = 0.5.

Dimensionality reduction. In order to get shorter repre-

sentations, we keep the first D′ components, after RN nor-

malization, of the vector produced by our embeddings. Ta-

ble 1 reports the performance for short vectors of varying

dimensionality,D′ = 128 to 1024. Despite a drop in perfor-

mance due to dimensionality reduction, our best configura-

tion (φ△+ψd+RN) still outperforms the 5120-dimensional

Fisher vector with D′ = 512.

5.4. Comparison with the state of the art

Baselines. We consider as baselines recent works targeting

the same application scenario and similar representations,

Table 1. Impact of our methods on the performance. First we eval-

uate the Fisher and combine it with democratic aggregation. Then

we consider T-embedding φ△ with sum (ψs) and democratic (ψd)

aggregation, and show the boost given by RN. Finally, we present

results after dimensionality reduction to short vectors. |C| = 64.

dim. red. mAP

method ↓ to → D′ Holidays Oxford5k Ox105k

Fisher baseline – 63.9 50.7 44.9

Fisher + ψd – 63.8 52.0 45.9

φ△ + ψs – 70.4±0.3 58.9±0.3 52.3

φ△ + ψd – 72.2±0.2 61.2±0.4 55.9

φ△ + ψs + RN – 74.5±0.4 63.3±0.9 55.5

φ△ + ψd + RN – 77.1±0.7 67.6±0.2 61.1

φ△ + ψd + RN → 1,024 72.0±0.2 56.2±0.1 50.2

φ△ + ψd + RN → 512 70.0±0.6 52.8±0.4 46.1

φ△ + ψd + RN → 256 65.7±0.3 47.2±0.2 40.8

φ△ + ψd + RN → 128 61.5±0.7 40.0±0.1 33.9

i.e., that represent an image by a vector that may be sub-

sequently reduced [13]. We compare with works recently

published on similar mid-size vector representations [2, 13].

We also compare with our re-implemented (improved) ver-

sion of VLAD and Fisher vectors that integrates RootSIFT.

This baseline, by itself, approaches or outperforms the state

of the art by combining most of the effective ingredients.

Results. Table 2 shows that our method outperforms the

compared methods by a large margin on all datasets. The

gain over a recent paper [2] using a larger vocabulary is

+11.8% in mAP on both Holidays and Oxford5k. Com-

pared with our improved Fisher baseline using the same

vocabulary size, the gain is +13.2% in mAP for Holidays,

+16.9% for Oxford5k and +16.2% for Oxford105k. Even

when reducing the dimensionality to D′ = 1, 024 compo-

nents, we outperform all other methods by a large margin,

with a much smaller vector representation. Only when re-

ducing the vector to D′ = 128 components, our method

gives on average slightly lower results than those reported

by Arandjelović and Zisserman [2].

6. Conclusion

The key motivation for this paper is to reduce the inter-

ference between local descriptors when combining them to

produce a vector representation of an image. It is addressed

by two novel and complementary methods. The first is a

T-embedding that reduces the impact of unrelated matches

on the image similarity. The second method explicitly lim-

its the interference between descriptors when aggregating

them. The resulting representation compares favorably with

state-of-the-art encoding methods for image search, such as

the Fisher kernel, even when our representation is reduced

to 1,000 components.



Table 2. Comparison with the state of the art for short and in-

termediate vector dimensionality on Holidays, Oxford5k and Ox-

ford105k datasets. The two last rows show the performance after

reducing our vector from 8,064 to 1,024 or 128 components.

|C| D mAP

method ↓ Hol. Ox5k Ox105k

BOW [13] 20k 20,000 43.7 35.4 –

BOW [13] 200k 200,000 54.0 36.4 –

VLAD [13] 64 4,096 55.6 37.8 –

Fisher [13] 64 4,096 59.5 41.8 –

VLAD-intra [2] 256 32,536 65.3 55.8 –

VLAD-intra [2] 256 → 128 62.5 44.8 37.4

Our methods

φ△ + ψs + RN 16 1,920 69.5 53.1 45.6

φ△ + ψs + RN 64 8,064 74.5 63.3 55.5

φ△ + ψd + RN 16 1,920 72.3 57.1 49.5

φ△ + ψd + RN 64 8,064 77.1 67.6 61.1

φ△ + ψd + RN 16 → 128 61.7 43.3 35.3

φ△ + ψd + RN 64 → 1,024 72.0 56.0 50.2

Acknowledgments. This work was done within the

Project Fire-ID, supported by the ANR French research

agency, and also supported by ERC grant VisRec no.

228180. We warmly thank Karen Simonyan for providing

features and Miaojing Shi for the complementary results

on UKB and Holidays+Flickr1M in Appendix E. We also

thank Florent Perronnin and Naila Murray for preliminary

discussions, and encourage reading their related paper [20]

on generalized max pooling.

References
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