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Abstract

The objective of this study is to reconstruct images from
Bag-of-Visual-Words (BoVW), which is the de facto stan-
dard feature for image retrieval and recognition. BoVW
is defined here as a histogram of quantized descriptors ex-
tracted densely on a regular grid at a single scale. De-
spite its wide use, no report describes reconstruction of the
original image of a BoVW. This task is challenging for two
reasons: 1) BoVW includes quantization errors when local
descriptors are assigned to visual words. 2) BoVW lacks
spatial information of local descriptors when we count the
occurrence of visual words. To tackle this difficult task, we
use a large-scale image database to estimate the spatial ar-
rangement of local descriptors. Then this task creates a
jigsaw puzzle problem with adjacency and global location
costs of visual words. Solving this optimization problem is
also challenging because it is known as an NP-Hard prob-
lem. We propose a heuristic but efficient method to optimize
it. To underscore the effectiveness of our method, we apply
it to BoVWs extracted from about 100 different categories
and demonstrate that it can reconstruct the original images,
although the image features lack spatial information and in-
clude quantization errors.

1. Introduction
Image reconstruction from image features is attracting

the interest of researchers in the computer vision commu-
nity [8, 23, 25]. Image features are usually extracted from
images through deep nonlinear transformations (e.g., local
description and coding followed by spatial pooling). For
that reason, it is not straightforward to estimate the original
image. Although it might be possible to estimate the orig-
inal image using an accurate image retrieval method and a
large-scale image dataset, direct image reconstruction from
a feature is expected to provide numerous benefits. For ex-
ample, by observing the reconstructed images, one can un-
derstand intuitively what characteristics the image feature
has, which helps us to examine the behavior of visual recog-
nition or retrieval systems, and which suggests ways to im-
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Figure 1. Visual illustration of our reconstruction method. The
spatial arrangement of visual words is optimized. Then each visual
word is converted to an image patch. An external image database
is used for optimization.

prove their performance.
Bag-of-Visual-Words (BoVW) [6, 22] is the de facto

standard of image features for retrieval and recognition.
Many variants of BoVW have been proposed in the past
(e.g., [17, 24] ). In this work, we define BoVW as a his-
togram of quantized descriptors extracted densely on a reg-
ular grid at a single scale. Dense sampling with fixed grid
spacing, descriptor scale, and orientation is a general setup
of generic object recognition [3]. In the pipeline of BoVW,
local descriptors are first quantized and assigned to visual
words in the dictionary. Next, they are counted to form a
histogram, which is treated as an image feature.

As described above, several methods have been proposed
to reconstruct the original image from its features [8, 23,
25]. However, despite the importance of BoVW, no report



in the literature describes reconstruction of the original im-
age of a BoVW. Two hurdles must be overcome with this
task: 1) Quantization errors occur in vector quantization of
local descriptors. 2) Spatial information of local descriptors
is ignored when the occurrence of visual words is counted
to generate histogram-based features.

Can we reconstruct an original image from BoVW? To
address this challenging problem, we use a large-scale im-
age database to recover the spatial arrangement of local de-
scriptors. Figure 1 presents a visual illustration of our image
reconstruction method. We first search similar images by
BoVW and calculate global location costs of visual words.
We also estimate the adjacency cost of local descriptors in
the database. By considering both the global location cost
and local adjacency cost of descriptors, the task results in
an optimization problem of a jigsaw puzzle. Solving it is
known as an NP-Hard problem. We propose a heuristic but
efficient method to optimize it.

Our contributions are the following. 1) This is the first
work to tackle the problem of image reconstruction from
BoVW, which would engender the improvement of numer-
ous computer vision systems. 2) The bottleneck of that
problem is recovery of the spatial arrangement of local de-
scriptors. We define it as an objective problem and propose
a means to determine parameters that use a large-scale im-
age database. 3) We show the relations among our objective
function, jigsaw puzzle solvers, and the Quadratic Assign-
ment Problem. We propose an efficient optimization algo-
rithm based on it.

2. Related work
Few reports have described image reconstruction from

image features. We present a brief review in this section.
A study by Weinzaepfel et al. [25] was the first work to

tackle this problem. They used SIFT descriptors and their
geometry information: the location, orientation, and size of
the image patch from which the descriptor was extracted.
For each descriptor, their method retrieves the nearest de-
scriptor in a large-scale image database using nearest neigh-
bor search. It then rotates and rescales the corresponding
image patch. Finally they are blended into an image using
Poisson blending [20].

d’Angelo et al. [8] converted BREAF descriptors [2] and
FREAK descriptors [1] into image patches. They analyti-
cally constructed an image patch the descriptor of which is
identical to the input. Consequently, their method requires
no external image database. Moreover, it can do conversion
instantly.

Vondrick et al. [23] inverted the HOG feature [7]. They
proposed four algorithms and concluded that an approach
based on learning of a pair dictionary of features and their
corresponding images is effective. Their method is suffi-
ciently fast to invert features on the spot. It is applicable to

arbitrary features in principle.
As stated before, no report in the relevant literature has

described a method to reconstruct images from BoVW,
which lacks geometry information of local descriptors.

3. Reconstruction method

In this section, we propose a method to reconstruct im-
ages from BoVW. Evaluation metrics for reconstruction and
re-arrangement are also described.

3.1. Problem settings

From a BoVW, we can ascertain the extent to which the
visual words are contained in the original image. However
we cannot know their geometry information. If geometry
information is obtained somehow, the remaining task is to
reconstruct an image from its quantized local descriptors
and their geometry information. This is potentially solvable
using the findings of previous reports.

Two strategies are available to extract local descriptors.
One is sparse sampling using keypoint detectors. The other
is dense sampling where descriptors are extracted densely
on a regular grid with fixed scale. Because the latter is more
advantageous for image retrieval [13] and recognition [19],
we assume that dense sampling is used. Additionally, we
assume that descriptors are extracted at a single scale for
simplicity. We also assume that adjacent patches can be
overlapped. It is a common setting for many state-of-the-art
image recognition pipelines, and overlapping local patches
generally produce better results, even in deep convolutional
networks [15].

In this work, all information necessary to extract BoVWs
from images is assumed to be available. In other words, we
know the dictionary of visual words, the spacing of the grid
of dense sampling, the size of an image patch for local de-
scription, and the size of images to be reconstructed. These
are ordinarily available for administrators of computer vi-
sion systems.

From these assumptions, geometry information that
should be recovered turns out to be only the spatial arrange-
ment of quantized local descriptors. Therefore, the problem
can be decomposed into two subproblems: to recover an ar-
rangement of visual words and to reconstruct an image from
the recovered arrangement. The former resembles jigsaw
puzzle solvers [4, 5, 12, 21] that have been widely devel-
oped recently. The relation between our work and theirs is
described in Section 3.5.

3.2. Objective function

In dense sampling, local descriptors are extracted at grid
points. The problem here is to rearrange the extracted and
quantized local descriptors, which lack spatial information,
in a grid. Concretely, n visual words in an image will be



assigned at n grid points. We represent an assignment by a
permutation matrix x. If the i th visual word in BoVW is
assigned to k th location, then xik = 1, otherwise xik = 0.
x must satisfy the following constraints.∑n

i=1 xik = 1 (1 ≤ k ≤ n) . (1)∑n
k=1 xik = 1 (1 ≤ i ≤ n) . (2)

xik ∈ {0, 1} (1 ≤ i, k ≤ n) . (3)

To rearrange local descriptors appropriately, we use two
strategies: 1) satisfying co-occurrence relations of neigh-
boring local descriptors, and 2) considering a prior absolute
location of each local descriptor. In the former strategy, it is
similar to solving jigsaw puzzles considering the compati-
bility of edges, shapes, and colors in adjacent pieces. In the
latter, it is similar to solving them assigning pieces of a sky
to the upper part and pieces of a ground to the bottom part.

We define the cost of each approach as Ca and Cl, and
also define total cost as a weighted sum of both costs. Con-
cretely, we propose Ca =

∑n
i,j,k,l=1 C

a
ijklxikxjl. It is

called adjacency cost and a cost to assign i, j th visual word
in BoVW to k, l th location in the image. Furthermore, we
define Cl =

∑n
i,k=1 C

l
ikxik. It is called global location cost

and a cost to assign i th visual word to l th location. We de-
fine Ca and Cl as a frequency in an image database in anal-
ogy with language models in Natural Language Processing.
We smooth, normalize, and take a negative logarithm of the
frequencies. Details are described in the following subsec-
tions.

Introducing λ as a weighting parameter, the proposed op-
timization problem is summarized as follows.

min λ
∑n

i,j,k,l=1 C
a
ijklxikxjl

+(1− λ)
∑n

i,k=1 C
l
ikxik. (4)

s.t. Equation 1, 2, 3. (5)

3.3. Adjacency cost

Adjacency cost gives a reconstructed image consistent
edges and shapes. Although it is not difficult to ascertain
whether two raw image patches are compatible or not, it
is problematic to measure the compatibility of two visual
words because quantized local descriptors lack details of
their corresponding image patches. Here we assume an ad-
jacency of visual words in BoVW to be reconstructed is the
same as that in large scale image database. From this per-
spective, we propose a means to obtain Ca as Algorithm 1.
The lower right part of Figure 1 is an illustration of the al-
gorithm.

Adjacency cost is defined as the negative logarithm of
the normalized histogram of co-occurrences of pairs of vi-
sual words in a neighboring region. For all possible pairs
of visual words and adjacent patterns, a large-scale image
database is scanned to count the occurrences of the pair and

Algorithm 1 Determination of adjacency cost.
Input: image database, distance parameter m
Output: adjacency cost Ca

initialize Ca with zeros
n←number of positions in an image
for each image in an image database do

for each position k in the image do
for each position l in the image do
wk ← visual word extracted at k in the image
i← visual word number of wk in the dictionary
wl ← visual word extracted at l in the image
j ← visual word number of wl in the dictionary
if k is within m-neighbor to l then

d← (xk − xl, yk − yl)
Ca′

ijd ← Ca′

ijd + 1
end if

end for
end for

end for
Ca ← Ca + 1
for all i, k, l such that 1 ≤ i, k, l ≤ n do

d← (xk − xl, yk − yl)
normalize Ca

ijd such that
∑

j C
a
ijd = 1

end for
for all i, j, k, l such that 1 ≤ i, j, k, l ≤ n do

d← (xk − xl, yk − yl)

Ca
ijkl ← − log

(
Ca

ijd

)
end for
return Ca

the adjacent pattern. We discard the absolute positions of
the pair and handle only the relative position. We also ig-
nore pairs which are not in m-neighbor distance. For this
study, we use m = 48, which is a 7× 7 area centered at an
element.

3.4. Global location cost

Global location costs make a reconstructed image glob-
ally feasible. The rough shape of the image to be recon-
structed might resemble those of images similar to it. For-
tunately, we can easily obtain similar images using BoVW
because it is extremely useful for retrieval. From this per-
spective, we propose a means to obtain Cl as Algorithm 2.
The lower left part of Figure 1 presents a visual illustration
of the algorithm.

Global location cost is defined as the negative logarithm
of the normalized histogram of the occurrence of a certain
visual word at a certain location. To compute the histogram,
we retrieve a hundred images using the nearest neighbor
search with input BoVW. For all visual words and locations,
we scan them to construct a histogram of a visual word and
location.



Algorithm 2 Determination of the global location cost.
Input: similar images
Output: global location cost Cl

initialize Cl with zeros
for each image in similar images do

for each location k in the image do
w ← visual word extracted at k in the image
i← visual word number of w in the dictionary
Cl

ik ← Cl
ik + 1

end for
end for
Cl ← Cl + 1
for each visual word number i in the dictionary do

normalize Cl
ik such that

∑
k C

l
ik = 1

end for
Cl ← − log

(
Cl

)
return Cl

Algorithm 3 Optimization of Equation 4.
Input: Ca, Cl

Output: optimal arrangement
population ← randomly generated initial solutions
while max(population) ̸= min(population) do

parents ← randomly selected pair in population
child ← generate a new child from parents
optimize child by Hill Climbing
if child < max(population) then

if rand(0, 1) < p then
one of most similar pairs in population ← child

else
argmax(population)← child

end if
end if

end while
return argmin(population)

3.5. Optimization

Our objective function 4 is a generalized version of a
string of jigsaw puzzle solvers [4, 5, 12, 21]. In these stud-
ies, Ca

ijkl has a nonzero value only where location k is a
four-neighbor to location l. We consider pairs in further
distance because they can be overlapped. Cho et al. in-
cluded the global location cost [5]. However, most studies
included only the adjacency cost [4, 12, 21]. For optimiza-
tion, greedy algorithms [4, 12], belief propagation [5], and
genetic algorithms [21] are used.

On jigsaw puzzle problems, adjacency cost is rather ac-
curate, which makes these algorithms work well. In our
work, however, adjacency costs are less reliable, which re-
quires more sophisticated optimization algorithms. Here
we demonstrate that our objective function results in a

Quadratic Assignment Problem (QAP) and adopt an opti-
mization method for QAP.

Lawler’s generalized formulation [16] of QAP [14] is de-
fined as follows.

min
∑n

i,j,k,l=1 cijklxikxjl. (6)
s.t. Equation 1, 2, 3. (7)

Our function 4 can be transformed as follows.

min
∑n

i,j,k,l=1

(
λCa

ijkl +
1−λ
n2 Cl

ik

)
xikxjl. (8)

Comparing Equation 6 with Equation 8, our optimization
problem results in QAP.

QAP is known as an NP-Hard problem and solved
mainly by a hybrid of two meta-heuristics [18]. The re-
sults of extensive experiments [10] demonstrate that an ap-
proach of Genetic Algorithm with tabu search [9] is effec-
tive. In this work, we combine a Genetic Algorithm and
a Hill Climbing algorithm because of computational com-
plexity. Algorithm 3 shows our optimization algorithm. The
way to modify a solution, generate a child from parents,
and find the most similar pairs is the same as Drezner’s
method [9]. We set the population size to 100 and the ratio
of the replacement pattern p to 0.2.

The computational complexity of tabu search is O(n3)
in his setting, where n is the number of elements to be ar-
ranged. We do not use tabu search but Hill Climbing, which
reduces it from O(n3) to O(n2). Here we assume that
Ca

ijkl = 0, where k and l are not in m-neighbor distance.
Then efficient implementation can reduce it from O(n2) to
O(m2). Consequently, it is reduced from O(n3) to O(m2).
In the experiment section, we set n = 169 and m = 48.
Therefore, the computational complexity is O(105) times
smaller than the original one.

3.6. Image generation

Using the procedures described above, an optimal spa-
tial arrangement of quantized local descriptors is obtain-
able. The remaining task is to generate an image from them.

A local descriptor can be converted to an image patch
using an arbitrary existing method [8, 23, 25]. Here we use
HOGgles [23], which is applicable to arbitrary features in
principle. Generated patches are arranged into an image.
Overlapping parts are simply averaged.

3.7. Evaluation metrics

Actually, measuring the similarity between a recon-
structed image and the original one is not so easy. Appro-
priate image features and metrics are necessary for it, al-
though selecting ones equivalent to human senses is an ulti-
mate goal of Computer Vision. In this paper, we use a naive
method as the mean squared error of raw pixels (DIFF) to



(a) Original image

(b) Our method

(c) HOGgles [23]

(d) Image retrieval

Figure 2. Examples of images obtained from BoVW.

eliminate the arbitrariness. For the reason that it can be in-
fluenced easily by a small parallel shift of images, we also
compute it by shifting one image by ±4 (DIFF4) pixels or
±8 pixels (DIFF8), and select the minimum value.

Cho et al. [5] proposed performance metrics for jigsaw
puzzle solvers. To evaluate the accuracy of descriptor re-
arrangement, we compute two metrics from their work.
One is direct comparison (DC), which is the fraction of
visual words that are assigned to the same location in the
original image. The other is called neighbor comparison
(NC), which is the fraction of pairs of visual words in four-
neighbor distance, which are adjacent correctly.

3.8. Computational cost

The computational cost of reconstruction can be reduced
by precomputations. Parameters of adjacent cost can be
computed on ahead. In addition, a table of visual words
at location l of image i can be made in advance. It enables
computation of global location cost efficiently from similar
images. These precomputations take several hours.

In our experiment, reconstruction of an image takes
about a minute. The bottlenecks are image retrieval and
optimization. The former would be accelerated drastically
if an efficient approximate searcher were used. The latter is
not much scalable with the number of descriptors in an im-
age because we assigned weight to optimization accuracy.
However, any fast but less accurate optimization method is
applicable to our pipeline. Additionally, if Spatial Pyra-
mid [17] is used, the computational cost of optimization is
reduced considerably because the possible positions of each
visual word are restricted.

4. Experiments
In this section, we present empirical evaluations of our

proposed method. We compare it with HOGgles [23] and
image retrieval. The effects of a parameter λ, descriptor

quantization, and optimization methods are also examined.
We composed an image reconstruction dataset by ex-

tracting images from the Caltech 101 dataset [11], which
contains 101 object categories. From each category, we
randomly selected one image aspect ratio close to 1. Part
of our dataset is shown in the first row in Figure 2. Our en-
tire dataset and all reconstructed images in this section are
available at our website1.

Unless otherwise noted, all images are resized to 128 ×
128 pixels, the size of the visual word dictionary (dimen-
sion of BoVW) is 5000, the kind of local descriptor is SIFT,
the size of image patches for local description is 32 × 32
pixels, and the extraction step is 8 pixels. One million im-
ages from ILSVRC 2012 image classification task2 are used
as an image database.

4.1. Reconstruction from local descriptors and
their geometry information

Our method decomposes the problem into two subprob-
lems. One is recovery of geometry information of local
descriptors. The other is reconstruction of an image from
them. Here we evaluate only the latter, assuming that ge-
ometry information of local descriptors is known. Results
presented in Figure 3 show that images can be reconstructed
finely even if descriptors are quantized.

4.2. Reconstruction from BoVW

In this section, we apply our method to the image re-
construction dataset. Although no other work reported im-
age reconstruction from BoVW, a method to visualize HOG
feature (HOGgles) [23] is applicable to arbitrary features, in
principle. Additionally, image retrieval by BoVW can be a
means to ascertain image contents of BoVW because it is
favorable for retrieval. We also show and compare images

1http://www.mi.t.u-tokyo.ac.jp/kato/cvpr2014.html
2http://www.image-net.org/challenges/LSVRC/2012/



(a) No quantization

(b) k = 10000

(c) k = 500

Figure 3. Examples of images reconstructed from local descriptors and their geometry information. k is the size of visual word dictionary.
Images are understandable even if descriptors are quantized.

Table 1. Quantitative evaluation of the proposed method. HOG-
gles [23] and image retrieval (IR) were compared with our pro-
posed method. DIFF, DIFF4, and DIFF8 are the mean squared
errors between the original image and the obtained one. DIFFn
shifts one image by ±n pixels and selects the minimum value.
Values are averaged over 101 images. Smaller values are better.

DIFF DIFF4 DIFF8
Ours 0.089 0.067 0.048
HOGgles [23] 0.094 0.079 0.063
IR 0.111 0.090 0.071

Table 2. Winning rate of our method against other methods over
101 images. Methods are the same as those shown in Table 1.

DIFF DIFF4 DIFF8
Ours vs. HOGles 0.614 0.713 0.782
Ours vs. IR 0.713 0.812 0.841

obtained from these methods. We used nearest neighbor
search to retrieve images.

Figure 2 portrays examples of images obtained using
each method. They closely resemble results in Figure 3,
which indicates that geometry information of descriptors
can be well recovered. Images reconstructed using HOG-
gles are terribly blurred and are difficult to understand.
Most images retrieved from the database are semantically
different from the original images.

The success of recovery of location information has fur-
ther meaning. Conventionally, it has been said that BoVW
has no spatial information of each visual word. However,
our results suggest that much location information remains
potentially in BoVW.

To compare these methods quantitatively, we computed
metrics of three kinds described in Section 3.7. Results are
presented in Table 1 and Table 2. Our method is demonstra-
bly superior to the other methods.

Figure 4 presents the best and worst results obtained us-
ing our method measured by NC. These results show that
images that have simple shapes and backgrounds can be
reconstructed well. However, those that have complicated
texture and edges can not. The unreliability of adjacency
cost is regarded as the cause.

4.3. Effect of parameter λ

Parameter λ adjusts the weights of adjacency cost and
global location cost. To investigate the effect of this bal-
ancing, we reconstructed images for various λ. Figure 5
presents examples of reconstructed images. Figure 6 shows
quantitative results.

When λ = 0, the adjacency of visual words is not con-
sidered, which results in heavily blurred images. When
λ = 1, the similarity to similar images is not considered,
which results in images with collapsed shapes. These re-
sults indicate that costs of two kinds in our objective func-
tion are working effectively. Quantitative results confirm
that indication.

4.4. Effect of descriptor quantization

As shown in Section 4.1, descriptor quantization has lit-
tle effect on converting local descriptors into image patches.
However, it can affect their re-arrangement. When the vi-
sual word dictionary k becomes smaller, descriptors are
quantized more strongly. Their details can be lost.

Figure 7 shows reconstructed images for various k.
When k is small, shapes of images tend to be collapsed. As
k becomes larger, reconstruction becomes stabler. Figure 8
shows that reconstruction error decreases as k increases.

To obtain good results, λ must be set larger when k be-
comes larger. As the vocabulary grows, quantization er-
ror decreases and accuracy of compatibility of adjacent ele-
ments increases, which eventually demands more weight on
adjacency cost.



(a) Best results

(b) Worst results

Figure 4. Best and the worst results. The top leftmost are the best. The bottom rightmost are the worst. Images are sorted by their neighbor
comparison score. These results show that the accuracy of arrangement is dependent on the complexity of images.

(a) λ = 0.0

(b) λ = 0.7

(c) λ = 1.0

Figure 5. Examples of reconstructed images. λ is a parameter to balance two costs. These results illustrate the importance of balancing.
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Figure 6. Quantitative evaluation of effect of parameter λ. Scores
are averaged over 101 images and are divided by the score where
λ = 0. For DIFF, DIFF4 and DIFF8, smaller values are better. For
DC and NC, larger values are better.
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Figure 8. Relation between the size of visual word dictionary and
reconstruction scores. Scores are averaged over the entire dataset
and are divided by the score where k = 100.

4.5. Evaluation of optimization method

We compared our optimization method (GA+HC) with
Hill Climbing (HC) and Simulated Annealing (SA). Table 3

Table 3. Comparison of optimization methods. Hill Climbing
(HC), Simulated Annealing (SA), and a hybrid algorithm of Ge-
netic Algorithm and Hill Climbing (GA+HC) were compared.

method Eq. 4 DIFF DC NC
HC 769.1 0.099 0.051 0.303
SA 734.1 0.095 0.075 0.382
GA+HC 719.0 0.089 0.195 0.459

shows the mean of optimized values and performance met-
rics over the entire dataset by each method. Results show
that the optimization capability of our method is signifi-
cantly better than that of the others.

5. Conclusion

We presented a novel method to reconstruct an original
image from its BoVW in which the spatial information of
local descriptors disappears and quantization errors occur
when local descriptors are assigned to the dictionary of vi-
sual words. The key techniques to succeed in the image
reconstruction task are 1) modeling of adjacency and global
location of visual words from a large-scale image database,
2) attributing the task to a jigsaw puzzle such as optimiza-
tion problems with adjacency and global location costs, and
3) developing a heuristic but efficient optimization algo-
rithm. In the experiments, we applied our method to recover
101 different object images from their BoVWs, and showed
that our method can reconstruct the original images with a



(a) k = 500

(b) k = 1000

(c) k = 5000

(d) k = 10000

Figure 7. Examples of reconstructed images. The size of visual word dictionary k is varied. λ is manually adjusted to yield fine results: (a)
λ = 0.5, (b) λ = 0.6, (c) λ = 0.7, and (d) λ = 0.8.

reasonable computational cost.
In this work, single scale sampling and hard assignment

of local descriptors are presumed. These limitations can be
relaxed if the cost function is extended. This extension is
left as a subject for future work.
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