
Is Rotation a Nuisance in Shape Recognition?

Qiuhong Ke1,2 Yi Li2,3

1Beijing Forestry University, 2NICTA, 3ANU
qiuhong.ke@nicta.com.au, yi.li@cecs.anu.edu.au

Abstract

Rotation in closed contour recognition is a puzzling nui-
sance in most algorithms. In this paper we address three
fundamental issues brought by rotation in shapes: 1) is
alignment among shapes necessary? If the answer is “no”,
2) how to exploit information in different rotations? and
3) how to use rotation unaware local features for rotation
aware shape recognition?

We argue that the origin of these issues is the use
of hand crafted rotation-unfriendly features and measure-
ments. Therefore our goal is to learn a set of hierarchi-
cal features that describe all rotated versions of a shape as
a class, with the capability of distinguishing different such
classes. We propose to rotate shapes as many times as pos-
sible as training samples, and learn the hierarchical feature
representation by effectively adopting a convolutional neu-
ral network. We further show that our method is very effi-
cient because the network responses of all possible shifted
versions of the same shape can be computed effectively by
re-using information in the overlapping areas. We tested the
algorithm on three real datasets: Swedish Leaves dataset,
ETH-80 Shape, and a subset of the recently collected Leaf-
snap dataset. Our approach used the curvature scale space
and outperformed the state of the art.

1. Background
Matching closed contour shapes is an important problem

in computer vision. Dated back to the early age, where ap-
plications are anthropology and biometric [15], it has novel
applications in domains as diverse as computer graphics and
mobile computing [9].

Typical issues in shape recognition include noise, scale,
translation, and rotation. Most of them can be handled
easily either by carefully chosen classifiers, different data
representations, and simple normalizations. However, re-
gardless various techniques are used, rotation invariance
in shape recognition is particularly difficult to achieve [6].
Take the widely used “landmark point” representation for

example, where a shape is uniformly sampled and repre-
sented by a series of high dimensional feature vectors. Ro-
tation amounts to shifting these vectors in a circular order,
which makes the comparison of two shifted series difficult,
because this mis-correspondence phenomenon is not han-
dled inherently by nearest neighbor methods and classifiers.

Documented solutions of rotation invariance include: 1)
define domain specific global rotation angle (a.k.a. “major
axis”), 2) adopt rotation invariant representation of local de-
scriptors (e.g., histogram), and 3) brute force search. Global
rotation angle may be useful for the limited domains, how-
ever it is also believed that the major axis is not reliable
[16]. Many solutions frame the shape matching problem as
a histogram comparison problem [12]. Unfortunately, use-
ful information such as structure has to be discarded during
histogram computation in order to achieve rotation invari-
ance in this process. Trying all possible rotations appears to
be the last resort, but this is at the expense of efficiency [8].

With all the attempts to achieve rotation invariance, it is
interesting to note that rotation invariance may even not be
favorable in some domains. For example, rotation invari-
ance techniques cannot differentiate between the shapes of
the lowercase letters “d” and “p”, since this pair of shapes
only differs in their orientations. Therefore, “rotation limit”
or “rotation awareness” may be more practical to improve
recognition accuracy in these applications.

All these difficulties attest that rotation is a nuisance in
shape recognition. Researchers frequently need to make se-
ries decisions of the following three puzzling questions: 1)
shall we rotate shapes? 2) shall we use histogram? and 3)
shall we use rotation invariant local feature? The answers
appear elusive, but first of all, why we have these questions?

The origin that rotation becomes a bitter and resentful
enemy is that we hand craft orientation-unfriendly repre-
sentations and measurements. For instance, representing
2D circular points by 1D vectors and feeding them to Sup-
port Vector Machine already abandon any hope of han-
dling the rotation, because kernels are hardly shift invari-
ant. Even the widely used dynamic time warping is not
rotation-friendly, because it neither encodes global mea-

1

Figure 1. Two time series representations of the same shape, start-
ing from two different contour points.

surement that describes all possible rotations between two
shapes, nor exploits the rotation property.

Instead of defining the representations manually, can we
learn a set of features for the same shape at all possible rota-
tions and use them for distinguish different shapes at differ-
ent rotations? In this paper we argue that we can tackle this
challenging concerns drastically in one shot. We consider
shapes along boundaries as 1D time series and use convo-
lutional neural network [3] as a practical solver, because
filtering is particularly suitable for time series analysis.

In this paper we further suggest that adding more rotated
versions of shapes improves shape recognition by nature. In
this case, the training will be time consuming with the brute
force solution. While in contrast, we significantly improve
the speed without losing accuracy. First, we take a slow but
intuitive approach to explain the problem, and then we de-
scribe how we make the training and testing more efficient.

Imagine we manually circular shift the time series and
collect all shifted versions as training samples, this naive
implementation is unsatisfactory for many scenarios. For
example, it takes 200 times to train a network if a shape is
sampled at 200 points.

We demonstrate that we can reduce the complexity dras-
tically. The key ingredient is to reuse the redundant in-
formation between two shifted versions (Fig. 1). In the
case where average pooling is used, this information reusing
strategy forms a balanced binary tree. Thus, all responses
of the same shape may be computed effectively. This also
allows us to perform the “rotation limit” cases.

We adopt curvature scale space (CSS) as our local de-
scriptor [13]. The curvature is a good representation of
the shape, but numerical method of curvature calculation
is sensitive to noise. Therefore, we applied integral mea-
surements proposed by [9] as the curvature of contours.

Our contributions include

• We introduced an efficient algorithm for shape recog-
nition, based on the recent progress of deep learning.

• The algorithm naturally handles rotation invariance
and rotation limit cases.

• We outperformed state of the art methods in real
datasets.

2. Related work
Shape is one of the important features in computer vi-

sion. Particularly we focus on the closed contour, where
landmark points are obtained by uniformly sampling the
contours. We review three components in shape recogni-
tion: features, distance measurements, and invariance.

Features Local descriptors can be rotation dependent or
independent. In the early age, a large number of papers
extract rotation invariant features such as curvature, entropy,
and convex hull [5]. These rotation invariant features are
less distinctive in literature.

Alternatively, Shape Context [2] and Inner Distance
Shape Context [12] are two widely used descriptors that
depend on rotation. In shape recognition, they are usually
used in dynamic programing framework. Please note that
such descriptors can be modified to be rotation independent
by computing the “local” orientation, but it is not a common
practice.

Distance There are many distance measures for shapes.
When two point sets are used, Chamfer distance [4] is fre-
quently used in the 2D space measures.

Experiments suggest that 1D representations (time se-
ries) achieve superior accuracy. For time series, typical
distance measurements include l2 norm and Dynamic Time
Warping [12]. Typically there are implicit assumption to
define starting point [4], thus one may need to check all
possible circular shifts to find the optimal matching.

To avoid time consuming distance comparison, align-
ment or brute force search may be used to produce the best
accuracy in different domains.

Rotation invariance With the elusive starting point, ro-
tation invariance seems to be always hard to handle in the
literature. Major axis appears to be the dominant choice in
some areas, but even in Anthropology, a classical area of
shape matching, [8] argued that the major axis is not useful.
The points can be manually chosen for training samples, but
it can be labor intensive for large dataset [7].

Histogram is an efficient approach to achieve rotation in-
variance. Kumar et al. [9] concatenated the histogram of the
curvatures across multiple scales and achieved impressive
results on a large dataset. The drawback is that structural
information may be lost during this histogram computation.

While rotating all shapes is necessarily in some applica-
tions, it may be useful to express rotation-limited queries.
For example, allowing a maximum rotation in a shape or
shift in landmark points.

Figure 2. Shift-Delay Forward Operation illustrated.

3. Learning rotation robust features for shape
recognition

We first briefly introduce basic concepts in the Convolu-
tional Neural Network (CNN), and then present our efficient
implementation of handling all possible shifts of shapes.

3.1. Convolutional Neural Network

Convolutional Neural Network (CNN) is a multilayer
learning framework, which may consist of an input layer,
a few convolutional layers and an output layer for logistic
regression. The goal of CNN is to learn a hierarchy of fea-
ture representations. Signals in each layer are convolved
with a number of filters and further downsampled by pool-
ing operations, which aggregate values in a small region by
functions including max, min, and average. In our work,
we consider average pooling for simplicity. The learning
of CNN is based on Stochastic Gradient Descent (SGD),
which includes two main operations: Forward and Back-
Propagation. Please refer to [10] for details.

We aim at learning representations for rotated shapes. A
naive implementation is to manually rotate each signal, one
at a time, to generate rotated versions at different starting
contour points. However, this is time consuming, and as we
see in this section, a lot of computation is redundant. In this
paper we show how to reuse the information and our modi-
fication of the basic algorithm to speed up the computation.

3.2. Re-using information in Forward operation

Given a CNN, our goal is to generate the outputs for the
shifted signals starting from possible contour points of the
same shape in one shot.

Considering two time series from different starting point
i and j of the same shape (Fig. 1), the Forward operation
amounts to convolve the times series with CNN filters and
average the outputs in each layer of the convolutional neural
network. Obviously, the information in the overlapping area
needs not to be computed twice.

Therefore, the idea of our efficient algorithm is to re-use
information. This dramatically speeds up the computation,
which reduces both the time for convolution and for shifting

signals. In the following derivation, we ignore the bias term,
but it can be added using the same idea.

Shift-delayed Forward Operation

Let us consider 1D time series representation for shapes.
We first show a slow and naive approach, and then greatly
speed it up. The higher dimensional time series can be han-
dled using the same principle.

In order to generate all possible shifts of a time series, we
have to shift one curve n times in a circular order, where n is
the number of possible start points. Then, each shifted ver-
sion must be convolved with many filters and downsampled.
Considering n = 200 or 400 being the common choices,
this brute force approach can be very slow.

Instead, we propose to postpone the shifting operation
until necessary. Fig. 2 illustrates our idea using a signal
processing diagram. In the downsampling process, we di-
vide the signal into 2 groups, which contains points in odd
and even locations. Notice that shifting the signal at the
beginning of the system is equivalent to shifting its corre-
sponding downsampled versions properly at any stage, we
can perform shifting before the single layer perception.

Assuming we have K layers CNN and a signal x0. The
first layer is the input map, and the last layer is the sin-
gle layer perception. Each layer has Nk (k = 1, 2, ...,K)
output maps. For simplicity, we define the output map of
the first layer is the same as input (e.g., N1 = 1), and
the filters are denoted by fkij (i = N1, ..., NK−2, and
j = N2, ..., NK−1). Denote the output of the 1st layer as
column vector x1

1 = x0, convolution and average pooling
from the second layer are

x̄kj = sigm

(
Nk∑
i=1

conv(xki , f
k
ij)

)
(1)

ukj = conv(x̄kj ,

[
1

2

1

2

]T
) (2)

where sigm(·) denotes the sigmoid function. Since each
downsampling will produce two subbands (Fig. 2), we add
a subscript xkj,p denotes the values of pth subband at jth

Figure 3. Average-Advanced BackPropagation illustrated.

output map at the kth layer. Initiate x1
1,1 = x0, we down-

sample the signal by two from the second layer, which gives
two subbands of output as{

xk+1
j,2p−1(l) = ukj,p(2l − 1)

xk+1
j,2p (l) = ukj,p(2l)

(3)

for l = 1, ...
|x̄k

j,p|
2 , where |·| is the length of the signal. In

each subband of the last layer, we only need to circular shift
the elements to obtain the correct response for the single
layer perception. Signal starting at rth contour point can be
obtained by shifting the original signal r times. If we know
r corresponds to the qth element of subband p at a layer, it
is equivalent to take the subband p and shift it q − 1 times.
This can be done by index operation easily.

Define srk = b mod (r+2k−1−1,2k−1)
2k−2 c and qrk =

b r+2k−1−1
2k−1 c, where b·c denotes the floor operation and

mod(·) is the modular operation. sk is a binary variable,
so the subband index of r at level k is prk = (sr1..s

r
k)10 + 1,

where (·)10 denotes the binary to decimal conversion. prk
and qrk define the location of subband at any layer for a given
starting point, thus the output is

fv =
[
cshiftqK−1

(xK−1
1,pK−1

); ...; cshiftqK−1
(xK−1

NK−1,pK−1
)
]

(4)

or = sigm (Wfv) (5)

where cshiftq(·) denotes the shift of the input q−1 units.
For a shape, there will be a set of or, each of which cor-

responds to the different starting points of the same sample.
As a result, it generates the output of all rotation versions of
a shape in one shot, which reduces the need to align shapes
when conducting classification. The feature is divided into
odd and even groups in each layer, which forms a balanced
binary tree. Assuming the temporal cost of each layer in the
network is ck, the total cost of generating responses of all
samples is n

∑K
k=1 ck for naive implementation. Instead,

ours is
∑K

k=1 2k−1ck, which is a significant reduction of
the complexity. The complete algorithm is shown in Algo.
1.

Algorithm 1 Forward Operation in Circular Time Series
1: procedure FastForward(x0)
2: x11 = x0; id11 = 1;
3: for k = 2 to K − 1 do
4: for p = 1 to 2k−2 do
5: for j=1 to Nk do
6: x̄kj,p = 0;
7: for i=1 to Nk−1 do
8: x̄kj,p = x̄kj,p+conv(xk−1

j,p ,fk−1
i,j , ‘circ’);

9: x̄kj,p=sigm(x̄kj,p); . Sigmoid
10: . Downsample
11: u = conv(x̄kj,p,[1

2
1
2

],‘circ’);
12: xk+1

j,2p−1 = u(1 : 2 : end);
13: xk+1

j,2p = u(2 : 2 : end);
14: idk+1

2p−1 = idkp;
15: idk+1

2p = idkp + 2k−1;

16: for p = 1 to 2K−2 do
17: for q = 1 to length(x0)/2K−2 do
18: xK−1

p =[cshift(xK−1
1,p , q); ...;cshift(xK−1

NK−1,p
, q)];

19: r = idKp + q2K−2;
20: or = sigm(WxK−1

p);

3.3. Average in BP

Backpropagation is a time consuming operation. Every
output from the Forward procedure needs to be compared
to the ground truth, and the errors are propagated layer by
layer. Since this error depends on each starting point, we
cannot reuse the information in a similar way as we used
the Forward operation.

First, we present our naive but slow implementation of
BackPropagation. Then, we significantly speed it up by ad-
vancing the average operation in gradient calculation.

For the time series starting at the rth contour point, we
follow the standard procedure to compute error and the gra-
dient of sigmoid function.

er = yr − or (6)

∆or = er ◦ or ◦ (1− or) (7)

where yr is the true label, or is the prediction output,

and ◦ is the Hadamard product. Then, the error is back
propagate to the convolutional layers as follows

∆K−1
r = WT ∆or . (8)

Let ∆K−1
r = [∆K−1

1,pK−1
; ...; ∆K−1

NK−1,pK−1
], where pK−1

is the same as defined in Forward operation, ∆K−1
j,pK−1

has
the same size as xK−1

j,pK−1
, we back propagate the gradient

of the sigmoid function in each layer as follows. First, we
upsample the signal after proper shifting:

vkj,pk
= linspace2(∆k+1

j,pk+1
) (9)

where linspace2(·) denote the linear upsampling by 2 op-
eration. vkj,pk

is backpropagated as follows:

∆̄k
j,pk

= cshiftqk(x̄kj,pk
) ◦
(
1− cshiftqk

(
x̄kj,pk

))
◦ vkj,pk

(10)

∆k
i,pk

=

Nk−1∑
j=1

conv(∆̄k
j,pk

, f̄kij) (11)

where f̄kij is a flipped version of fkij . Since SDG operates in
a batch mode, in every BackPropagation procedure we have
M time series. Denote δki,pk

as the flipped version of ∆̄k
i,pk

,
calculating gradient of fkij is simply the “valid” region of

∆fkij =
1

M

∑
M

conv
(
δkj,pk

, cshiftqk
(
xki,pk

))
(12)

Average-advanced BackPropagation

To speed up the back propagation, we first consider the
mean gradient in a batch.

∆fki =
1

M

∑
M

conv
(
cshift−qk(δkj,pk

), xki,pk

)
(13)

= conv

(
1

M

∑
M

cshift−qk(δkj,pk
), xki,pk

)
(14)

This means the average of the filter gradient is equivalent
to the filter gradient of the average input. Thus, we can
average the results in each subband by properly shifting the
output error. Note that Eq. 9-11 linear, it is possible to shift
the gradient ∆k

j,p in a reverse order, instead of shifting the
xkj,p every time. Therefore, all the shifted errors from the
same subband share the same set of xkj,p . As a result, we
advance the average the above mean operation at the early
as possible in the BP (Fig. 3). In this process, the only thing
needs to be changed is the addition of the following shift in
Eq. 9:

vkj,pk
= cshiftmod(pk+1,2)

(
linspace2(∆k+1

j,pk+1
)
)

(15)

This shift is because of the alignment for odd and even
indexes during upsampling. Advancing the average opera-
tion is very useful, because we can treat the averaged results
as new errors. This results in speeding up the BackPropa-
gation significantly. We show the procedure in Algo. 2.

Algorithm 2 BackPropagation for Circular Time Series
1: procedure FastBackward(or , yr , r = 1, ..., |x0|)
2: for p = 1 to 2K−2 do
3: dp = 0;
4: for r = 1 to |x0| do
5: ∆r = (or − yr) ◦ or ◦ (1− or);
6: Compute pK−1 and qK−1 for r;
7: dpK−1 = dpK−1+cshift(or, qK−1);

8: for p = 1 to 2K−2 do
9: dp = mean(dp);

10: Backpropagate dp using Eq. 8,10,11,15.
11: . Calculate Gradient
12: for k = 1 to K − 2 do
13: for j = 1 to Nk do
14: for i = 1 to Nk − 1 do
15: ∆f = 0;
16: for p = 1 to 2k−2 do
17: ∆f = ∆f+conv

(
δkj,pk , cshiftqk

(
xki,pk

))
∆fk

ij = mean∆fk
ij ;

3.4. Rotation limit shape recognition

As discussed in the introduction, some applications may
require rotation limited shape recognition. In our formu-
lation, this is equivalent to selecting subsets of outputs in
Forward and only computes the gradients in BackPropaga-
tion. To achieve this, one only needs to compute the average
of the selected samples in each subband of the final layer,
and the remaining procedure is the same.

This could be used to further reduce the computational
cost. For instance, in some applications one wants to com-
pute rotated versions of every two contour points. This can
be done by selecting proper indexes as well. Another handy
solution is to simply take the samples in the first subband. In
our experiments, this practice speeds up the learning with-
out sacrificing much accuracy.

3.5. Integral measures for curvature scale space

Curvature is a fundamental property of natural shapes.
Curvature scale space (CSS) has been proposed in the early
age of computer vision. The theory of CSS is very attractive
for continuous signals; however, when dealing with discrete
pixelated images and imperfect segmentation results, the
computation of curvature across different scales becomes

Figure 4. Curvature images. The first two are from the same
species, but due to rotation they starts from different contour
points.

very difficult. For example, standard differential techniques
may be very sensitive to noise, which makes the CSS less
effective in shape recognition.

Instead of computing curvature by the definition, a num-
ber of literature suggest to use integral measures to compute
functions of the curvature [13]. The insight is that the cur-
vature fundamentally reflects whether a curve is convex or
concave, thus we can use other measurements to serve as a
representation of curvature.

Following [9], we use the area of intersection of a disk
centered at a landmark point and the inside of the silhouette
as the measurement. Using filtering, this integral measure
is fast, and robust to noise. With different radius of circles,
we can derive the curvature of different scales and gener-
ate curvature images. Fig. 4 shows three examples. Each
row is the curvature evolving along the boundary for each
scale, and each column represent the change of curvature
over scale for every contour points.

4. Experiments
4.1. Settings

In this section we show our experiments on three real
datasets, namely, the Swedish Leaves [14], the ETH-80
Shape [11], and a subset of the recent Leafsnap dataset [9].

The shapes in each dataset were normalized with respect
to the sizes of their convex hulls. Each shape was then
represented by 200 uniformly sampled landmarks along
boundary (clockwise). At each landmark, we computed the
curvature scale space image with 25 scales.

The curvature image represents real datasets very well,
but it is not a practical measurement for the artificial dataset
such as the MPEG-7 dataset. This artificial dataset contains
man-made and toy variations, such as inner holes and elon-
gated branches. Thus integral measurements do not work
properly on these artificial variations.

In all the experiments, we used four layers CNN (includ-
ing the input layer and the single layer perception for re-
gression output). The first convolution layer has 11 filters
with the size 13× 11, and the second convolution layer has
13 filters with size 13×9, respectively. Downsampling only
applies to the curvature dimension.

We perform our method on three datasets, which are not

Algo IDSC T-Dist K-SVM SM Ours
% 91.20 93.8 91.47 94.40 94.93/95.33

Table 1. Performance comparison on Swedish leaf dataset. Please
see [1] and [7] for the other four algorithms.

Figure 6. Examples for ETH-80 [11].

aligned. The experiments were run on a standard PC with
3GHz Quad Core CPU and 32GB memory. The training
time varies and the testing time is on average 0.0227 second
per shape using Matlab.

4.2. Swedish Leaves dataset

The Swedish Leaves dataset was developed at Linkop-
ing University and the Swedish Museum of Natural History
[14], which contains segmented leaves from 15 different
Swedish tree species (75 leaves per species). We used 25
leaves per class for training and 75 for testing, which is a
standard configuration of this dataset.

Table 1 shows our results. Particularly, we showed two
configurations of our algorithms: 1) use all the contour
points as starting points for training, and 2) only use the
starting points that correspond to the first subband of the
last convolutional layer (i.e., 25% of the contour points).

Compared to the state of the art Shape Manifold [7],
where starting points of training images were manually la-
beled and testing images were aligned with the training im-
ages, our performance using 25% contour points is already
better. When more shifts (rotations) are used, the perfor-
mance increases too. This suggests our method requires less
labor in pre-processing shapes and supports our claim that
rotations facilitate shape recognition.

4.3. ETH-80 dataset

We next demonstrate the benefits of our approach on
shape categorization. The ETH-80 dataset [11] consists of
8 classes with 10 objects in each class. Each object has 41
images from different viewing angles. The contour images
are used for many shape recognition algorithms (Fig. 6).

In existing matching approaches, this dataset is used
in the Leave-One-Out-Cross-Validation (LOOCV) setup.
Jayasumana et al. [7] proposed to use Leave-One-Object-

Figure 5. Examples of the Swedish leaf dataset ([14]). Each column shows two original images and their silhouettes for each class. The
landmark points are then sampled from their boundaries.

Algo Nearest Nearest Complex Complex RIK Trans. Shape OursMean Neighbor Bingham Normal K-SVM Manifold
% 79.02 82.10 86.95 87.50 92.29 87.29 93.75 95.80

Table 2. Performance comparison on ETH-80 dataset. Please see [1] and [7] for the descriptions of other algorithms.

Figure 7. Examples of Leafsnap dataset. Each shape is from a different class, and some of them are very similar to each other.

Out-Cross-Validation for classification tasks: all images
from one object are used as test images, and the images of
other objects are used to train classifiers. If a test image is
classified to the same class as the training images (i.e., one
of the remaining 9 objects in the same class for training), it
is a correct classification.

In this setup, we reserved a validation set consisting of
10 images per object that are in the same class as the test
object, and stop the training when the CNN converges. This
process is repeated 80 times, and the average accuracy is
reported in Table 3.

We compared the results of our approach to those re-
ported in [7]. Our result outperformed the state of the art
by 2%. This may be explained by the misaligned start-
ing point issue, because there is no simple domain-specific
approaches to label the starting points easily in ETH-80
dataset.

4.4. Leafsnap dataset (subset)

Finally, we verified our ideas on a subset of the largest
reported shape dataset. Kumar et al. [9] collected the Leaf-
snap dataset. In total, this dataset contains 184 species in
the northeastern United States, which consists of 23,915
“clean” lab images (by high quality camera) and 5,192 field
images taken by mobile devices. The field images may con-
tain varying amounts of blur and were taken with different
viewpoints and illumination. The silhouettes were extracted
and provided in the dataset.

Recently, the authors prepared a subset of this large
dataset for academic purpose. This leaf subset includes over
5000 leaf images of the 143 trees (Fig. 7). Please note that
while there may be a well defined starting point for most
leaves (e.g., apex), it is labor intensive to label all of them
in this subset, and this labeling task may also be less practi-

Algorithm 75% 50% 25% 15%
Ours 60.03 58.50 55.61 48.12

HoCS 57.80 57.30 54.01 48.55
IDSC 54.14 56.41 46.09 42.66

Table 3. 1-NN results for Leafsnap dataset (subset).

Figure 8. Accuracy comparison on Leafsnap dataset (subset).

cal in the original dataset.
Kumar et al. [9] proposed to use the histogram of cur-

vature (HoCS) in a LOOCV matching framework. This is
not applicable to our classification method. Therefore, we
turned to a repeated random sub-sampling validation pro-
cedure. We divided the dataset and used 15%, 25%, 50%,
75% for training, respectively. We also reserved 5% for val-
idation, and the rest for testing in each case. We repeated
this procedure and reported the average values.

We compared our method to the IDSC and the HoCS on
the Top 1, 5, 10, 15, 20 accuracies, respectively. Table. 3
shows the Top 1 accuracy. Our method outperformed the
state of the art methods, and is inferior only when training
samples are small. Note that 15% of the dataset contains
only 700 images, the training may be less effective.

Fig. 8 further shows the top 5, 10, 15, 20 results, respec-
tively. Our method consistently achieved higher accuracy
for most of the test cases, and tied with the HoCS when
training samples are small.

5. Conclusion

In this paper we propose a method to handle rotation in
shape recognition. We effectively adopted a deep learning
framework on the curvature scale space, which computes
the forward and backpropation operations efficiently. We
tested the algorithm on three real datasets, and the perfor-
mance on these challenging dataset concludes that model-
ing rotation-friendly features facilitates shape recognition.

Acknowledgement: we would like to thank Prof. David
Jacobs and Arijit Biswas from the University of Maryland at
College Park for generously providing the Leafsnap dataset.

References
[1] X. Bai, X. Yang, L. J. Latecki, W. Liu, and Z. Tu. Learn-

ing context-sensitive shape similarity by graph transduction.
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 32(5):861–874, 2010.

[2] S. Belongie, J. Malik, and J. Puzicha. Shape matching and
object recognition using shape contexts. IEEE Trans. Pattern
Anal. Mach. Intell., 24(4):509–522, Apr. 2002.

[3] Y. Bengio, A. C. Courville, and P. Vincent. Unsupervised
feature learning and deep learning: A review and new per-
spectives. CoRR, abs/1206.5538, 2012.

[4] G. Borgefors. Hierarchical chamfer matching: A parametric
edge matching algorithm. IEEE Trans. Pattern Anal. Mach.
Intell., 10(6):849–865, Nov. 1988.

[5] A. Cardone, R. K. Gupta, and M. Karnik. A survey of
shape similarity assessment algorithms for product design
and manufacturing applications. Journal of Computing and
Information Science in Engineering, 3:109–118, 2003.

[6] Y. Gdalyahu and D. Weinshall. Flexible syntactic matching
of curves and its application to automatic hierarchical classi-
fication of silhouettes. IEEE Transactions on Pattern Analy-
sis and Machine Intelligence, 21:1312–1328.

[7] S. Jayasumana, M. Salzmann, H. Li, and M. Harandi. A
framework for shape analysis via hilbert space embedding.
In ICCV, 2013.

[8] E. Keogh, L. Wei, X. Xi, M. Vlachos, S.-H. Lee, and P. Pro-
topapas. Supporting exact indexing of arbitrarily rotated
shapes and periodic time series under euclidean and warp-
ing distance measures. The VLDB Journal, 18(3):611–630,
June 2009.

[9] N. Kumar, P. N. Belhumeur, A. Biswas, D. W. Jacobs, W. J.
Kress, I. Lopez, and J. V. B. Soares. Leafsnap: A computer
vision system for automatic plant species identification. In
The 12th European Conference on Computer Vision (ECCV),
October 2012.

[10] Y. LeCun and Y. Bengio. The handbook of brain theory and
neural networks. chapter Convolutional networks for images,
speech, and time series, pages 255–258. MIT Press, Cam-
bridge, MA, USA, 1998.

[11] B. Leibe and B. Schiele. Analyzing appearance and con-
tour based methods for object categorization. In In IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR’03, page 409–415, 2003.

[12] H. Ling and D. W. Jacobs. Shape classification using the
inner-distance. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 29(2):286–299, 2007.

[13] S. Manay, D. Cremers, B. woo Hong, A. J. Yezzi, and
S. Soatto. Integral invariants for shape matching. IEEE
PAMI, 28:1602–1618, 2006.

[14] O. J. O. Söderkvist. Computer vision classification of leaves
from swedish trees. Master’s thesis, Linköping University,
SE-581 83 Linköping, Sweden, September 2001. LiTH-ISY-
EX-3132.

[15] D. W. Thompson. On Growth and Form. Cambridge Univer-
sity Press, 1983.

[16] D. Zhang and G. Lu. Review of shape representation and
description techniques. Pattern Recognition, 37, 2004.

