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Abstract

In this paper, we revisit the phase-field approximation of
Ambrosio and Tortorelli for the Mumford–Shah functional.
We then propose a convex relaxation for it to attempt to
compute globally optimal solutions rather than solving the
nonconvex functional directly, which is the main contribu-
tion of this paper. Inspired by McCormick’s seminal work
on factorable nonconvex problems, we split a nonconvex
product term that appears in the Ambrosio–Tortorelli el-
liptic functionals in a way that a typical alternating gra-
dient method guarantees a globally optimal solution with-
out completely removing coupling effects. Furthermore, not
only do we provide a fruitful analysis of the proposed relax-
ation but also demonstrate the capacity of our relaxation
in numerous experiments that show convincing results com-
pared to a naive extension of the McCormick relaxation and
its quadratic variant. Indeed, we believe the proposed re-
laxation and the idea behind would open up a possibility
for convexifying a new class of functions in the context of
energy minimization for computer vision.

1. Introduction
1.1. Observation

Let us consider a minimization problem with a bivariate
objective, f(x, y) = x2y2 on [0, 1] × [0, 2.5] ⊂ R2, which
is illustrated in the top row of Figure 1. Since the function
is differentiable with respect to both x and y, one could pos-
sibly make use of a naive coordinatewise descent method to
attempt to compute a globally optimal solution. Obviously,
the function is in itself nonconvex; yet interestingly, one
can always find a global minimizer using gradient meth-
ods regardless of initialization. Even so, the objective is
somewhat problematic in that it prefers a specific set of so-
lutions depending on initial points. For instance, if an initial
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Nonconvex function Level sets
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Figure 1. We propose a convex relaxation (bottom) for a noncon-
vex function (top) that arises in the Ambrosio–Tortorelli set-up of
the Mumford–Shah functional. Compared to McCormick’s con-
vex envelope (see Section 3 for details), the proposed relaxation
makes it possible to use nonzero descent directions on the entire
domain so that it leads to visually better solutions than those de-
rived from the naive relaxation.

guess were to be selected on a region such that y < 2.5x,
minimizers on the other side would not be obtained. The
bottom row in Figure 1, on the other hand, shows how a
particular solution (0, 0) among all possible candidates of
the original problem can be surprisingly computed without
being prone to getting stuck in local minima. More impor-
tantly, unlike the McCormick relaxation (see Section 3 for
details), one always has a descent direction everywhere in
domain [0, 1] × [0, 2.5] ⊂ R2 by relaxing f(x, y) with a
combination of a quadratic and a linear function.

At first glance, this observation may not be considered
significant in that minimizers1 of min f(x, y) on [0, 1] ×
[0, 2.5] are all global minimizers. However, if it appears

1i.e. (x, y) ∈ {[a, 0], 0 ≤ a ≤ 1} ∪ {[0, b], 0 ≤ b ≤ 2.5}
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in a combined form with another (even with a convex ob-
jective), in contrast to situations where such a function is
the only objective to be minimized, one cannot be sure of
the global optimality of a computed solution. Indeed, when
it comes to energy minimization problems in computer vi-
sion, finding a globally optimal solution becomes a major
algorithmic challenge because objectives typically consist
of two or three energies—namely the data fidelity term and
the regularization term—leading to overall nonconvex ob-
jectives.

In light of the observation, we consider throughout
the paper how such a nonconvex functional that appears
in the Ambrosio–Tortorelli Γ-convergence set-up for the
Mumford–Shah functional can be convexified assuring
near-optimal solutions. It turns out that solutions from the
proposed relaxation are energetically and visually better
than those computed by minimizing the original nonconvex
functional. This is the main contribution of the paper.

1.2. The Mumford–Shah Problem

Let Ω ⊂ Rn be a bounded open set and g ∈ L∞(Ω) be a
given function. The Mumford–Shah problem is given by

min
u,K

{
α

∫
Ω

|u− g|2 +

∫
Ω\K
|∇u|2 + βHn−1(K)

}
, (1)

u ∈W 1,2(Ω\K),K ⊂ Ω closed in Ω,Hn−1(K) <∞,

whereHn−1 is the (n−1)-dimensional Hausdorff measure,
and α, β > 0 are fixed parameters. The functional regular-
izes large sets of K, and prefers u outside the set K to be
close to g in W 1,2, namely a piecewise smooth approxima-
tion of g. The functional was introduced by Mumford and
Shah in [21] for image segmentation (i.e., n = 2 and Ω may
well be a rectangle).

The existence of a minimizer has been proved in [12, 10]
where the idea is to use a weak formulation of the prob-
lem in a special class of functions of bounded variation
SBV (Ω)—readers can find a complete analysis in [2]—as
follows:

min
u

{
α

∫
Ω

|u− g|2 +

∫
Ω\Su

|∇u|2 + βHn−1(Su)

}
, (2)

where u ∈ SBV (Ω) and Su is the discontinuity set of u.
Then, for any minimizer u of (2), one can recover a min-
imizer of (1) by setting K = Su ∩ Ω. Since then, the
Mumford–Shah functional has been intensively studied, in
particular on the regularity of minimizing pairs (u,K), in
applied mathematics [20, 11] with free discontinuity prob-
lems [2]. Notwithstanding the existence theorem and some
results on the regularity, exact computation of solutions for
the functional is limited to a significant extent because of its
nonconvexity. As a consequence, there has been extensive

research on efficient algorithms both in the context of con-
tinuous/discrete optimization (we refer readers to [22, 17]
and references therein for the continuous and discrete set-
ting, respectively).

The most related work—possibly in line with the phase-
field approximation of Ambrosio and Tortorelli [3] for
which we are going to present a convex relaxation—is those
based on the Γ-convergence set-up. That is to approximate
the functional in (2) by a sequence of regular functionals de-
fined on Sobolev spaces converging to it in the sense of Γ-
convergence. We will revisit the Ambrosio–Tortorelli ellip-
tic functionals in Section 2; and refer readers to [5, 6, 8, 15]
for different classes of approximating functionals.

In [1], Alberti et al. reformulated (2) by means of the
flux of a suitable vector field going through the interface
of the subgraph of u and provided a sufficient condition
for minimality of some pairs of (u, Su). Unfortunately, it
is still open whether there exists a divergence free vector
field (calibration) for each minimizer of (2). Later, Pock et
al. [22] proposed a fast primal-dual algorithm by relaxing
the characteristic function of the subgraph of u to [0, 1],
and Strekalovskiy et al. [24] extended it to a vectorial case.
However, not only is it computationally demanding to com-
pute a minimizer of the relaxed problem but also it does not
hold the coarea formula [14] so that global minimality is not
guaranteed.

Note that we do not compare our results with those from
[22] and [24] throughout the paper since our contribution
is solely to convexify the Ambrosio–Tortorelli elliptic func-
tionals which converge to the weak formulation (2) in the
sense of Γ-convergence. In contrast, the sufficient condi-
tion for minimality based on the calibration method [1] is
somewhat problematic as mentioned above.

2. The Ambrosio–Tortorelli Functionals
In [3], Ambrosio and Tortorelli proposed a sequence

of elliptic functionals to approximate the Mumford–Shah
functional in (2) as follows:

ATε(u, z) = α

∫
Ω

|u− g|2 dx+

∫
Ω

z2|∇u|2 dx

+ β

∫
Ω

(
ε|∇z|2 +

(z − 1)2

4ε

)
dx︸ ︷︷ ︸

Lε(z)

, (3)

where ε > 0 is a fixed parameter; then ATε(u, z) is well
defined on the space

{
(u, z) ∈W 1,2(Ω)2 : 0 ≤ z ≤ 1

}
.

Here, z is a smooth edge indicator2 (i.e., z → 0 when
|∇u| → ∞). Remarkably, the authors have proved that
ATε(u, z) admits a minimizer and thatATε(u, z) converges

2Note that z is also called the phase-field, and Lε(z) in (3) is known as
the phase-field energy.
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Figure 2. A pair of minimizers of the Ambrosio–Tortorelli functional. In order to compute a pair of minimizers (u∗, z∗) for the
Ambrosio–Tortorelli functional, one typically resorts to an alternating optimization technique that does not guarantee a global optimal
solution due to the fact that the functional in itself is nonconvex. Yet, in practice it gives quite acceptable solutions for a number of images.

to the Mumford–Shah functional (2) as ε → 0 in the sense
of Γ-convergence.

Although the Mumford–Shah functional has been nicely
approximated by such sequence of elliptic functionals
(where one can easily derive its Euler-Lagrange equations
and solve these alternatively—see Figure 2), computing
a globally optimal solution is indeed a major algorithmic
challenge since (3) is still nonconvex—the second term is a
function of both u and z. In what follows, therefore, we fo-
cus on the second term,

∫
Ω
z2|∇u|2 dx, and propose a con-

vex relaxation for it.

3. Convex Relaxation
For the sake of completeness, we start by recalling Mc-

Cormick’s seminal work on factorable nonconvex prob-
lems [18]. The main result that is going to be used for the
first relaxation for (3) is summarized as follows [19].

Theorem 1 (McCormick’s relaxation of products). Let Ω ⊂
R2 be a nonempty convex set and f, f1, f2 : Ω → R
such that f = f1f2. Let f∪1 , f

∩
1 : Ω → R be a con-

vex and concave relaxation3 of f1, respectively. Likewise,
let f∪2 , f

∩
2 : Ω → R be a convex and concave relaxation

of f2. Then for f1 and f2 such that L1 ≤ f1 ≤ U1 and
L2 ≤ f2 ≤ U2, where L1, L2, U1, U2 ∈ R,

f∪ = max{g1 + g2 − L1L2, h1 + h2 − U1U2}, (4)

where

g1 = min{L2f
∪
1 , L2f

∩
1 }, g2 = min{L1f

∪
2 , L1f

∩
2 },

h1 = min{U2f
∪
1 , U2f

∩
1 }, h2 = min{U1f

∪
2 , U1f

∩
2 }, (5)

3A convex and a concave relaxation mean f∪ ≤ f convex and f∩ ≥ f
concave on Ω, respectively.

is a convex relaxation of f .

An example Consider f = x2y2 on [0, 1] × [0, 2.5] ⊂
R2, which is illustrated in Figure 3 with its level sets, then
0 ≤ x2 ≤ 1 and 0 ≤ y2 ≤ 2.52. We substitute f1 and f2

with x2 and y2, respectively. By Theorem 1, their convex
and concave relaxations on [0, 1] × [0, 2.5] are f∪1 = x2,
f∩1 = x, f∪2 = y2, and f∩2 = 2.5y. Since g1 = 0, g2 = 0,
h1 = min{2.52x2, 2.52x}, and h2 = min{y2, 2.5y}, f∪ =
max{0, 2.52x2 +y2−2.52}; see the McCormick relaxation
in Figure 3.

We now derive a similar relaxation for
∫

Ω
z2|∇u|2 dx

in (3), as follows.

Corollary 1 (McCormick relaxation). Let u : Ω → R be
Lipschitz continuous; then

FMc(u, z) :=

∫
Ω

max{0, L2z2 + |∇u|2 − L2} dx (6)

≤
∫

Ω

z2|∇u|2 dx, (7)

where L is a Lipschitz constant for u, and FMc(u, z) is con-
vex on

(
W 1,2(Ω) ∩W 1,∞(Ω)

)
×W 1,2(Ω).

Proof. Substitute f1 and f2 with z2 and |∇u|2, then con-
sider its convex and concave relaxations: f∪1 = z2, f∩1 = z,
f∪2 = |∇u|2, and f∩2 = L|∇u|, where 0 ≤ |∇u| ≤ L a.e.
x in Ω by Lipschitz continuity (by Rademacher’s theorem
[13]).

Let us go back to the example for a while. The convex re-
laxation f∪ of f is tight in the sense of [18], yet one can see
there is no descent direction when 2.52x2 + y2 − 2.52 < 0.
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Figure 3. Convex relaxations of a nonconvex factorable function, f(x, y) = x2y2 on [0, 1]× [0, 2.5] ⊂ R2. Although the McCormick
relaxation of f(x, y), f∪ = max

{
0, 2.52x2 + y2 − 2.52

}
, is sufficiently tight, one cannot make use of its gradient information when

2.52x2 + y2 − 2.52 < 0. For a quadratic relaxation, f∪Q = max {0.1(2.52x2 + y2 − 2.52), 2.52x2 + y2 − 2.52}, on the other hand, it
regularizes solutions on the entire domain quadratically. By replacing 0.1(2.52x2 + y2 − 2.52) in the quadratic relaxation with a linear
function 0.1(2.5x + y − 2.5), we obtain a remarkable property; not only is it tighter than the quadratic relaxation, but it also regularizes
“linearly” when 0.1(2.5x + y − 2.5) > 2.52x2 + y2 − 2.52, which turns out to preserve edges.

Indeed, this is quite problematic in such a situation where
one would have to rely on gradient-based algorithms to
compute a globally optimal solution for the original prob-
lem by means of f∪. Interestingly, by simply replacing the
first argument with the second one multiplied by η ∈ (0, 1],
we can devise a less tight yet subdifferentiable convex un-
derestimator of f∪, that is, f∪Q = max{η(2.52x2 + y2 −
2.52), 2.52x2 + y2 − 2.52}. We illustrate this “quadratic
relaxation” in Figure 3 when η = 0.1 with its level sets.

Likewise, FMc(u, z) can similarly be relaxed further as
follows.

Proposition 1 (Quadratic relaxation). Let u be Lipschitz
continuous; then for any η ∈ (0, 1],

FQ,η(u, z) :=

∫
Ω

max{η(L2z2 + |∇u|2 − L2),

L2z2 + |∇u|2 − L2} dx (8)
≤FMc(u, z), (9)

where L is a Lipschitz constant for u, and FQ,η(u, z) is
convex on

(
W 1,2(Ω) ∩W 1,∞(Ω)

)
×W 1,2(Ω).

Proof. When η(L2z2 + |∇u|2 − L2) ≥ 0, FQ,η = FMc;
when η(L2z2 + |∇u|2 − L2) < 0, FQ,η ≤ 0 and FMc =
0.

Now, let us take a look at FQ,η(u, z). In both cases,
when η(L2z2 + |∇u|2 − L2) > L2z2 + |∇u|2 − L2 and

η(L2z2 + |∇u|2 − L2) < L2z2 + |∇u|2 − L2, one can
see that the

∫
Ω
|∇u|2 dx term is involved, which obviously

does not have the edge-preserving property [9]. Although
a small value of η somewhat guarantees a small amount of
diffusion, the nature of

∫
Ω
|∇u|2 dx never vanishes unless

η = 0, which becomes the McCormick relaxation. This is
indeed problematic since it becomes a looser lower bound,
which would give us a solution far from optimal. As a rem-
edy, we propose the following relaxation of the quadratic
relaxation, which in turn preserves edges.

Proposition 2 (Linear approximation4). Let u be Lipschitz
continuous; and for any η ∈ (0, 1], FL,η(u, z) is defined by

FL,η(u, z) : =

∫
Ω

max{η(Lz + |∇u| − L),

L2z2 + |∇u|2 − L2} dx, (10)

where L is a Lipschitz constant for u. Then FL,η(u, z) is
convex on

(
W 1,2(Ω) ∩W 1,∞(Ω)

)
×W 1,2(Ω).

Proof. Pointwise max operation preserves convexity.

We also illustrate this “linear relaxation” for f∪Q in Fig-
ure 3 when η = 0.1 with its level sets. Lastly, we close
this section with the following proposition, which shows

4Note that the linear approximation is not an underestimator of the sec-
ond term in (3) on the entire domain. However, we will call this approxi-
mation also relaxation throughout the paper; indeed, this is the relaxation
that has been referred to as the proposed relaxation.



that when one of the three types of relaxations presented is
plugged in the Ambrosio–Tortorelli functional (3), the over-
all functional becomes a convex relaxation of the functional.

Proposition 3. Let u be Lipschitz continuous; then for
every ε > 0 and η ∈ (0, 1], a functional AT cvx

ε :(
W 1,2(Ω) ∩W 1,∞(Ω)

)
×W 1,2(Ω)→ R, which maps

(u, z) 7−→ α

∫
Ω

|u− g|2 dx+ F (u, z) + βLε(z) (11)

is convex. Here, F (u, z) is one of the relaxations (i.e., FMc,
FQ,η , and FL,η) for

∫
Ω
z2|∇u|2 dx.

Proof. The sum of convex functionals is convex.

3.1. Euler-Lagrange Equations

So far, we have devised such convex relaxations in a
way that they satisfy two properties: 1) differentiability and
2) tightness. We have to admit that there is a heuristic to
derive a linear relaxation from the quadratic one; that is,
the quadratic relaxation has been lifted by a linear approx-
imation which also maintains differentiability and convex-
ity. Interestingly, it turns out that the linear relaxation has
a compelling property that comes into view, once its Euler-
Lagrange equations are derived. In the following, there-
fore, we derive the Euler-Lagrange equations for the re-
laxations and provide complete insights—how these relax-
ations work.

McCormick relaxation When L2z2 + |∇u|2 − L2 < 0,

2α(u− g) = 0, (12)
β∂zLε(z) = 0; (13)

elsewhere,

2α(u− g)− div(∇u) = 0, (14)

2L2z + β∂zLε(z) = 0. (15)

As can be observed, when L2z2 + |∇u|2 − L2 < 0, the
steady-state solution is g; elsewhere, one can see there is
a diffusion term div(∇u) in (14), which blurs images. In-
deed, a combination of those equations makes images ex-
hibit lots of speckles (salt and pepper-like noise)—see Fig-
ure 5 for details.

Quadratic relaxation When η(L2z2 + |∇u|2 − L2) <
L2z2+|∇u|2−L2, the corresponding Euler-Lagrange equa-
tions of FQ,η(u, z) become (14) and (15); elsewhere,

2α(u− g)− η div(∇u) = 0, (16)

2ηL2z + β∂zLε(z) = 0. (17)

On either side, as can be seen, the Euler-Lagrange equa-
tions contain div(∇u). Unlike the McCormick relaxation,

however, u is regularized with two different diffusion co-
efficients. Here the amount of diffusion on each pixel is
decided by the max operation, which can be regarded as an
inhomogeneous diffusion [25]. That is, pixels around edges
(|∇u| gets larger and z gets smaller) are more likely to fall
into the region of η(|∇u|2 +L2z2−L2) < |∇u|2 +L2z2−
L2 resultig in a small amount of diffusion η div(∇u) in (16)
compared with div(∇u) in (14).

Linear relaxation Likewise, when η(Lz + |∇u| − L) >
L2z2 + |∇u|2 − L2,

2α(u− g)− η div

(
∇u
|∇u|

)
= 0, (18)

ηL+ β∂zLε(z) = 0. (19)

As can be seen in (18), the Euler-Lagrange equation is the
same as that of the ROF model [23]. That is, the proposed
relaxation regularizes

FL,η(u, z) = η

∫
Ω

|∇u| dx+ η

∫
Ω

L(z − 1) dx, (20)

when η(|∇u| + Lz − L) > |∇u|2 + L2z2 − L2. Interest-
ingly, it turns out that AT cvx

ε in Proposition 3 with (10) se-
lectively regularizes either

∫
Ω
|∇u| or

∫
Ω
|∇u|2 depending

on the max operation, which is similar to the Huber norm.

3.2. Vectorial Case

The (n− 1)-dimensional Hausdorff measureHn−1(Su)
in (2) not only is itself very difficult to deal with; but be-
comes more complicated when it is extended to a vectorial
case because one has to reasonably take into account color
coupling among channels. On the other hand, the benefit
of the Ambrosio–Tortorelli approximation is that it can be
done straightforwardly once a norm | · | for u : Ω → Rn
is specified because Hn−1(Su) is well approximated by
Lε(z). Indeed, there are some possible (and well-studied)
choices available: 1) the Frobenius norm [7], 2) the Eu-
clidean norm [4], and 3) a generalization of the Jacobian
determinant [16].

However, since those norms of a vector-valued function
have been developed in the context of vectorial total varia-
tion, meaning their dual formulations are available, metic-
ulous care is required to plug them into the Ambrosio–
Tortorelli functionals. For example, it has been proved
in [16] that the total variation based on the Jacobian deter-
minant is given by∫

Ω

J1(u)dx =

∫
Ω

σ1(Du)dx, (21)

where J1 is a generalization of the Jacobian determinant,
and σ1(Du) is the largest singular value of the derivative
matrix. It is also mentioned that σ1(·) is not differentiable
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Figure 4. Piecewise smooth approximations of a synthetic image with different relaxation techniques. A ground truth image of size
128 × 128 and one degraded by 5% additive noise are taken from [22]. None of the relaxations exhibit the staircasing effects seen in
total variation (TV) denoising. More importantly, compared to the Ambrosio–Tortorelli approximation, a solution of the linear relaxation
reconstructs boundaries at the lower right corner. Overall, the linear relaxation shows the best reconstruction result among the possible
relaxations where one can see either speckles or blurs.

(they used its dual formulation to minimize it). Obviously,
there is no way to differentiate σ2

1(Du).
In [4], Blomgren and Chan observed that the Frobenius

norm [7] exhibits color smearing, and proposed the channel-
by-channel Euclidean norm. In light of their work, we could
extend the second term in (3) as follows√√√√ n∑

i=1

∫
Ω

z2|∇ui|2 dx, (22)

and make use of McCormick’s relaxation of composition
[19] for further convexification. Nevertheless, we may as
well use the Frobenius norm for the vectorial case in this
papaer, which can be extended as∫

Ω

z2|∇u|2F dx :=

n∑
i=1

∫
Ω

z2|∇ui|2 dx, (23)

since our contribution is solely to decouple the nonconvex
factorable term in the Ambrosio–Torotrelli approximation
for the Mumford–Shah functional.

4. Experimental Results
In Figure 4, we demonstrate theoretical properties of

the (McCormick, quadratic, and linear) relaxations on
a synthetic image. Surprisingly, the synthetic image
taken from [22] does not make the nonconvexity of the

Ambrosio–Tortorelli functionals come into effect. This
might explain to some extent why alternating optimization
of the functionals works quite well in practice, often giv-
ing an energetically better solution (E = 4.591) than that
of the linear relaxation (E = 7.4323, η = 0.01), where
energies are evaluated in the original Ambrosio–Tortorelli
functional (3).

However, the Ambrosio–Tortorelli approximation with
alternating optimization does not reconstruct the bound-
aries at the lower right corner whereas the linear relaxation
does. Indeed, it turns out that to reconstruct these bound-
aries is challenging in that neither the McCormick relax-
ation nor the quadratic variant is capable of carrying out
what the linear relaxation does; nor is the functional lift-
ing approach [22]—we refer readers to the reconstruction
result of the same image therein. Furthermore, compared
to total variation (TV) denoising, none of the relaxations
we have presented exhibit a noticeable staircasing effect—
see artificial flat regions in the reconstruction result of TV
denoising—which is indeed an inherent disaster for the TV
regularizer.

Although the McCormick relaxation and its tightness are
theoretically interesting, when applied to a task of piecewise
smooth approximation it gives rise to lots of speckles with
relatively high energy (E = 27.1154) since it lacks gradi-
ent descent directions. For a solution of quadratic relaxation
(η = 0.01), it turns out that the solution is energetically bet-
ter (E = 13.6457) than that of the McCormick relaxation,
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Figure 5. Piecewise smooth approximations of a vector-valued synthetic image with different relaxation techniques. A ground truth
image of size 128 × 128 and one degraded by 30% additive noise are taken from [24]. Two piecewise smooth approximations of the
Ambrosio–Tortorelli approach (second and third ones from the right on top) are obtained from different initializations (the ground truth
and degraded input, respectively). Clearly, the Ambrosio–Tortorelli approximation is prone to getting stuck in local minima. Compared
to total variation (TV) denoising, none of the relaxations exhibit the staircasing effects; besides, the linear relaxation reconstructs edges
between the blue and black regions whereas none of the other relaxations (including the Ambrosio–Tortorelli approximation) do not.

but gets worse visually; one can clearly see more speckles.
A remedy could be to slightly increase the value of η, that
is to take into account a looser relaxation, but obviously, its
solutions cannot preserve edges since either way it regular-
izes images by means of the Tikhonov regularizer.

At the beginning of the paper, we considered a noncon-
vex objective f(x, y) = x2y2, for which global minimizers
are always guaranteed with a naive coordinate-wise gradi-
ent method. Also, at the end of Section 1.1, we argued that
it becomes problematic when such a function is combined
with another—even if it is convex—in that one cannot be
sure of its optimality. A convincing example to demonstrate
the observation is shown in Figure 5, where none of the so-
lutions of a vectorial extension of the Ambrosio–Tortorelli
functionals have the same energy (41.538 and 41.681 each);
nor do they look similar. In comparison to a result of total
variation (TV) denoising, solutions obtained from the relax-
ations clearly do not exhibit artificial flat regions. Yet, one
can see a significant amount of artifacts (speckles) along the
edges in the reconstruction result of the McCormick relax-
ation (which is basically the same as the scalar case).

For the quadratic relaxation, all the speckles seen in the
result of the McCormick relaxation are not observed any-
more; yet it overly smoothes edges even with a small value
of η (0.08) because of the nature of quadratic regulariza-
tion. Clearly, the best result in terms of being indepen-
dent of initialization and significant visual improvements is

obtained by the linear relaxation. Moreover, one can see
the reconstructed edges between the blue and black regions
in the phase field of the linear relaxation (bottom right),
which are completely missing in the case of the Ambrosio–
Tortorelli functional (top right) even with a ground truth ini-
tial. Lastly, a piecewise smooth approximation of a natural
image (Self-Portrait, September 1889 by Vincent van Gogh)
is shown in Figure 6.

5. Conclusion
Inspired by McCormick’s seminal work on factorable

nonconvex problems, we have shown how a nonconvex
functional that appears in the Ambrosio–Tortorelli approxi-
mation can be systematically convexified. From a theoreti-
cal point of view, however, the relationship of the proposed
approach to the original Mumford–Shah functional does
not seem quite clear. Indeed, there are still quite a num-
ber of theoretical properties to be discovered beyond what
we have shown in this paper. Yet, we have demonstrated
the capacity of our approach (linear relaxation) in numer-
ous experiments that assure near-optimal solutions of the
Ambrosio–Tortorelli functionals. We believe it would pro-
vide powerful machinery for optimizing a new class of chal-
lenging nonconvex problems that have not been explored so
far but appear quite often—namely factorable nonconvex
functionals—in the context of variational methods for com-
puter vision.
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Figure 6. Piecewise smooth approximation of Self-Portrait, September 1889 by Vincent van Gogh. While the Ambrosio–Tortorelli
approximation often gives a fairly acceptable solution, the solution is inconsistent in the sense that one cannot obtain the same solution
even with a slightly different initialization. On the other hand, solutions of the proposed method are always guaranteed to be energetically
equivalent regardless of any initialization as well as it does not exhibit the staircasing effects.
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