
Illumination-Aware Age Progression

Ira Kemelmacher-Shlizerman1 Supasorn Suwajanakorn1 Steven M. Seitz1,2
1University of Washington 2Google Inc.

81#100%5#7%3%years%old%
(single%input)%

14#16% 26#35% 46#57% 58#68%

Figure 1. Given a single input photo of a child (far left) our method renders an image at any future age range between 1 and 80. Note the
change in shape (e.g., nose gets longer, eyes narrow) and texture, while keeping the identity (and milk mustache!) of the input person.

Abstract
We present an approach that takes a single photograph

of a child as input and automatically produces a series of
age-progressed outputs between 1 and 80 years of age, ac-
counting for pose, expression, and illumination. Leveraging
thousands of photos of children and adults at many ages
from the Internet, we first show how to compute average
image subspaces that are pixel-to-pixel aligned and model
variable lighting. These averages depict a prototype man
and woman aging from 0 to 80, under any desired illumi-
nation, and capture the differences in shape and texture be-
tween ages. Applying these differences to a new photo yields
an age progressed result. Contributions include relightable
age subspaces, a novel technique for subspace-to-subspace
alignment, and the most extensive evaluation of age pro-
gression techniques in the literature1.

1. Introduction
What will a child look like in 20 years? Age progres-

sion, which seeks to “age” photographs of faces, is one of
the most intriguing of digital image processing operations.
It is also one of the most challenging for a variety of rea-
sons. First, the aging process is non-deterministic, depend-
ing on environmental as well as genetic factors that may
not be evident in the input photos. Second, facial appear-
ance and recognizability is strongly influenced by hair style,
glasses, expression, and lighting, which is variable and un-
predictable. Finally, there is relatively little data available

1http://grail.cs.washington.edu/aging/

from which to build effective models, as existing age anal-
ysis databases are relatively small, low resolution, and/or
limited in age range.

Nevertheless, age progression techniques have enjoyed
significant success in helping to solve missing children
cases, where subjects have been recognized many years
later based on age progressed images. Described as “part
art, part science, and a little intuition” [30], these images
are produced by forensic artists who combine a background
in art, physical anthropology, and expertise with image edit-
ing software to simulate the appearance of a person later in
life [13]. Aging photos of very young children from a single
photo is considered the most difficult case of all, where age
progression beyond a few years is considered impractical
[25]. We focus specifically on this very challenging case.

Our approach takes a single photo as input and auto-
matically produces a series of age-progressed outputs be-
tween 1 and 80 years of age. Figure 1 shows an exam-
ple result. Our approach has three primary contributions.
First, we present the first fully-automated approach for age
progression that operates “in the wild”, i.e., without strong
constraints on lighting, expression, or pose. Second, we
present some of the first compelling (and most extensive)
results for aging babies to adults. And third, we introduce a
novel illumination-aware age progression technique, lever-
aging illumination modeling results [1, 31], that properly
account for scene illumination and correct surface shading
without reconstructing 3D models or light source directions.

We build on prior work on age progression, notably, the
seminal work of Burt and Perrett [6], who created convinc-
ing average male faces for several ages (in the range of 20-
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54) by aligning and averaging photos together. A new query
photo was then age progressed by adding to it the differ-
ence in shape and texture between the average of the de-
sired target age, and the average for the age corresponding
to the query. Their approach required manual alignment.
Subsequent aging work in the computer vision literature
introduced more automation, often using Active Appear-
ance Models [17] or detecting fiducials [32]. Additional
improvements included texture modeling for wrinkles [37]
and person-specific models [35, 29]. More details can be
found in these excellent survey papers [9, 33]. Early face
analysis methods proposed to synthsize new faces using im-
age based models, e.g., [7], but did not focus on aging and
uncalibrated conditions. There are now several commer-
cial programs that will age photos taken with a webcam or
mobile phone. Typically, however, these programs operate
effectively only for photos of adults or older children; [23]
requires a minimum age of 18, ageme.com lists 7 as the low
range, the popular AgingBooth iphone app suggests a min-
imum age of 15. Furthermore, both commercial offerings
and state-of-the-art methods from the research literature still
require frontal, simply-lit faces, with neutral expression [9].

There is a body of work on automatic age estimation,
e.g., [26, 11, 18]. They, however, did not pursue age pro-
gression or other synthesis applications.

Our results set a new bar for age-progression research,
demonstrated by a comprehensive evaluation of prior art
(the first of its kind in the age progression literature), and an
extensive comparison to “ground truth,” via large scale user
studies on Amazon Mechanical Turk, as described in Sec-
tion 4. The key components that make this advance possible
are first, a new database consisting of thousands of photos of
people spanning age (0 to 100), variable lighting, and vari-
able pose and expression (Section 2.1). Second, relightable
average images that capture changes in facial appearance
and shape across ages, in an illumination invariant manner
(Section 2.2). And third, a novel technique for aligning illu-
mination subspaces that enables capturing and synthesizing
age transformations (Section 3).

2. Building an Aging Basis
As we age, our faces undergo changes in shape and ap-

pearance. The transformation from child to adult is domi-
nated by craniofacial growth, in which the forehead slopes
backward, the head expands, and the lower portion of the
face extends downward [8]. Changes in later years are dom-
inated by growth of the nose, narrowing of the eyes, the
formation of wrinkles and other textural changes.

One of the most compelling ways to model and view
these changes across people is by creating a sequence of
composite faces, where each composite is the average of
several faces of the same gender and age. This idea dates
back more than two centuries; Galton [10] generated aver-

age images by taking several exposures of portraits on the
same photographic plate. Bensen and Perrett [2] showed
that dramatically better composites can be obtained by first
aligning facial features (208 fiducials) and warping the im-
ages to a reference prior to averaging. Producing compos-
ites for aging studies is hampered, however, by the lack
of good photographic data for young children, as existing
databases are relatively small, low resolution, and limited
in age range [9]. In the remainder of this section, we intro-
duce an approach for creating and analyzing a large dataset
of human faces across ages, based on thousands of photos
from the Internet.

2.1. Data collection

To analyze aging effects we created a large dataset of
people at different ages, using Google image search queries
like “Age 25”, “1st grade portrait,” and so forth. We ad-
ditionally drew from science competitions, soccer teams,
beauty contests, and other websites that included age/grade
information. The resulting databases spans 0 to 100, pooled
into 14 age groups (we call them clusters), separated by
gender. The clusters correspond to ages 0, 1, 2-3, 4-6, 7-
9, 10-12, 13-15, 16-24, 25-34, 35-44, 45-56, 57-67, 68-80
and 81-100. The total number of photos in the dataset is
40K and each cluster includes, on average, 1500 photos of
different people in the same age range. This database cap-
tures people “in the wild” and spans a large range of ages.

2.2. Aligned, re-lightable averages

To obtain dense correspondence between the photos in
each cluster, we use the “collection flow” method [15],
which enables accurate dense correspondence across im-
ages with large illumination variation. The input to the col-
lection flow method are aligned and warped to frontal pho-
tos for which we use the pipeline of [16]. Figure 2 shows the
average image for each age, and the average of flow-warped
photos using collection flow. Note how much sharper the
flow-aligned averages look. While these aligned averages
can appear remarkably lifelike, the lighting is dull and un-
realistic, as it is averaged over all images in the collection.
We instead produce relightable average images, which may
be re-illuminated from any direction with realistic shading
effects. We propose to match the lighting of any new input
image I by first pose-aligning the image [16], and project-
ing that image onto every age subspace. Specifically, for an
age cluster j with flow-aligned average Aj , we compute a
rank-4 basis via singular value decomposition on the flow-
aligned images, i.e., Mj = UjDjV

T
j where Mj is f × p

the matrix representation of the cluster’s flow-aligned pho-
tos (f is the number of photos and p number of pixels in
each photo). As described in [15], this rank-4 approxima-
tion retains the lighting and shading of the input photos, but
neutralizes the changes due to identity and facial expres-
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Figure 2. Average images of people at different ages. Each image represents an average of about 1500 individuals. Results in the top
row are aligned only to place the eyes, nose, and mouth in rough correspondence. The second row shows averages after pixel-to-pixel
alignment. These are much sharper, but the tone is variable, the lighting is unnatural, and subtle shape differences (e.g., wrinkles) are
averaged out (to see it zoom-in to the last column). The bottom two rows show re-lit averages, matched to two reference frames (far left)
with opposite lighting directions. The re-lit results have proper shading, are tone-matched to allow easier comparison across ages, and
reveal 3D shape changes (note the nose and forehead).

sion, producing a set of images in nearly perfect alignment
with a common, average face pose. Next solving

min
α
||I − αV Tj ||2 (1)

for the coefficients α yields a re-lit average that matches the
illumination of I:

AIj = αV Tj (2)

(Vj is truncated to rank=4). Figure 2 (rows 3-4) shows this
capability. Two key advantages of relighting are that 1) it
generates a more realistic set of average images, bringing
out fine details that are only visible with proper shading,
and 2) we can align the lighting across the set of averages,
to enable comparing changes at different ages. We use this
relighting capability to estimate flow across clusters as de-
scribed below.

2.3. Illumination Subspace Flow

We have so far focused on aligning photos within each
age cluster. Next, we show how to estimate flow across age
clusters, to measure face shape changes over time. Each
cluster has many photos under different illumination condi-
tions and thus captures an illumination subspace, represent-
ing how an average person at a particular age appears under
all illuminations [1]. A key contribution of our paper is how
to align two such illumination subspaces Vi and Vj .

We seek the (single) optical flow field that aligns Vi and
Vj . Our insight is to use relighting for flow estimation. As
shown in Fig. 2 (last column), relighting brings out 3-
dimensional shape differences that are otherwise invisible
when averaging many photos. We therefore propose an op-
tical flow method that optimizes over many different light-

ing conditions. The challenge here is twofold: 1) each illu-
mination subspace represents a continuum of different im-
ages, and 2) their coefficient space is not aligned, i.e., any
physical lighting direction may map to different lighting co-
efficients in each illumination subspace.

We introduce a solution that can be easily implemented
within the traditional two-view optical flow framework. Let
K be the number of database images in the union of clus-
ters i and j. For each image Ik in this union, we project it to
each of the two illumination subspaces resulting in an aver-
age imageAki andAkj . The resulting set of images {Aki }Kk=1

can be represented as a single K-channel image Ai, and
similarly for Aj . Unlike the original illumination subspaces
Vi and Vj , these two multi-channel images are illumination-
aligned; the kth channel of Ai and Aj have the same light-
ing. Hence, our method can work with any optical flow
algorithm that supports multiple channel images (including
more complex methods like SIFT flow [22, 12]) to compute
the lighting-aware flow field.

When K is large, a smaller representative set of im-
ages can be chosen using either discrete sampling, cluster-
ing, or dimensionality reduction techniques. We leveraged
the fact that the illumination subspaces are low-dimensional
[14] (Vi is 4D) and computed an orthogonal 24D basis (two
4D clusters times 3 color channels) for the K images us-
ing PCA. Each basis vector (mean + principle vector) was
weighted in proportion to its principle value (we modified
[21] to support weighted multi-channel images).

2.4. Age Transformations

To align all age clusters, we compute subspace flow be-
tween each pair of successive age clusters i and i + 1.
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Figure 3. Steps of illumination-aware age progression.

Longer range flows between more disparate ages i and j
are obtained by concatenation of the flow fields between i
and i + 1, i + 1 and i + 2, ..., j − 1 and j. This concate-
nation approach gives more reliable flow fields than direct,
pairwise flow computation between i and j. These flows
enable estimating differences in texture and shape between
the different age groups, as we describe in the next section.

3. Illumination-Aware Age Progression
Given an input photo of a 2 year old, we can render her

at age 60 by computing the difference in flow and texture
between the cluster of ages 2-3 (source) and cluster of ages
57-67 (target) and applying it to the input photo. This task
is challenging for images “in the wild,” as it requires taking
into account variations in lighting, pose, and identity. Illu-
mination and shading are inherently 3D effects that depend
upon light source direction and surface shape, e.g., as the
nose becomes more angular, its shading should change in
a manner that depends on light source direction. We show,
however, that it is possible to utilize our rank-4 relightable
aging basis to work entirely in the 2D domain, without re-
constructing 3D models.

To age progress a face photo we perform the following
steps, as illustrated in Figure 3.

Pose correction: the input face is warped to approx-
imately frontal pose using the alignment pipeline of [16]
(step 1 in the figure). Denote the aligned photo I .

Texture age progress: Relight the source and target age
cluster averages to match the lighting of I as described in
Section 2.2, yielding AIs and AIt . Compute flow Fsource–input
between AIs and I and warp AIs to the input image coordi-
nate frame, and similarly for Ftarget–input. This yields a pair
of illumination matched projections, Js and Jt both warped
to input. The texture difference Jt−Js is added to the input
image I .

Flow age progress: Apply flow from source cluster to
target cluster Ftarget–source mapped to the input image, i.e.,
apply Finput–target ◦Ftarget–source to the texture-modified image

I + Jt − Js. For efficiency, we precompute bidirectional
flows from each age cluster to every other age cluster.

Aspect ratio progress: Apply change in aspect ratio,
to account for variation in head shape over time. Per-cluster
aspect ratios were computed as the ratio of distance between
the left and right eye to the distance between the eyes and
mouth, averaged over the fiducial point locations of images
in each of the clusters.

We also allow for differences in skin tone (albedo) by
computing a separate rank-4 subspace and projection for
each color channel.

4. Experiments

We now describe implementation details, results, and
evaluation based on a large scale user study.

Implementation details For all flow computations, we
modified Ce Liu’s [21] implementation (based on Brox et
al. [4] and Bruhn et al. [5]) to work with weighted multi-
channel photos. We used the following parameters α =
0.005, ratio= 0.85, minWidth= 20, nOuterFPIterations=
10, nInnerFPIterations= 1, nSORIterations= 20. We used
random SVD [34] for fast low rank computations. Process-
ing the photo database required 30 minutes (on 14 compute
nodes) per age cluster of 300 photos, including flow, aver-
ages, and subspace computation. Given the precomputed
aging basis, age progression of a new input photo takes 0.1
seconds. For blending aged faces into adult heads we es-
timate fiducials in the adult head photo (computed during
pose correction), to match fiducials between the input and
target photos, and then run graph cuts to find an optimal
seam followed by poisson blending to blend the aged face
into the adult head photo [3].

Cropped progression results Figures 1 and 4 show
age progressed images generated automatically using our
method. The input images were taken from the FGNET
database [17] and were not part of the training set used
to create the flow and texture age differences. The results
shown here focus on extremely challenging photos of chil-
dren, with examples that cover a wide range of face types
and imaging conditions: neutral, smiling, and laughing fa-
cial expressions, frontal and non-frontal pose, lower qual-
ity scans as well as higher quality photos, female and male
children and a variety of lighting conditions. All results
are cropped to the face area to show the raw output of the
method. Note how the face shape changes with age in these
sequences, e.g., the nose stretches, eyes narrow, and wrin-
kles appear. Textural changes include facial hair, “shadows”
in male faces, eye makeup in female faces, and stronger
eyebrows. Many more examples can be found in the sup-
plementary material.
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Figure 4. Age progression results. For each input image we automatically generate age progressed images for a variety of ages. Note the
realistic progression results even with strong directional lighting, non-frontal pose, and non-neutral expressions.

4.1. Evaluation

We performed a large scale user study on Mechanical
Turk, the most extensive of its kind in the age progression
literature. In particular, we had human subjects compare our
results to every prior age progression result we could find
in the literature, and to ground truth (photos of 82 people at
different ages). Each subject was shown a photo of a person
at age X (e.g., 4), and two additional photos: A) a photo
of the same person at an older age Y (e.g., 25), and B) our
age-progressed result. The user was asked which of A or B
is more likely to be the same person at age Y. They also had
the option of selecting “both are equally likely” or “neither
is likely.” Please refer to the supplementary material for a
screenshot of the interface and exact wording. The order
of our result and the ground truth was randomly chosen to
prevent order bias. All photos were cropped to the face area
only. If the progressed image at age Y is generated from the
reference at age X, it will have the same lighting and ex-
pression. To avoid this similarity bias, our age progression
result was generated not from the reference shown the user,
but instead from a photo of the same person at the closest
age to the reference.

Comparison with ground-truth We ran our method on

every photo in the FGNET dataset, and compared to every
older photo available for each person. FGNET consists of
photos of the same person over time, and several span baby
to adult, resulting in a total of 2976 comparisons. Each user
was presented three images: a photo of the subject at age X,
an older photo at age Y, and an age progressed photo at age
Y. They were asked to specify which of the latter two pho-
tos was more likely the same person at age Y by choosing:
photo A, photo B, both are equally likely, or neither is likely
to be the same person at age Y. Each comparison was eval-
uated by 3 different people, and 12 comparisons were left
blank, making the total number of comparisons we received
8916. The number of unique workers was 72. The results
are as following: we received 3288 votes (out of 8916, i.e.,
37%) that our result is more likely, 3901 (44%) that ground
truth is more likely, 1303 (15%) that both are equally likely,
and 424 (5%) that neither is likely.

This result is so surprising that it led us to question how
proficient humans are at this task, i.e., maybe we are just
not good at face recognition across large age differences.
To test this hypothesis, we conducted a perceptual study in
which each user was shown two real (ground truth) images
of the same person, separated by at least 5 years, and asked



Figure 5. Comprehensive comparison to prior work, plotting user
study ratings of our method vs. all 120 results from prior work.
Blue cells (> 0.55) are where our method scored higher, red cells
(< 0.45) have prior method(s) scoring higher, and gray cells are
ambiguous. Our method excels for aging children, while prior
techniques that target adults perform better for that category.

to specify if it is the same or a different person. We used all
pairs (at least 5 years apart) of each person on FGNET, and
repeated each test three times on Mechanical Turk (8928
tests in total). The results indicate that people are generally
good at recognizing adults across different age ranges, but
poor at recognizing children after many years. In particu-
lar, across children aged 0-7, participants performed barely
better than chance (57%) at recognition for roughly 10 year
differences, at chance for 20 years (52%), and worse than
chance for 50 years (33%). See supplementary material for
the full details of the experiment and results. These stud-
ies point to the limits of human evaluation for assessing age
progression results.

Ground-truth-blended comparisons While the Me-
chanical Turk study focuses on cropped faces, we also ex-
perimented with blending age progressed faces onto the
ground truth head; representative results are shown in Fig-
ure 7 (additional results appear in the supplementary ma-
terial). In each case, we take an input photo in the 0-3
age range and compare the ground truth image at each age
(right) with our result (left). We blended our result into the
ground truth head, using the process described earlier in this
section. (We also include unblended results cropped to only
the face area in the supplementary material.) The similarity
is impressive, especially given that each sequence (column)
is produced from a single baby photo. Note that the facial
expression and lighting are fixed from the baby photo and
therefore differ from the ground truth. As a strawman, we
also blended the input child’s face onto the older ground

truth for comparison (Figure 6 (b)); clearly age progressing
the input face prior to blending yields much more realistic
composites.

Comparison to prior work We compared our results
to all prior papers that demonstrate age progression results,
with the exception of Lanitis et al. [17] whose results do not
specify ages. These papers are: (p1) [37], (p2) [35], (p3)
[33], (p4) [27], (p5) [28], (p6) [19], (p7) [20], (p8) [36].

While we’re most interested in long range age progres-
sion of very young children, for comparison we ran our
method on every result we found in these papers (including
adults and older children). The number of age progression
results in papers p1-p8 was: 56, 2, 8, 5, 7, 4, 30 and 8 re-
spectively, for a total of 120 comparisons. Each comparison
was performed by 10 workers, and there were on average 13
unique workers per paper. Figure 5 plots the results of the
user study: the x-axis is the input age group and the y-axis
is the output age group. The score is calculated as follows:
as in the ground-truth experiment, workers were asked to
choose one of the four options. We added 1 point when
our result was chosen, 0.5 when “both are likely” was cho-
sen, and 0 when a result from prior work was chosen. The
score was then normalized by number of responses per cell
(we did not include examples for which the option ”neither”
was chosen here, as the ground truth evaluation captures
similar statistics). As can be seen from Figure 5, our ap-
proach almost uniformly outperforms prior work for aging
young children, and clearly dominates for aging children
to adult. The one “red” box corresponds to an age change
of only three years. Note, that there are no prior results in
the literature for aging children beyond age 25; we are the
first to attempt this task. On the other hand, techniques that
focus on modeling older people (modeling wrinkles, hair
color, etc.) do better for that category. Note that all pre-
vious works typically focus on one of the two age ranges:
child to teenager or adult to older person, while our method
is general and spans ages 0 to 100 (e.g., Fig. 4). While be-
yond the scope of this paper, incorporating wrinkles or hair
lightening models could yield further improvements in the
upper age ranges.

Very few age progression papers address young children
[17, 19, 32, 35, 36], and those that do include only a handful
of results. See supplementary material for a figure that com-
pares our results to all results in the literature for children
under 9 years of age.

Figure 6 (a) compares our results to Perrett
et al.’s FaceTransformer tool at http://morph.cs.st-
andrews.ac.uk/Transformer/ and the PsychoMorph tool by
Tiddeman et al. [38] at the Face Research Lab website
http://www.faceresearch.org/demos/. As can be seen, they
do not perform well on young children. As a baseline we
also compare to applying only the aspect ratio change to
the input face (compare columns 2 and 5). Both of these
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Figure 6. Comparison to other methods: (a) to Perrett et al. and FaceResearch online tool, (b) to mapping the baby’s face (far left) onto the
ground truth (column 3) to produce a blended result (far right). The aged results (column 2) look much more similar to the ground truth,
indicating that simply blending a face into a head of an older person does not produce a satisfactory age progression, additional shape and
texture changes must be added.

tools require manual placement of facial features, whereas
our approach is fully automated.

5. Conclusion

We presented a method for automatic age progression
of a single photo to any age between 1 and 80, by lever-
aging thousands Internet photos across age groups. The
method works remarkably well, in particular for the chal-
lenging case of young children, for which few prior results
have been demonstrated. A key contribution is the ability
to handle photos “in the wild,” with variable illumination,
pose, and expression. Future improvements include: mod-
eling wrinkles and hair whitening [37] to enhance realism
for older subjects; output a set of progressed images per
single input, building on face editing techniques, e.g., [24];
having a database of heads and upper torsos of different
ages to composite our result onto.
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