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Figure 1: (a) Blurry image (b) Color coded motion flow (c) Our deblurring result

Abstract

Most state-of-the-art dynamic scene deblurring methods
based on accurate motion segmentation assume that mo-
tion blur is small or that the specific type of motion caus-
ing the blur is known. In this paper, we study a motion
segmentation-free dynamic scene deblurring method, which
is unlike other conventional methods. When the motion can
be approximated to linear motion that is locally (pixel-wise)
varying, we can handle various types of blur caused by cam-
era shake, including out-of-plane motion, depth variation,
radial distortion, and so on. Thus, we propose a new en-
ergy model simultaneously estimating motion flow and the
latent image based on robust total variation (TV)-L1 model.
This approach is necessary to handle abrupt changes in mo-
tion without segmentation. Furthermore, we address the
problem of the traditional coarse-to-fine deblurring frame-
work, which gives rise to artifacts when restoring small
structures with distinct motion. We thus propose a novel
kernel re-initialization method which reduces the error of
motion flow propagated from a coarser level. Moreover,
a highly effective convex optimization-based solution mit-
igating the computational difficulties of the TV-L1 model
is established. Comparative experimental results on chal-
lenging real blurry images demonstrate the efficiency of the
proposed method.

1. Introduction
Blind single-image deblurring is a method used to re-

store a sharp image from an image blurred by camera shake
or object motion under low light conditions. This approach
has become an active research topic in computer vision be-
cause of the recent demand for clear images. However, de-
blurring is difficult to solve because the problem is highly
ill-posed. To solve this problem, many researchers have
studied the joint estimation of latent image and blur kernel,
thus recasting the deblurring problem as an energy mini-
mization problem based on the general constraint:

B = KL + N, (1)

where L, B, and N denote the vector forms of the latent
image, blurred image, and noise, respectively. The matrix
K denotes the blur kernel with a row vector corresponding
to the blur kernel placed at each pixel location. There are
various kernel estimation methods depending on the types
of motion blur. The 2D translational camera shake is the
most comprehensively studied motion [3, 6, 24]. Such cam-
era motion creates a spatially invariant blur kernel, such
that the matrix operation in (1) can be expressed in a con-
volution form with the aid of linearity. Therefore, using
fast Fourier transform makes fast kernel estimation from
2D translational camera shake possible. Moreover, camera
shake, including rotational movement, generalizes the 2D
translational camera motion and it enables spatially varying
blur by camera rotation [8, 10, 23]. Although these efforts
to model real camera motion have yielded promising results
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Figure 2: (a) Partially blurred image by forward motion. (b)-(c) Segmentation and deblurring results of [13] (d) Our deblurring result.
Notably, the taillight and rear fender of the taxi are restored to a significantly better degree than those in (c).

in the restoration of blurry images through the motion of a
camera, applying these approaches to cases where the blur
does not come from the global camera motion is difficult.

By contrast, without knowing the specific type of mo-
tion blur, traditional deterministic filter-based approaches
can handle various types of blur [1, 7], but these filters are
incapable of handling large motion blur and are sensitive
to noise. Additionally, edge statistics can be also used to
estimate locally varying blur kernels [12], but, the method
is also restricted to small motion blur. Therefore, some re-
searchers have studied methods that can be used to deal with
large blur without knowing the specific type of motion blur.
Harmeling et al. [9] proposed a method based on the as-
sumption that local blur kernel is expressed as a weighted
sum of the neighboring blur kernels and Ji et al. [11] in-
terpolated initially given kernels robustly. Although these
approaches can handle smoothly varying blur kernel, these
methods cannot handle abrupt changes in the blur kernel,
which commonly occur in a dynamic scene containing mul-
tiple moving objects.

To address this problem, some researches have fo-
cused on deblurring dynamic scenes and established ap-
proaches that commonly require accurate motion segmen-
tation. In [16], Levin segmented blur motions by compar-
ing likelihoods with a set of given 1D box filters. However,
limited number of 1D box filters were used. Thus, the poor
segmentation could cause undesirable artifacts. Couzinie-
Devy et al. extended the work of Levin in [4] by casting
the problem as a multi-label segmentation problem and es-
timating locally varying blur. However, the method could
not handle large blur because of the exponential increases in
the the number of candidate labels. This condition restricts
the blur kernels to small 2D Gaussian or linear. The recent
work of Kim et al. [13] proposed a method to estimate blur
kernels, latent image, and motion segments jointly. The ex-
istence of camera shake, including rotation and 2D transla-
tional motion of objects, was assumed, but the method also
fails in both segmentation and deblurring when the captured
image is blurred by unexpected blur effects, such as forward
motion, depth variation, or radial distortion. For example,
the taxi is blurred by its forward motion, and such an un-
expected motion causes a failure of both segmentation and
deblurring as shown in Figs. 2(b) and 2(c).

In sum, state-of-the-art dynamic scene deblurring meth-
ods require accurate motion segmentation for specific types
of motion blur. To mitigate this restriction, we propose a
method to deblur dynamic scenes without segmentation and
without restricting the types of motion blur, when the lo-
cally varying blur kernels can be approximated to 2D mo-
tion vectors. Although this restriction excludes non-linear
motion, numerous types of motions can be linearized in
practical situations [4, 5, 16]. We observed that this as-
sumption holds for many real blurry images and that this
approach works even when small rotational camera shake
exists, as shown in our experiments.

In the previous work of Dai et al. [5], the authors esti-
mated motion flow via the alpha channel [17] of the blurry
image. However, they used a constraint that is differ-
ent from ours and applied implicit segmentation based on
RANSAC. In addition, the result depends on the accuracy
of the given alpha channel. By contrast, we propose a
new framework that enables abrupt changes in motion with-
out segmentation based on the robust TV-L1 model. As
illustrated in Fig.1, the proposed approach estimates the
motion flow and latent image. Our method does not re-
quire any complex model to handle specific types of motion
blur [10, 23, 27] and does not depend on the accurate motion
segmentation. In addition, the proposed method is embed-
ded into the traditional coarse-to-fine framework to handle
large blur. Our finding is that small structures with distinct
motion blur give rise to serious artifacts in the coarse-to-
fine framework. Thus, we also propose a novel method to
re-initialize the motion flow and reduce the error propagated
in the coarse to fine framework.

In this paper, we introduce a new deblurring framework
that jointly estimates the spatially varying motion flow and
the latent image. We also provide a highly practical solver
optimizing TV-L1 model based on convex optimization. As
shown in Fig. 2(d), we achieve better results with the aid
of accurately estimated motion flow even when the state-
of-the-art methods fail. We demonstrate the effectiveness
and practicality of our new deblurring framework with test
results on challenging real images on which conventional
techniques fail.



2. Dynamic Scene Deblurring Model
To solve the ill-posed blind deblurring problem, various

energy models that are composed of the regularization and
data terms have been proposed to estimate the sharp image
and the blur kernel in the following form

E = Edata(L, K, B) + Ereg(L, K), (2)

where the data term Edata measures the data fidelity, and
the regularization term Ereg enforces the smoothness con-
straint to the latent image as well as to the blur kernel.
In [13], the authors argued that conventional energy model
in (2) is invalid for dynamic scene deblurring because it
principally requires motion segmentation. However, in this
paper, we propose a new energy model based on (2) for dy-
namic scene deblurring. The proposed model does not re-
quire explicit motion segmentation. Further details on the
model are described in the following sections.

2.1. L1­based Robust Blur Model
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Figure 3: Blur kernel corresponding to motion flow u

In our study, we assumed that the locally varying blur
kernel can be linearized in terms of a 2D motion vector,
u = (u, v)T , which can be expressed as

h(x, y) =

{
1

∥u∥δ(vx − uy), if x ≤ ∥u∥
2 , y ≤ ∥v∥

2

0, otherwise.
, (3)

where h(x, y) denotes the blur kernel corresponding to mo-
tion flow u as illustrated in Fig. 3, and δ is the Dirac delta
function. Thus, we can cast the kernel estimation problem
as a motion estimation problem. The data term of our new
energy model is given by

Edata(L, u, B) = λ
∑

x

∑
∂∗

|(k(x, u))T ∂∗L − ∂∗B(x)|,

(4)
where x ∈ ℜ2 is the index of the discrete locations in the
image domain, and (k(x, u))T denotes the discretized vec-
tor form of h with a sum of elements equal to one. This
vector also corresponds to a row vector of the kernel ma-
trix, K, where x indicates the index of the row.

The operator ∂∗ ∈ {∂x, ∂y} denotes the partial deriva-
tives in the horizontal and vertical directions [3, 13]. The
parameter λ controls the importance of the data term.

(a) (b) (c)

Figure 4: Comparison of motion flow with and without edge-
map. (a) Blurry image (b) Color coded motion flow without edge-
map (c) Color coded motion flow with edge-map

As mentioned in [13], we use only gradient maps of the
latent and blurry images in the data model to reduce ring-
ing artifacts. In addition, the proposed model must enable
abrupt changes in the blur kernel near motion boundary be-
cause the goal is deblurring a dynamic scene without seg-
mentation. Therefore, we propose an L1-based model in the
data term that allows discontinuities in the flow field.

Although the robust L1 model was proposed before to
estimate the latent image in a non-blind deblurring pro-
cess [24], this model has not been used in the estimation
of blur kernel, to the best of our knowledge, because of its
computational difficulties. Despite its difficulties, we adopt
the L1 model for estimating not only the latent image but
also the blur kernel.

2.2. TV­based Robust Regularization

The smoothness of variables must be enforced to obtain
a reliable solution when the problem is ill-posed. In our
energy model, two primal unknown variables are the latent
image L and the motion flow u, and each has different kinds
of regularization, as given by

Ereg(L, u) = Ereg(L) + Ereg(u). (5)

More details on the regularization of each variable are de-
scribed in the following sections.

2.2.1 Regularization on Latent Image
In (1), noise is added to our blurry image. Thus, we should
suppress the noise in the latent image while preserving
edges. To address this problem, many researchers studied
the prior of latent image [14, 15, 18]. The sparse gradi-
ent prior is known to describe the edge statistics of natural
images well. In the same vein, we adopt the TV model to
regularize the latent image, as in [13, 24]. The formulation
is given by,

Ereg(L) =
∑

x

|∇L|. (6)

2.2.2 Edge-aware Regularization on Motion Flow
To have similar blur kernels among neighboring pixels, we
regularize the motion flow. Similar to the proposed data
term in the preceding section, the key to regularizing the
motion flow is how well the motion boundary is preserved.



To this end, we propose an edge-map coupled TV model to
regularize conditionally, which yields

Ereg(u) = µ
∑

x

g(x)|∇u|, (7)

where the parameter µ controls the strength of regulariza-
tion, and the edge-map, g(x), measuring the similarity be-
tween neighboring pixels is defined as

g(x) = exp(−(
max(|∇B|, |∇L0|)

σI
)2). (8)

The parameter σI denotes the decay exponent and L0 is an
intermediate latent image propagated from a coarser level
in the coarse-to-fine framework. In particular, the blurred
image itself is also used to obtain the edge-map, because an
unblurred region may exist in a partially blurred image, and
it works when L0 is smoothed out.

The outstanding performance of edge-aware regulariza-
tion is demonstrated in Fig. 4. As expected, the proposed
regularizer preserves motion discontinuities much better
than the model without edge-map.

3. Optimization Framework
The proposed single-image blind deblurring model in-

troduced in the previous sections includes the data and reg-
ularization terms, and the objective function is given by

min
L,u

∑
x

|∇L|+µ g(x)|∇u|+λ
∑
∂∗

|(k(x, u))T ∂∗L−∂∗B(x)|.

(9)
Our final objective in (9) is highly complex, that is, to ob-
tain a global optimum. Thus we divide the original problem
into two easier subproblems for L and u. We then apply
alternating optimization procedure, which was introduced
in [3, 21, 26]. The overall algorithm of the proposed method
is given in Algorithm 1.

Moreover, our approach is embedded into the traditional
coarse-to-fine framework [6, 19] to handle large motion
blur. However, we found that it gives rise to severe artifacts
when applied to a dynamic scene, which has small struc-
tures with distinct motion blurs. Thus, we propose a novel
re-initialization method to solve this problem. Further detail
is given in the following section.

3.1. Kernel Re­initialization
The conventional coarse-to-fine approach is widely used

in various fields and also has been shown to yield successful
results in the deblurring of static scene. This method can be
used in dynamic scene deblurring, but it has limitations that
have not been observed in the restoration of a static scene.

For example, a small structure, such as a thin line, that
has distinctive motion blur, cannot be seen at the coarser
level. Therefore, the motion flow of such structure is esti-
mated from its neighbors, which exhibit different motion,

Algorithm 1 Overview of the proposed method
Input: A blurry image B
Output: Latent image L and motion flow u
1: Build an image pyramid with 10 levels and a scale factor of 0.8
2: Kernel re-initialization. (Sec. 3.1)
3: for t = 1 to 3 do
4: Continuous optimization of motion flow u with fixed L. (Sec. 3.2)
5: Continuous optimization of latent image L with fixed u. (Sec. 3.3)
6: end for
7: Propagate variables to the next pyramid level if exists.
8: Repeat steps 2-7 from coarse to fine pyramid level.

with the aid of regularization. However, this process gen-
erates reconstruction error toward the finer level when the
small structure appears suddenly in the blurry image. No-
tably, a similar problem has been reported in other vision
applications [22, 25].

Local and sparse reconstruction error may not raise se-
vere artifacts in the estimation of global camera motion,
which is more serious in a local approach, such as the
method proposed in this study.

To mitigate this problem, we propose a novel kernel re-
initialization method for both motion flow and the latent im-
age. The key idea is to detect the erroneous region and de-
blur it using a deterministic filter [20], after which accurate
motion flow is estimated. Hence, we cast the problem of
detecting the erroneous region as a labeling problem, that
is,

min
e

∑
x

e(x)(c − |(k(x, u))T L − B(x)|) +
1
ν
|e(x)|, (10)

where the vector variable e is pixel-wise binary indicator
variable, e(x) ∈ {0, 1}, and the constant c is a positive
threshold value.

The first term introduced in (10) is the likelihood term
that causes e(x) to be one when the reconstruction error,
|(k(x, u))T L − B(x)|, is higher than c. The second term is
a prior giving the sparsity on the variable e, as we assume
high reconstruction error is sparsely distributed, and the pa-
rameter ν controls the importance of the prior.

Through the continuous relaxation of e, we can obtain
the approximated solution of (10) quickly by adapting the
first-order primal dual algorithm [2], that is,

r(x)n+1 = r(x)n+σe(x)n

max(1,r(x)n+σe(x)n)

e(x)n+1 = arg min
e

(e − (e(x)n − τr(x)n+1))2

2τ
+

ν · e(x)(c − |(k(x, u))T L − B(x)|)
e(x)n+1 = max(0, min(1, e(x)n+1)),

(11)
where n ≥ 0 indicates the iteration number, vector r de-
notes the dual variable of e and the positive update steps σ
and τ control the convergence rate [2].
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Figure 5: (a) Estimated latent image in a coarse level (b) Yellow
color denotes the detected erroneous region. (c) Cropped result in
the coarse level (d) Cropped result in the finest level without the
use of re-initialization (e) Cropped result in the finest level with
the use of re-initialization

After detection of the erroneous region, we re-initialize
the propagated motion of this region to be zero, which de-
notes the impulse blur kernel. By applying sharp image
restoration in section 3.3, we restore the small structure with
distinct blur motion. However, the newly restored small
structure remains blurry because it is estimated from the im-
pulse blur kernel. Thus, we apply a deterministic filter [20]
to deblur the structure and to facilitate the fast convergence
of motion estimation. For this process, we use the predic-
tion step introduced in [3]. The overall process is shown in
Algorithm 2.

The necessity of our re-initialization step is illustrated
in Fig. 5. Notably an unseen thin line in the coarse level
in Fig. 5(c) is successfully restored using our proposed
method, as compared in Figs. 5(d) to (e).

Algorithm 2 Kernel re-initialization algorithm
Input: A blurry image B, intermediate latent image L and motion flow u

propagated from coarser pyramid level.
Output: Re-initialized motion flow u and edge-enhanced L
1: for n = 1 to 50 do
2: Compute e using (11)
3: end for
4: u(x)← 0, if e(x)> 0.5
5: Continuous optimization of L with re-initialized u (Sec. 3.3)
6: Enhance edge by applying prediction step in [3]

3.2. Motion Flow Estimation

For the latent image L being fixed, the proposed energy
model in (9) is simplified, but the data term ρ(x, u) is non-
convex in the argument u, which makes the optimization
intractable

ρ(x, u) =
∑
∂∗

|(k(x, u))T ∂∗L − ∂∗B(x)|. (12)

To make the optimization tractable, we linearize the data
function via the Taylor approximation to obtain

ρ(x, u) ≈ ρ(x, u0) + ∇ρ(x, u0)T (u − u0), (13)

where u0 is an initial motion flow of u, and ∇ρ(x, u0) de-
notes the first-order derivative. Through approximation, the
proposed energy model becomes convex near u0, which re-
sults in

u = arg min
u

∑
x

µ·g(x)|∇u|+λ(ρ(x, u0)+∇ρ(x, u0)T (u−u0)),

(14)
To solve this, we adapted the convex optimization algorithm
in [2], and the primal dual update process is given by{

pn+1 = pn+σ(GA)un

max(1,pn+σ(GA)un)

un+1 = (un − τ(GA)T pn+1) − τ(λ
µ )∇ρ(x, u0),

(15)
where p denotes the dual variable of u on the vector space.
The continuous linear operator A calculates the difference
between neighboring pixels, and the diagonal matrix G is
the weighting matrix denoted as G = diag(g(x)). This
update process is easy to implement and converges quickly
(n=100).

3.3. Sharp Image Estimation

For the motion flow u and corresponding kernel matrix
K being fixed, the proposed energy model becomes a well-
known non-blind deblurring model. However, as we use
the L1 model in the proposed data term, which requires
high computations. To address this problem, we adopt the
quadratic relaxation method [22] to facilitate the solution.
Thus, we introduce auxiliary variables f∗, which yields

min
L,f

∑
x

|∇L| + λ
∑
∂∗

|f∗(x)|

1
2θ

∑
∂∗

((k(x, u))T ∂∗L − ∂∗B(x) + f∗(x))2.
(16)

If the fixed parameter θ is set to a very small value, then
the minimization of (16) is close to that of its original TV-
L1 model. Using decomposition, both the function of L and
functions of f∗ become a thousand times easier to solve, and
each variable is solved by [2] in the alternating optimization
process. The update process for f∗ while L being fixed is
expressed as

q∗(x)n+1 = q∗(x)n+σf∗(x)n

max(1,q∗(x)n+σf∗(x)n)

f∗(x)n+1 = arg min
f

(f − (f∗(x)n − τq∗(x)n+1))2

2τ
+

1
2θλ

∑
∂∗

((k(x, u))T ∂∗L − ∂∗B(x) + f∗(x))2,

(17)
where the vector q∗ is the dual variable of f∗.

Similarly, the update process for L while f∗ being fixed



is given by

sm+1 = sm+σLALm

max(1,sm+σLALm)

Lm+1 = arg min
L

(L − (Lm − τLAT sm+1))2

2τL
+

1
2θλ

∑
∂∗

(K∂∗L − ∂∗B + f∗)2,

(18)
where m ≥ 0 indicates iteration number, the parameters
σL and τL denote the update steps and the vector s is the
dual variable of L. In addition, we adopt conjugate gradient
(CG) method to update primal variable, L, in (18).

The overall procedure of our sharp image estimation is
shown in Algorithm 3.

Algorithm 3 Sharp Image Estimation
Input: A blurry image B and motion flow u
Output: Sharp image L
1: for n = 1 to 3 do
2: Update f∗ using (17)
3: for m = 1 to 30 do
4: Update L using (18)
5: end for
6: end for

3.4. Implementation

In implementation, we use fixed parameters for most ex-
periments except for parameter λ. Because each blurry im-
age has a different amount of noise and a different blur
kernel size, the parameter λ adjusting the smoothness of
motion flow and latent image can be changed. We set the
parameters as µ = 1, σI = 15

255 , c = 0.05, ν = 0.02,
σ = 1

2
√

(2)
, τ = 1

2
√

(2)
, σL = 10, τL = 0.0125, and

θ = 0.1
λ . The value of λ ranges from 10 to 50.

In the coarse-to-fine framework, we build an image pyra-
mids with 10 levels and a scale factor of 0.8, and use bi-
cubic interpolation for both motion flow and the latent im-
age in propagation. Initially, all dual variables are set as
zeros. In addition, the blurry image itself is used for initial
latent image L, and we use small random values for initial
motion flow u. However, as our blur kernel is symmetric
(i.e. k(x, u) = k(x,−u)), we constrain the motion flow,
(u, v), to be on a set, B = {(u, v) ∈ ℜ2|u ≥ 0} − {(u, v) ∈
ℜ2|u = 0, v < 0}.

Our current Matlab implementation requires approxi-
mately 25 minutes to deblur a VGA image. The running
time can be greatly reduced using optimized C or CUDA on
a modern GPGPU.

4. Experimental Results
In this section, we show the outstanding performance

and efficiency of the proposed work.
In Fig. 6, deblurring results and estimated motion flow

are illustrated for real challenging dynamic scenes. In qual-

itative analysis, the edges in deblurred images are restored
keenly without segmentation and without restricting the
type of motion blur. The color codes of estimated motion
flows in textured regions are as accurate as we expected
except homogeneous regions that do not raise severe arti-
facts. Notably, the motion flow in the the bottom row is cor-
responding to the depth map of the latent image, and this
could be another application of our work that is estimating
depth map from a blurry single-image.

In Fig. 7, deblurring results for camera shakes which
includes rotational camera movements are illustrated. Be-
cause the proposed method is based on the approximation
of locally linear blur kernel, the results may not accurate
than the results from methods estimating the global cam-
era motion in less-textured regions. However, the restored
strong edges from both synthetic image in the top row and
the real image in the bottom row demonstrate that our ap-
proximation is valid for small rotational camera shake to
some degree.

In addition, we compared our results with the state-of-
the art deblurring methods in various challenging situations.
First, in Fig. 8(a), the blurry image is degraded by severe
radial distortion and it causes serious problems in conven-
tional methods but ours works well. Second, in Fig. 8(b),
because the cause of blur is specific forward motion which
can not be handled in conventional methods, ours outper-
forms and restores the edges of characters and arrow more
sharply. Third, in Fig. 8(c), [26] fails in deblurring as depth
discontinuity exist in the blurry image. Although it is pos-
sible to deblur with segmentation based method, but [13]
also fails, because the background is too narrow to be seg-
mented. Thus, both conventional methods provide unsatis-
factory results. Finally, in Fig. 8(d), as the synthetic image,
which has depth discontinuity, is blurred by rotational cam-
era shake, and thus, both the conventional methods fail but
our method shows successful result.

5. Discussion and Limitations

In this study, we have presented an efficient dynamic
scene deblurring method that does not require accurate
motion segmentation with the aid of robust TV-L1 based
model. In addition, the proposed method can handle various
types of blur kernels when the kernels can be approximated
to linear motions. We also provided an efficient and prac-
tical solution optimizing TV-L1 model, and demonstrated
that the proposed method outperforms the state-of-the-art
methods in various challenging situations.

On the other hand, the remaining problem is that, in case
of knowing the specific types of motion blurs, conventional
deblurring methods estimating the global camera motion
work well and the results in less-textured region are bet-
ter than ours. Therefore our future work will combine such
a global and our local approach in a unified framework.



(a) (b) (d)(c)
Figure 6: (a) Real blurry dynamic scenes (b) Deblurring results (c) Comparisons of cropped results (d) Estimated motion flows
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