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Abstract

We present a novel solution to compute the relative pose
of a generalized camera. Existing solutions are either not
general, have too high computational complexity, or re-
quire too many correspondences, which impedes an effi-
cient or accurate usage within Ransac schemes. We factor-
ize the problem as a low-dimensional, iterative optimiza-
tion over relative rotation only, directly derived from well-
known epipolar constraints. Common generalized cameras
often consist of camera clusters, and give rise to omni-
directional landmark observations. We prove that our it-
erative scheme performs well in such practically relevant
situations, eventually resulting in computational efficiency
similar to linear solvers, and accuracy close to bundle ad-
justment, while using less correspondences. Experiments
on both virtual and real multi-camera systems prove supe-
rior overall performance for robust, real-time multi-camera
motion-estimation.

1. Introduction
One of the most fundamental problems in structure from

motion consists of the computation of the relative pose be-
tween two camera viewpoints. The present paper deals with
the challenge of extending relative pose computation to gen-
eralized cameras. By a generalized camera, we understand
an imaging device where the spatial rays that correspond
to interest points in the image are no longer concurrent.
Generalized—or non-central—cameras can be identified in
various practically relevant cases. For instance, a camera
looking at an arbitrarily shaped mirror forms an imaging
system where the observation rays pointing at 3D points no
longer meet at a single point. In other words, such a system
no longer permits the identification of a camera projection
center. Another popular case—and the main subject of the
present paper—is given by vehicle-mounted multi-camera
systems pointing into all directions. As illustrated in Fig-
ure 1, such systems have a potentially larger field of view,
and—given that the distance between the cameras is known
in correct scale—produce metric results.

Figure 1. Example of a multi-camera system mounted on a car.

From a more abstract and geometric point of view, a gen-
eralized camera consists of a Euclidean reference frame in
which measurements are represented by rays in space, de-
scribed by a suitable parametrization such as Plücker line
vectors. The generalized camera as such represents a cal-
ibrated case, where the intrinsic parameters of the imag-
ing system are hidden from the problem by first having the
interest points in the image space transformed into spatial
rays. A generalized camera can therefore describe any cali-
brated imaging device. Even if there exist less general—but
potentially suited—models such as General Linear Cam-
eras [17], we will in this paper use the fully generalized
approach as outlined in [16], which—to the best of our
knowledge—presents the only minimal solver to the gen-
eralized relative pose problem known to date. This solver
is based on the Gröbner basis theory, and uses 6 ray-
correspondences in order to come up with 64 solutions.

While the generalized camera model is in theory able
to handle plenoptic functions with ultimate complex-
ity, practically relevant cases such as mirror-based omni-
directional cameras and multi-camera systems are usually
less “chaotic”. However, [13] provides an extension to the
original linear solver presented in [14], and demonstrates
that such regularity can also lead to singularities if not han-
dled properly [8]. The linear solution requires 17 correspon-
dences in general, and 16 or 14 correspondences in certain
special situations such as multi-camera systems where the
camera centers are aligned. Similar specialized solutions
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have been presented in [3] and [6] for systems with two or
three rigidly attached central cameras. The latter work is
also summarized in [7] along with a geometrically optimal
L∞-solution, which is however not efficient, and thus not
suited for real-time motion estimation. Furthermore, [12]
presents an algorithm that is specialized for pure Acker-
mann motion.

Robust real-time estimation is gaining practical rele-
vance in the robotics and automotive industry, where ve-
hicles show an increasing number of onboard cameras. A
practical example would be the vehicle in Figure 1, which
contains one camera in the front, one in the back, and two in
the side-mirrors. We therefore need to restrict ourselves to
solutions that are able to handle an arbitrary number of cam-
eras. There currently exist two solutions, which we both
consider unsatisfying for inclusion into Ransac [4]:

• The 6-point solver presented in [16]: This algorithm
has high computational complexity, and—having to
disambiguate 64 solutions for each hypothesis—leads
to high overall time consumption.
• The 17-point solver presented in [13]: This algorithm

has poor noise resilience, and leads to extreme num-
bers of iterations for increasing outlier ratios.

Although it is known that 7 points are enough to com-
pute a unique solution, we know of no efficient and general
way to combine them in case we have an arbitrary number
of cameras and evenly distributed observations (less than 5
in each camera). We present a solution to this problem that
is based on a recently proposed strategy for efficient, iter-
ative rank minimization directly over the three parameters
of the frame-to-frame rotation [10]. The optimization pro-
cedure is well-conditioned in the case of omni-directional
observations, and therefore tailored to the above mentioned
multi-camera systems. In this context, our algorithm com-
bines a number of advantages:

• Each step in the optimization has constant computa-
tional complexity, independently of the number of fea-
tures. The computational efficiency is similar to [13].
• Even if using less than half of the points, our solver

drastically outperforms in terms of noise resilience.
• Ability to compute a unique solution from any number

of points bigger than 6, any number of cameras, and
any distribution across the cameras. Unlike the gener-
alized essential matrix, the solution does not degener-
ate for special, multi-camera configurations.

Section 2 summarizes our method and its origins in
epipolar geometry and direct optimization of frame-to-
frame rotation [10]. Section 3 presents a comparison in
terms of computational efficiency and noise resilience, as
well as the overall gain in performance when embedded into
Ransac. Section 4 finally demonstrates the practical useful-
ness in real-world scenarios.

2. Theory
We will in the following summarize the origins of the

approach in the central case, the extension to generalized
cameras, and the details of the minimization of the resulting
cost function.

2.1. Origins in epipolar geometry

Relative pose in the calibrated case is constrained by the
geometry of two viewpoints, called epipolar geometry. Let
fi and f ′i be unit vectors pointing at the same 3D point from
different viewpoints. The epipolar constraint is given by

fTi Ef ′i = 0⇔ fTi [t]×Rf ′i = 0, (1)

where E represents the essential matrix, t the position of
viewpoint 2 w.r.t. viewpoint 1, and R the rotation from
viewpoint 2 back to viewpoint 1 [5]. This can be rewritten
as the scalar triple product fi · (t× (Rf ′i)).

Definition: The scalar triple product (or mixed product)
between three vectors is defined to be the dot-product be-
tween one of the vectors and the cross product of the other
two. Geometrically, the scalar triple product is equal to the
signed volume of the parallelepiped that is spanned by the
three vectors.

The epipolar constraint therefore forces the volume of
the parallelepiped defined by fi, t, and Rf ′i to be zero (e.g.,
it forces the vectors to be coplanar). The outlined geometri-
cal intuition makes it easy to see that swapping the vectors
in an arbitrary way can at most change the sign of the com-
puted volume, but never the volume itself, which is given by
the absolute value of the signed triple product. The sign of
the triple product reflects the handedness of the coordinate
frame defined by the three vectors. Any cyclic permutation
of the three vectors of a scalar triple product therefore does
not change its value at all, while any acyclic permutation
of the three vectors returns its negative. In conclusion, we
can easily change the original epipolar constraint (1) into
various other forms, one of which is given by

−t·(fi×(Rf ′i)) = −(fi×(Rf ′i))·t = −([fi]×Rf ′i)
T t = 0.

(2)
Let’s define the vector ni = [fi]×Rf ′i . The translation t

needs to lie in the nullspace of any nT
i . Supposing that we

have five correspondence pairs, we obtain the constraint

NT t =
(
n1 ... n5

)T
t = 0 (3)

The trivial solution t = 0 is not allowed, which means
that any 3×3 sub-matrix formed by stacking three differ-
ent rows of NT needs to have zero determinant. Now con-
sidering the fact that the introduced vectors ni are nothing
but normal vectors to epipolar planes as introduced in [11],



we have easily derived the translation independent epipo-
lar plane normal coplanarity constraint via algebraic ways.
An interesting observation is that the number of possible
determinant constraints that can be formed from a min-
imum of 5 (fi, f

′
i)-correspondences equals to C3

5 = 10,
which—ignoring additional constraints that might be re-
quired for non-minimal parametrizations—coincides with
the maximum number of algebraically independent con-
straints found in previous works on relative pose.

The recent work presented in [10] extends this idea
to an arbitrary number of correspondences n by convert-
ing it into a rank minimization approach. The idea is
that multiple epipolar plane normal vectors n1, n2, ..., nn

must remain coplanar. In other words, the matrix N =
(n1 n2 ... nn) must be rank-defficient, and hence the
smallest Eigenvalue of M = NNT must be zero. One
of the core contributions of [10] consists of a factorization
of the rotation matrix R inside the 3×3-matrix M, prov-
ing that the smallest Eigenvalue can be computed very ef-
ficiently and in closed-form as a function of the rotation
only. The computational complexity remains independent
of the number of correspondences, which is subsequently
exploited in order to come up with a very efficient inter-
frame rotation optimization scheme.

While a direct optimization of the rotation still bares a
certain—managable—risk of convergence to local minima,
the basin of attraction becomes fairly large in case of cor-
respondences originating from omni-directional measure-
ments, rendering direct rotation optimization a valid ap-
proach. A non-central multi-camera system similar to the
one illustrated in Figure 1 naturally gives rise to omnidirec-
tional correspondences. The remainder of this paper there-
fore unlocks the full potential of the idea by presenting a
powerful extension to generalized cameras.

2.2. Generalization

The measurements in the generalized case can be ele-
gantly expressed by Plücker line-vectors. A Plücker-vector
is a 6-vector of which the first three entries correspond to
the direction vector of the ray, and the latter three to the
corresponding line’s moment, which is given by taking the
cross-product of a point on the line and the line’s direction.
As outlined in [14], the transformation rule as well as the
intersection-constraint of Plücker line-vectors easily leads
to the generalized epipolar constraint

lTi

(
E R
R 0

)
l′i = 0, (4)

where (li, l
′
i) denotes a pair of corresponding Plücker line-

vectors pointing at the same 3D point from two different
generalized cameras. Similar to the central case, this for-
mulation allows us to solve linearly for the relative pose.
However—unlike the central case—the linear solution is

Figure 2. Geometry of the generalized relative pose problem for
multi-camera systems. The unknowns are the transformation pa-
rameters between the two viewpoints b and b′, given by t and R.
The measured or known variables are the landmark observation
vectors fi and f ′i and the position of the camera centers ci and c′i
with respect to b and b′, given by tbc,i and t′bc,i, respectively.

only possible via a massively redundant parametrization,
and requires 17 correspondences for solving only 6 DoF
[13].

As illustrated in Figure 2, in the case of a multi-camera
system, a point on each Plücker-line is easily given by the
capturing camera’s center ci, seen from the origin of the
multi-camera system b. If denoting this displacement by
tbc,i, our Plücker vector results to

li =

(
fi

tbc,i × fi

)
. (5)

Note that we assume that—without loss of generality—c
and b have identical orientation. Substituting (5) in (4), we
easily arrive at the following, alternative generalized epipo-
lar constraint:

fTi Ef ′i + fTi (R[t′bc,i]× − [tbc,i]×R)f ′i = 0. (6)

By again using (1) to represent the essential matrix as a
function of t and R, and applying the permutation rule for
triple scalar products outlined in (2), we arrive at

(fi ×Rf ′i)
T t+ fTi ([tbc,i]×R−R[t′bc,i]×)f

′
i = 0, (7)

which can be easily rewritten as

gT
i t̃ = 0 , with (8)

gi =

(
fi ×Rf ′i

fTi ([tbc,i]×R−R[t′bc,i]×)f
′
i

)
and t̃ =

(
wt
w

)
,

where gi is called a generalized epipolar plane normal vec-
tor, and t̃ the homogeneous translation vector, which has
arbitrary scale. Note however that t = 1

w t̃ is now com-
pletely defined, including metric scale. If having n gener-
alized normal vectors–each one being a function of an indi-
vidual quadruplet (fi, f ′i , tbc,i, t

′
bc,i)—, we obtain the con-

straint



GT t̃ =
(
g1 ... gn

)T
t̃ = 0. (9)

We can easily observe that this expression now con-
strains t̃ by a n × 4 matrix that again depends on the ro-
tation only. Since the trivial solution is not allowed, the
determinant of each 4 × 4 submatrix of G needs to vanish,
which gives rise to translation independent constraints on
the rotation. We know from earlier works that the minimum
number of required correspondences for solving the gener-
alized relative pose problem amounts to 6. Interestingly, the
maximum number of algebraically independent 4 × 4 sub-
matrices equals to C4

6 = 15, which again agrees exactly
with the findings in [16]. Furthermore, G has at most rank
3. Given an arbitrary number of correspondences n, we can
thus again perform a rank minimization of G over R by
minimizing the smallest Eigenvalue of

H = GGT =

n∑
i=1

ggT . (10)

2.3. Optimization

If λH,min denotes the smallest Eigenvalue of H, the op-
timization problem is given by

R = argminRλH,min. (11)

Similarly to [10], the rotation matrix R can be factor-
ized inside the expression for H. The equations for the
constant complexity composition of H—independently of
the number of correspondences n—can be found in Ap-
pendix A. H is a positive-definite matrix, and its Eigen-
values are therefore positive. They are given by the roots
of det(H − λI4×4), and the closed-form solution for the
smallest root of this fourth order polynomial λH,min is
given in Appendix B. If chosing the Cayley parameters
v =

(
x, y, z

)T
such that

R = 2(vvT − [v]×) + (1− vTv)I, (12)

the optimization problem is solved by minimizing a cost
expressed by λH,min in a 3-dimensional space of rotations,
each step having constant computational complexity. The
above rotation matrix has wrong scale, which does however
not affect the validity of the homogeneous constraint.

An example cost function is illustrated in Figure 3. One
can easily observe that there is a second minimum besides
the true minimum in the plane z ≈ −0.2, namely at v =
(0, 0, 0)T . An analysis of the algebraic constraint quickly
reveals that if v = (0, 0, 0)T and tbc,i = t′bc,i—which is
the case in multi-camera situations where correspondences
always arise from the same camera in both viewpoints—
the fourth component of gi is always zero, and hence H is
always rank-deficient. Moreover, the presence of local min-
ima is of course not completely impossible, which is why a

Figure 3. Example of a cost-volume defined by λH,min over the
3-dimensional Cayley-space of rotations. For the sake of better
visility, the figure displays the log-value of the cost.

blind application of gradient descent does not return satis-
fying performance. Our optimization strategy is as follows:

• Find a good starting value by first ignoring the effects
of the distance between the cameras and the transla-
tion, and compute an initial guess based on a pure-
rotation model. We apply the method presented in [1]
to our unit bearing vectors as if they were originating
from a central viewpoint.

• We then apply gradient descent to λH,min based on an
efficient numerical computation of all partial deriva-
tives by the Cayley parameters.

• In case we end up close to the origin, we consider the
second smallest Eigenvalue λH,sec. If (0, 0, 0) (e.g.,
identity) is a solution, the translation becomes unob-
servable, and H needs to have at most rank 2. In other
words, λH,sec needs to be zero as well. If this is not
the case, we know that we converged to a wrong min-
imum, and rerun gradient descent with a slightly per-
turbed initial value.

The proposed strategy works well for problems with
multi-directional correspondences. The ratio between
λH,sec and λH,min tells us how well the scale of the prob-
lem is defined, an information that is hard to extract from
alternative solutions. Note that the Eigenvector correspond-
ing to the smallest Eigenvalue returns the translation. Also
note that—in comparison to [10]—the implementation of
a Levenberg-Marquardt scheme has been omitted, due to
numerical inaccuracies of the quickly increasing computa-
tional complexity. Finally, a bound on the variation of the
smallest Eigenvalue based on interval arithmetics can be de-
rived much in the same way this has been done in [10],
which however will be very conservative and thus of lim-
ited usefulness.



3. Application to a 4-camera system

Our iterative rank minimization approach works best in
case of an omni-directional distribution of observations.
Our solver is therefore very well suited for motion esti-
mation with multi-camera systems, where the cameras are
pointing into opposite directions. We restrict our evalua-
tion to such systems, and present results on noise resilience,
accuracy of the initial guess, computational efficiency, and
overall performance within a random sample consensus
scheme.

3.1. Outline of the experiments

Figure 4. A regular 4-
camera system.

The multi-camera system we
investigate is illustrated in Fig-
ure 4. It contains 4 cameras in
a body frame b such that they
are shifted by 1m along the pos-
itive and negative directions of
the x and y axes. We create ran-
dom problems by first—without
loss of generality—fixing the po-
sition of the first viewpoint to the origin of the world frame,
and its orientation to identity. The position of the second
viewpoint is set randomly such that the magnitude of the
distance to the first viewpoint does not exceed 2.0m. The
rotation is bounded such that none of the Euler angles ex-
ceeds 0.5 rad (30 deg). This creates random transformations
as they would appear in practical online motion estimation
scenarios. Random points are created for each camera in-
dividually with a uniformly varying depth of 5.0m to the
origin of viewpoint 1, and then shifted by the respective
camera’s position vector inside b multiplied by a factor of
10. This ensures that the average ratio between the depth
of a point and the baseline of a camera stays around 10,
which agrees with the practical application in mind. Noise
is added to the measurements by extracting the orthogonal
plane of each bearing vector, and adding noise based on a
virtual spherical camera with focal length 800 pixels. Since
all algorithms compute at least the rotation, errors are ex-
pressed in terms of the norm of the difference between the
axis-angle representation of the ground truth and the recom-
puted rotation. Outliers are added by resetting unit vectors
f ′i such that they point into the direction of randomly gener-
ated landmarks.

The comparison algorithms are given by alternative gen-
eralized solutions that are able to handle an arbitrary num-
ber of cameras. They are given by the six-point algorithm
presented in [16], and the 17-point algorithm presented in
[13]. We use 2, 2, 1, and 1 points in each camera for the
six-point algorithm (6pt), 2, 2, 2, and 2 for our generalized
eigenvalue minimization framework (ge), and 5, 4, 4, and 4
points for the 17-point algorithm (17pt).
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Figure 5. Histogram of errors of our initial guess based on a pure-
rotation model. The experiment has been repeated 10000 times.

3.2. Accuracy of the initial guess

Figure 5 shows the error in rotation when assuming a
pure rotation situation, and ignoring the effects of the dis-
tance between the cameras and the translation. We simply
apply [1] on all (fi, f ′i)-pairs, and observe that the error gen-
erally remains roughly below 3 degrees, which brings us
close enough to the global minimum for most of the time.
The method of course only works well in case of an omni-
directional distribution of the observations.

3.3. Noise resilience

We evaluate each algorithm for various noise levels
reaching from 0 to 5 pixels and 1000 random experiments
per noise level. We also include the result obtained from
nonlinear optimization, which illustrates the optimium we
can achieve for a certain noise level using geometric error
minimization. The initial guess for the nonlinear optimiza-
tion is set by a small perturbation of the ground truth value,
ensuring that we converge to the global minimum. The ini-
tial guess for (ge) is found automatically using the above
mentioned method. We also include (ge) over all 17 points
to compare the minimal algebraic error with the minimal
geometric one.

The mean and median error of all methods is shown in
Figure 6. As expected, non-linear iterative minimization of
the reprojection error outperforms all other solutions. We
also note that the median error of (ge) clearly outperforms
both (6pt) and (17pt), and stays very close to the geomet-
ric minimum obtained from nonlinear optimization (e.g.,
bundle adjustment). Moreover—even though using most
points—the linear solver has poor noise resilience in com-
parison to the nonlinear methods. The best solution for (6pt)
is each time selected based on a comparison to ground truth,
whereas the other methods simply return a unique solution.

The behavior of the mean error is not much differ-
ent. It however shows that—in case of using only 8
correspondences—there is a residual error for (ge) at zero
noise, which indicates occasional convergence into local
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Figure 6. Mean and median error in rotation for different gener-
alized relative pose methods and measurement noise between 0
and 5 pixels. (6pt) denotes the method presented in [16], (ge) the
generalized eigenvalue minimization framework presented in this
paper, and (17pt) the linear solver presented in [13].

minima. The probability of converging to a local minimum
can be easily reduced by further tuning of the optimization
parameters, however going to the cost of the computational
efficiency. We opted for higher efficiency based on the fact
that these algorithms are likely to be embedded into a ran-
dom sample consensus scheme, which includes a model-
verification step that eventually identifies convergence into
wrong minima based on a low inlier-ratio. In other words,
it is more efficient to drop the occasional hypotheses that
suffered from wrong convergence via the regular model-
verification step, than slowing the computation of each and
every hypothesis generation just to avoid these occasional
dropouts.

3.4. Computational efficiency

We tested the execution time by again averaging over
1000 random experiments. All algorithms are implemented
in C++, and we reused the original code whenever avail-
able. (6pt) is very inefficient and is slower than (17pt) by al-
most two orders of magnitude, whereas (ge) consumes only
3 times the time of (17pt). The mean execution times are
8.95ms (6pt), 0.28 ms (ge), and 0.09 ms (17pt). The me-
dian execution times remain close to these values, proving
that the iterative nature of our algorithm does not bare a risk
for occasionally slow convergence.

3.5. Overall performance within Ransac

The most relevant performance measure consists of test-
ing all algorithms as part of a random sample consensus
framework. We use the classical Ransac approach presented
in [4], and the same model verification for all three methods.
The noise is kept at 0.5pixels. Our implementation main-
tains a maximally homogeneous sampling of points across
the images. For (6pt), we use an additional 3 points per

hypothesis to disambiguate the solution multiplicity. This
has no effect on the cost of the disambiguation, and is safer
than disambiguation with only one point, especially regard-
ing the high number of solutions and the cost of hypothesis
generation.

It is a well-known fact that the number of required iter-
ations increases as the number of required correspondences
for generating a hypothesis is growing. Figures 7(a) and
7(b) show the theoretical and practical evolution of the re-
quired iterations as a function of the outlier fraction, prov-
ing that (17pt) can potentially become very expensive. The
most relevant evaluation criterion however consists of the
overall execution time, which combines the number of iter-
ations with the efficiency of each model computation. The
result is indicated in Figure 7(c), showing that (6pt) re-
mains the slowest method. The literal explosion of the over-
all computation time made it very difficult to analyze out-
lier fractions beyond 30%. More interestingly, we can also
observe that in practice, although (17pt) is the most effi-
cient method, (ge) performs most gracefully when moving
to higher outlier ratios. The difference is increasing as the
noise level goes up.

4. Results on a real multi-camera system
In order to demonstrate the practical usefulness of our

algorithm in real-world scenarios, we applied it to a se-
quence of images captured by the custom-made, synchro-
nized multi-camera system illustrated in Figure 8. It con-
sists of two synchronized global shutter WVGA cameras
pointing into opposite directions, and we apply simple
frame-to-frame matching in each camera individually. A
threshold on the median disparity then triggers the compu-
tation of generalized relative pose. We use Ransac with
4 correspondences in each camera, followed by interleav-
ing two-view bundle adjustment (with a generalized point-
projection equation) over the identified inlier subset. Our
system uses FAST corners [15] and BRIEF descriptors [2],
thus consuming only 80ms in average per multi-camera rel-
ative pose computation (e.g., extraction, matching, disparity
computation, Ransac, and non-linear refinement). The con-
catenation of all relative rotations including a comparison to
ground truth obtained by a Vicon motion capture system is
indicated in Figure 9. Although the magnitude of the trans-
lation is occasionally unobservable (e.g. in situations with
almost identity rotation), we note that this simple frame-to-

Figure 8. Custom multi-camera system.
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(a) Theoretically required number of iter-
ations as a function of outlier fraction.
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Figure 7. Overall performance of the different generalized relative pose methods included in a Ransac scheme [4] (viewed best in color).

frame tracking scheme robustly tracks the rotation of the
system. The small drift over time indicates the good accu-
racy of the estimation of relative rotation. We were unable
to reconstruct similar performance with the 17-point algo-
rithm presented in [13], which is related to the degeneracy
of linear solvers in the two-camera case.

5. Discussion
The present paper follows the current trend in geometric

vision of proposing a novel factorization of a fundamen-
tal structure-from-motion problem. The idea behind such
works often consists of a theoretical benefit such as global
optimality or simply a new way of looking at a problem,
however often going to the cost of increased complexity.
The low-dimensional factorization of the generalized rela-
tive pose problem presented here is different in the sense
of providing superior computational efficiency in practi-
cally relevant situations. The combination of constant-
complexity of each optimization step as well as a rela-
tively low number of required correspondences leads to an
accurate compromise between minimal and linear solvers
outperforming in the context of random sample consensus
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Figure 9. Evolution of the cayley parameters (x, y, z) for motion
of a real multi-camera rig (viewed best in color). (vicon) denotes
the ground-truth value obtained by a Vicon motion capture system.

schemes. It thus reinforces the importance of direct itera-
tive optimization in algebraic geometry. The algorithm re-
mains general in that it permits any combination of corre-
spondences, cameras, and distribution. Future efforts con-
sist of analysing the possibility of a closed-form solution, as
well as an extension of the real-time pipeline to a full-scale,
generic multi-camera structure-from-motion system.

Note: All algorithms are publically available through the
OpenGV library [9].
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APPENDIX A
This section presents the composition of the 4 × 4 matrix H in con-

stant time, assuming that the following elements are precomputed (they
depend on known or measured variables only, and may be computed in
linear time).

Fxx =

n∑
i=1

f2x,if
′
i f
′T
i ,Fxy =

n∑
i=1

fx,ify,if
′
i f
′T
i

Fxz =

n∑
i=1

fx,ifz,if
′
i f
′T
i ,Fyy =

n∑
i=1

f2y,if
′
i f
′T
i

Fyz =
n∑

i=1

fy,ifz,if
′
i f
′T
i ,Fzz =

n∑
i=1

f2z,if
′
i f
′T
i

Fx1 =
n∑

i=1

fx,if
′
i f
′T
i [t′bc,i]×


fTi 0 0

0 fTi 0

0 0 fTi



Fy1 =

n∑
i=1

fy,if
′
i f
′T
i [t′bc,i]×


fTi 0 0

0 fTi 0

0 0 fTi



Fz1 =

n∑
i=1

fz,if
′
i f
′T
i [t′bc,i]×


fTi 0 0

0 fTi 0

0 0 fTi



Fx2 =

n∑
i=1

fx,if
′
i f

T
i [tbc,i]×


f ′Ti 0 0

0 f ′Ti 0

0 0 f ′Ti



Fy2 =
n∑

i=1

fy,if
′
i f

T
i [tbc,i]×


f ′Ti 0 0

0 f ′Ti 0

0 0 f ′Ti





Fz2 =

n∑
i=1

fz,if
′
i f

T
i [tbc,i]×


f ′Ti 0 0

0 f ′Ti 0

0 0 f ′Ti



F11 =
n∑

i=1


fi 0 0

0 fi 0

0 0 fi

[t′bc,i]×f
′
i f
′T
i [t′bc,i]×


fTi 0 0

0 fTi 0

0 0 fTi



F12 =

n∑
i=1


f ′i 0 0

0 f ′i 0

0 0 f ′i

[tbc,i]×fif
′T
i [t′bc,i]×


fTi 0 0

0 fTi 0

0 0 fTi



F22 =

n∑
i=1


f ′i 0 0

0 f ′i 0

0 0 f ′i

[tbc,i]×fif
T
i [tbc,i]×


f ′Ti 0 0

0 f ′Ti 0

0 0 f ′Ti


If ri denotes row i of R, ci column i of R, r =

(
r1 r2 r3

)
,

and c =
(
cT1 cT2 cT3

)T , the elements of the symmetric matrix G are
finally given by

g11 = r3Fyyr
T
3 − 2r3Fyzr

T
2 + r2Fzzr

T
2

g12 = r3Fyzr
T
1 − r3Fxyr

T
3 − r2Fzzr

T
1 + r2Fxzr

T
3

g13 = r3Fxyr
T
2 − r3Fyyr

T
1 − r2Fxzr

T
2 + r2Fyzr

T
1

g14 = r3Fy1c+ r3Fy2r
T − r2Fz1c− r2Fz2r

T

g22 = r1Fzzr
T
1 − 2r1Fxzr

T
3 + r3Fxxr

T
3

g23 = r1Fxzr
T
2 − r1Fyzr

T
1 − r3Fxxr

T
2 + r3Fxyr

T
1

g24 = r1Fz1c+ r1Fz2r
T − r3Fx1c− r3Fx2r

T

g33 = r2Fxx2
T − 2r2Fxyr

T
1 + r1Fyyr

T
1

g34 = r2Fx1c+ r2Fx2r
T − r1Fy1c− r1Fy2r

T

g44 = −cTF11c− rF22r
T − 2rF12c

APPENDIX B
Let aλ4 + bλ3 + cλ2 +dλ+ e = 0 be the fourth order polynomial of

which the roots are the Eigenvalues of H. a, b, c, d, and e are easily derived
by evaluating det(H−λI4×4). It is important to note that the Eigenvalues
of H are always real and positive. Applying Ferrari’s solution, the smallest
root is therefore given in closed-form by

α = −
3b2

8
+ c, β =

b3

8
−
bc

2
+ d, γ = −

3b4

256
+
b2c

16
−
bd

4
+ e,

p = −
α2

12
− γ, q = −

α3

108
+
αγ

3
−
β2

8
, h = −

p3

27
,

θ1 = h
1
6 cos(

1

3
arccos(−

q

2
√
h
)), θ2 = h

1
3 ,

y = −
5α

6
−
pθ1

3θ2
+ θ1, w =

√
α+ 2y,

λH,min = −
b

4
−
w

2
−

1

2

√
−3α− 2y +

2β

w
.
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