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Abstract

In this study, we propose the application of principal
components analysis (PCA) to scale-spaces. PCA is a stan-
dard method used in computer vision. The translation of
an input image into scale-space is a continuous operation,
which requires the extension of conventional finite matrix-
based PCA to an infinite number of dimensions. In this
study, we use spectral decomposition to resolve this infinite
eigenproblem by integration and we propose an approxi-
mate solution based on polynomial equations. To clarify
its eigensolutions, we apply spectral decomposition to the
Gaussian scale-space and scale-normalized Laplacian of
Gaussian (LoG) space. As an application of this proposed
method, we introduce a method for generating Gaussian
blur images and scale-normalized LoG images, where we
demonstrate that the accuracy of these images can be very
high when calculating an arbitrary scale using a simple lin-
ear combination. We also propose a new Scale Invariant
Feature Transform (SIFT) detector as a more practical ex-
ample.

1. Introduction
Scale-space image processing is a basic technique used

for object recognition and low-level feature extraction in
computer vision [1][2][3][4][5]. Scale-space image pro-
cessing generates a series of blurred images using a Gaus-
sian filter with set scale parameters. The scale resolution
improves as more images are generated, but increasing the
number of images also increases the computational time.
For example, the Scale Invariant Feature Transform (SIFT)
[6], generates six Gaussian blurred images per octave.

Principal components analysis (PCA) is another method
used for face recognition [7] and in other applications. PCA
can compress multiple images (N -images) into a few com-
ponent images, thus it may be beneficial to consider its use
in the context of scale-space image processing. However,
it is difficult to apply PCA to scale-spaces with a continu-
ous scale parameter because they will comprise an infinite

number of images. To overcome this problem, we propose
the application spectral theory to solve continuous PCA.
This allows the transformation of a matrix-based PCA prob-
lem into an integral equation-based problem, thereby reduc-
ing an infinite-dimensional processing problem to a finite-
dimensional problem.

The main contributions of this study are as follows.

1. We propose and demonstrate a method for compress-
ing scale-space images using continuous PCA (by
spectral decomposition) to obtain numerical solutions.

2. We clarify the eigensolutions of the Gaussian scale-
space and scale-normalized Laplacian of Gaussian
(sLoG) space.

Our experimental results show that the proposed method
can generate Gaussian blurred images and sLoG images at
arbitrary scales with high accuracy. As a more practical
example, we also introduce a new SIFT detector with high
scale-resolution that uses spectral decomposition.

2. Related work
There have been many studies of scale-space filtering

since the 1990s. Earlier research in the 1980s was based
on discretization of the scale-space with scale and orienta-
tion dimensions, before Freedman and Adelson proposed
a linear representation of a rotational scale-space filter
[8][9][10]. Perona proposed the approximation of a scale-
space filter with an orthonormal basis by using the singular
value decomposition on Hilbert space [11]. A steerable-
scalable filter was then proposed and used for edge detec-
tion [12], where the kernels were obtained by nonlinear
least squares optimization [13]. The eigensolutions were
discretized and solved using an iterative method based on
the initially provided estimated solution. This method fo-
cused on multi-scale edge detection and orientation. In an-
other approach, multi-scale images were approximated by
polynomials[14][15][16].

In the 2000s, SIFT [17] was proposed and scale-space
processing received greater attention. SIFT discretizes
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the scale-space using a coarse interval with a Difference
of Gaussian (DoG) operator. SIFT was improved subse-
quently and many different types of detectors and descrip-
tors have been proposed, such as Speeded Up Robust Fea-
tures (SURF) [18], Affine Invariant SIFT (ASIFT) [19], and
PCA-SIFT [20]. Recently, a new detector and descriptor
were proposed on nonlinear scale-space [21].

However, the SIFT family use the traditional scale-space
discretization of the 1980s. Thus, the present study refo-
cuses the extensive work performed in the 1990s and scale-
space filtering is applied to the SIFT. Furthermore, we pro-
pose a method for solving the eigensolutions of a scale-
space filter by polynomial approximation. Our method does
not require a particular initial estimate of the solution and it
does not require iterative operations to obtain optimum so-
lutions. We provide an analytical representation and closed
form of scale-space filtering.

3. Scale space analysis
In this section, we analyze two types of scale-space:

Gaussian scale-space and sLoG space.

3.1. Gaussian scale­space

For a given input image f(x, y), its corresponding scale-
space r(x, y, s) image with scale parameter s(s1 ≤ s ≤
s2) can be defined by convolution with a Gaussian kernel
g(x, y, s):

r(x′, y′, s) =

∫∫
g(x, y, s)f(x− x′, y − y′)dxdy. (1)

The two-dimensional (2D) Gaussian kernel g(x, y, s) is de-
fined by:

g(x, y, s) =
1

2πs2
exp

(
−x2 + y2

2s2

)
, s1 ≤ s ≤ s2.

This can be expanded with a series of eigenfunctions φi(s)
using the scale parameter s:

g(x, y, s) =

∞∑
i=0

(∫ s2

s1

g(x, y, t)φi (t) dt

)
φi (s)

The series in the equation above can be approximated by
truncating them to N terms:

g(x, y, s) ≈
N∑
i=0

(∫ s2

s1

g(x, y, t)φi (t) dt

)
φi (s) (2)

Substituting this into Eq.(1), we obtain:

r(x′, y′, s) ≈
∫∫ N∑

i=0

(∫ s2

s1

g(x, y, t)φi (t) dt

)
φi (s)

·f(x− x′, y − y′)dxdy

Then, by changing the order of integration of dxdy and dt,
we obtain:

r(x′, y′, s) ≈
N∑
i=0

{∫∫ (∫ s2

s1

g(x, y, t)φi (t) dt

)
· f(x− x′, y − y′)dxdy}φi (s)

=
N∑
i=0

φi (s) ·{∫∫
Fi (x, y) f(x− x′, y − y′)dxdy

}
≡

N∑
i=0

φi (s) qi(x
′, y′). (3)

where Fi (x, y) is defined as:

Fi (x, y) =

∫ s2

s1

g(x, y, t)φi (t) dt. (4)

In this case, Fi (x, y), which can be considered as a 2D im-
age, is called an eigenimage. Eq. (3) can be interpreted to
represent a Gaussian blurred image of scale s, which is ob-
tained by a linear combination of qi and φi (s), where qi are
obtained by convolving the input image f and N eigenim-
ages Fi (x, y).

To calculate the eigenfunctions, we can apply PCA to
the Gaussian kernel. In the field of computer vision, PCA is
generally understood to be a standard method for compress-
ing data, which is used in processes such as the eigenface
method or the subspace method. In the subspace method,
for example, the eigenfunctions are obtained by solving the
following N ×N matrix eigenvalue problem:

Cφ = λφ (5)

The factor C above represents a covariance matrix defined
by N images g1, g2, ..., gN :

C =


⟨g1, g1⟩ ⟨g1, g2⟩ · · · ⟨g1, gN ⟩
⟨g2, g1⟩ ⟨g2, g2⟩ · · · ⟨g2, gN ⟩

...
...

...
...

⟨gN , g1⟩ ⟨gN , g2⟩ · · · ⟨gN , gN ⟩

 (6)

where ⟨gi, gj⟩ is the inner product of gi and gj .
However, because the scale parameter s is continuous,

it is difficult to apply this matrix-based PCA to scale-space
compression. In the case where N → ∞, it is necessary
to expand the eigenproblem and this approach is known as
spectral theory [22] in the functional analysis of mathemat-
ics. By applying spectral decomposition to Eq. (5), the
matrix eigenproblem can be transformed into the following
Fredholm integral equation:∫ s2

s1

K (t, s)φ (t) dt = λφ (s) , (7)
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where K(t, s) is the integral kernel that is defined as:

K (t, s) =

∫∫
g (x, y, s) g (x, y, t) dxdy

=
1

2π (s2 + t2)
. (8)

If the integral kernel is non-zero, symmetric, and finite, Eq.
(7) has a unique solution, but the integral equation is still
difficult to solve exactly, except with a set of specific inte-
gral kernels. Therefore, we propose a solution by using a
polynomial approximation:

φi (s) = a0i + sai,1 + s2ai,2 + · · ·+ sNai,N

=
(
1, s, s2, · · · , sN

)
· ai. (9)

By multiplying both sides of Eq. (7) by the polynomials
1, s, s2, · · · , sN and then integrating, Eq. (7) is transformed
into the following generalized eigenproblem of an (N+1)×
(N + 1) matrix:

Ka = λSa. (10)

We define the elements of K,S as:

Ki+1j+1 =
1

2π

∫∫
sjti

s2 + t2
dsdt, (11)

Si+1j+1 =

∫
si+jds =

s1+i+j

1 + i+ j
. (12)

The eigenfunctions φi (s) in Eq. (9) can be obtained by
solving for the N +1 eigenvalues λi and the eigenvector ai

in Eq. (10). To facilitate the orthonormalization of eigen-
functions, the following normalization is applied.

a← a

(aTSa)
1/2

(13)

To calculate the eigenimage Fi, the following equation
can be obtained by substituting Eq.(4) into Eq.(9):

Fi (x, y) =

∫ s2

s1

g(x, y, s)φi (s) ds (14)

= −
N∑

n=0

ai,n
23/2πr

( r

21/2

)n

Γ

(
1− n

2
,
r2

2s21
,
r2

2s22

)

where r =
√
x2 + y2 and Γ is a generalized incomplete

gamma function that is defined as:

Γ (a, t1, t2) =

∫ t2

t1

ta−1 exp (−t) dt (15)

, which can be calculated accurately using a continued frac-
tion expansion [23].

3.2. Scale­normalized LoG space

In the same manner as section 2.1, we present the eigen-
solutions of sLoG space. sLoG is used for scale invariant
edge detection and SIFT, thus it is important in computer
vision applications.

The sLoG space is defined by the following equation,
which is a second-order differentiation, and the normaliza-
tion constant s2 for the Gaussian kernel.

rs(x′, y′, s) =

∫∫
s2∇2g(x, y, s)f(x− x′, y − y′)dxdy. (16)

In this case,∇2 = ∂2

∂x2 +
∂2

∂y2 . Then, using the relationship
of the diffusion equation,

s∇2g(x, y, s) =
∂

∂s
g(x, y, s),

Eq.(16) is transformed into the following equation.

rs(x′, y′, s) =

∫∫
s
∂g(x, y, s)

∂s
f(x− x′, y − y′)dxdy. (17)

In the same manner as Eq.(1)∼ Eq.(4), Eq.(17) can be
expanded by eigenfunctions. The integral kernel of sLog
(equivalent to Eq.(8)) is defined as:

Ks (s, t) =

∫∫
st
∂g(x, y, s)

∂s

∂g(x, y, t)

∂t
dxdy

=
4s2t2

π (s2 + t2)
3 . (18)

To solve the integral equation above, we transform the
integral equation into the matrix-based generalized eigen-
problem by the polynomial approximation. Then, the ele-
ments of the matrix are obtained as:

Ks
i+1j+1 =

4

π

∫∫
sj+2ti+2

(s2 + t2)
3 dsdt, (19)

Ss
i+1j+1 =

∫
si+jds =

s1+i+j

1 + i+ j
. (20)

Thus, the eigenimage of sLoG F s
i is defined as follows.

F s
i (x, y) =

∫ s2

s1

s
∂g(x, y, s)

∂s
φs
i (s) ds

= −
N∑

n=0

asi,n
21/2πr

( r

21/2

)n

× (21)[
−Γ

(
1− n

2
,
r2

2s21
,
r2

2s22

)
+ Γ

(
3− n

2
,
r2

2s21
,
r2

2s22

)]
In this case, asi,n is the coefficient of the polynomial of the
eigensolution φs

i (s), which is obtained by solving the gen-
eralized eigenproblem.
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4. Numerical examples
In this section, we present numerical examples of eigen-

solutions of Eq.(7) and demonstrate the linear generation of
Gaussian and sLoG images.

4.1. Gaussian scale­space

To approximate the eigenfunction of Eq.(9), we use
second- or third-order polynomials (N = 2 or N = 3)
and set the integral range of the scale parameter s to s1 =
1.0, s2 = 5.0. We then solve the 3 × 3 or 4 × 4 matrix
generalized eigenproblem of Eq.(10) The solutions ai,j and
eigenvalues ai, λi(0 ≤ i ≤ N) are shown in the tables at
the bottom left of Figure 1.

The table shows that λ2 ≈ 0.001 is only 1[%] of λ0 =
0.070. This rapid decrease suggests that the original Gaus-
sian function can be approximated using a low-order series
expansion. The eigenimages for N = 2 are shown at the top
left of Figure 1. The top part of the figure shows the eigen-
images on the xy-plane and the middle part of the figure
shows a graph of the eigenimages on r =

√
x2 + y2, which

depend only on r, thus these eigenimages are isotropic func-
tions. The lower part of the figure shows the eigenfunctions.
The first-order eigenimage resembles a Gaussian and the
second- and third-order eigenimages resemble a Laplacian,
but there are slight differences.

4.2. sLoG space

The table at the bottom right of Figure 1 shows an ex-
ample of the solution (coefficient of polynomial and eigen-
value) of sLoG for N = 2 and N = 3, s1 = 1.0, s2 = 5.0.
The top right of Figure 1 shows the eigenimages and eigen-
functions of sLoG space.

4.3. Linear generation of Gaussian images

In this section, we introduce a method for Gaussian blur
image generation with an arbitrary scale, as an application
of scale-space compression.

A Gaussian blur image of scale s can be defined as:

r(x′, y′, s) =
N∑

i,j=0

qi(x
′, y′)sjai,j . (22)

In this case, qi ≡ f ∗Fi. This equation can be interpreted as
meaning that a scale s Gaussian blur image can be obtained
by a linear combination of qi and ai,j . The factors qi can
be obtained by convolving the eigenimage Fi into an input
image f .

Figure 2 shows a flowchart that illustrate the steps of im-
age generation at scale s = 1.2. The blue window on the left
shows the step where qi is calculated, which indicates that
a Gaussian blur image with an arbitrary scale s can be ob-
tained immediately by linear combination after qi has been
calculated.

To evaluate the proposed method, we compared the blur
images generated in the range 1 ≤ s ≤ 5 with refer-
ences that were generated by convolving the Gaussian ker-
nel g(x, y, s).

The top left of Figure 3 shows the images generated for
the 128× 128 Fruit image. The figure shows the references,
the blur images generated by the proposed method for N =
2 and N = 3, and the difference images between the gen-
erated images and the references for s = 1.2, 2.4, 3.6, and
4.8. The figure shows that the results have few errors for
N = 2 and N = 3.

The bottom left of Figure 3 shows the peak signal to
noise ratio (PSNR) between the generated and reference im-
ages at scales ranging from N = 1, 2, and 3, s = 1.0 to
s = 5.0 for the images Lena and Fruit. The graph shows the
PSNR with a scalable filter (five kernels used) [13]. The av-
erage PSNR error with our method was 68[dB] for N = 3,
which shows that the proposed method can generate accu-
rate Gaussian blur images using simple linear operations.

4.4. Linear generation of sLoG images

For N = 3, the sLoG images rs(x, y, s) can be obtained
as follows:

rs(x′, y′, s) =

3∑
i=0

qsi
(
asi,0 + sasi,1 + s2asi,2 + s3asi,3

)
. (23)

In this case, qsi ≡ f∗F s
i . The top right of Figure 3 shows the

sLoG images generated by the proposed method and con-
ventional (scale-normalized) DoG images. The DoG image
was obtained by follows:

DoG(x, y) ≡ g(x, y, kσ)− g(x, y, σ)

1− k
. (24)

In this case, k = 1.2 was used. The pixel values are en-
hanced in the figures to make them visible. The two rows
on the right of the figure show the difference between the
reference s∇2g ∗ f (reference of the figure) and the gener-
ated image. The figure shows that the DoG image contains
more errors because of the backward difference approxima-
tion Eq.(24). By contrast, the proposed method can approx-
imate the sLoG images at various scales.

The bottom right of Figure 3 shows the numerical accu-
racy of the above approximation for the images Lena and
Fruit. A scalable sLoG filter was implemented in an analo-
gous manner to the scalable filter and five kernels were used.
The average PSNR error with our method was 56[dB] for
N = 3. The proposed method can approximate the sLoG
accurately with a arbitrary scale using a linear combination
of only four images, qsi .

5. Application: Spectral SIFT
We propose a new SIFT detector (spectral SIFT) that

uses the sLoG space compression. The SIFT keypoints are
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(a) Eigen solutions of Gaussian space (b) Eigen solutions of sLoG space

i a i,0 a i,1 a i,2 λ i

0 -1.51664 0.63295 -0.07352 0.07028

1 -1.98457 1.51593 -0.21841 0.01003

2 1.41248 -1.44794 0.29090 0.00077

i a i,0 a i,1 a i,2 a i,3 λ i

0 -1.96331 1.47595 -0.40397 0.03729 0.07055

1 -2.52465 3.31488 -1.09824 0.11097 0.01088

2 2.20392 -3.77154 1.58800 -0.18386 0.00140

3 1.04991 -2.15040 1.14305 -0.16560 0.00008

i a
s

i,0 a
s

i,1 a
s

i,2 λ
s

i

0 -1.66680 0.66306 -0.07074 0.09065

1 -2.45391 1.77823 -0.25326 0.02621

2 1.86269 -1.70701 0.32655 0.00354

i a
s

i,0 a
s

i,1 a
s

i,2 a
s

i,3 λ
s

i

0 -1.78134 0.80365 -0.12157 0.00560 0.09067

1 -4.48103 4.32614 -1.19007 0.10394 0.02773

2 6.27885 -7.62290 2.65264 -0.27408 0.00624

3 4.07331 -5.69794 2.35606 -0.29145 0.00054

r r r r r r

scale scale scale scale scale scale

Coefficients Obtained for N = 2

Coefficients Obtained for N = 3

Coefficients Obtained for N = 2

Coefficients Obtained for N = 3

Figure 1. Top left: Eigenimages and eigenfunctions of Gaussian scale-space. Bottom left: Numerical solutions obtained for Gaussian
scale-space. Top right: Eigenimages and eigenfunctions of sLoG space. Bottom right: Numerical solutions obtained for sLoG space.

detected by finding the local extremum of sLoG. It is suffi-
cient to find the zero position of the partial differential of
sLoG. In the proposed model, the sLoG image is repre-
sented by the polynomial of s, thus it is easy to find the exact
local extremum of sLoG by solving the following quadric
equation.

∂rs(x′, y′, s)/∂s

=
3∑

i=0

qsi
(
asi,1 + 2sasi,2 + 3s2asi,3

)
(25)

≡ as2 + bs+ c = 0.

Then, the optimal scales can be detected at s =
−b±

√
b2−4ac
2a . The keypoint with 2as + b > 0 is a bright

keypoint and 2as + b < 0 is a dark keypoint. After detect-
ing the scale, 27 neighboring pixels of sLoG are checked to
determine the XY-scale extremum.

Conventional SIFT requires that the 27 neighboring pix-
els are checked in all the scale layers (Figure 4(a)). This is
a time-consuming step in SIFT, especially if the number of
scale layers L increase. By contrast the proposed method
can detect the optimal scale using a simple algebraic op-

Input image  f

Eigen image F0

Eigen image F1

Eigen image F2

q0

q1

q2

Eigen function φ0

Eigen function φ1

Eigen function φ2

0.5

0.2

-0.2

Blurred image

s=1.2

s = 1.2

Figure 2. Flowchart illustrating Gaussian blurred image genera-
tion. A Gaussian blurred image with an arbitrary scale can be
obtained by simple linear combinations of qi.

eration (Figure 4(b)). This approach is fast and accurate
because it does not include discretization errors in the scale
layer or interpolation artifacts.

5.1. Simple pattern testing

We evaluated our method using a simple test pattern, as
shown in Figure 5. The 640 × 480 input image contained
black circular patterns where the radius ranged from small
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Figure 3. Top left: Gausian blurred images generated for various scales. Bottom left: PSNR evaluation of a Gausian blurred image. Top
right: sLoG images generated for various scales. Bottom right: PSNR evaluation of a sLoG image.

to large (about 2 ∼ 15[pix]). The figure shows the results
obtained with three conventional SIFTs and the proposed
method. We compared the results with different numbers of
Gaussian images, i.e., L = 6, 11, and 16. In general, L =
6 is used for one octave. The same detection parameters
were used, such as a threshold. The SIFT at L = 6 could
not detect the small radius circles in the left of the image
and it could not detect some of the large radius circles. By
increasing the number of scale layers L, the scale resolution
was improved and more of the small circles were detected.
However, more of the large circles were missed due to scale
discretization artifacts.

In traditional DoG approximation, the cascade Gaussian
filtering approach is used to construct the scale-space [24].
This method generates a large-scale Gaussian image by re-
peated Gaussian filtering with small filter. This method is
efficient but it leads to the propagation of errors.

By contrast, the proposed method can detect all of the
circles correctly.

5.2. Evaluation of Detector Repeatablity

We evaluated the detector repeatability between two im-
ages (IM1 and IM2), which was defined by an ellipse in
overlapping areas [25]. After detecting the keypoints in the

s

sLoG(s) = a3s
3+a2s

2+a1s+a0

peak

s+1

s-1

s

(a) 27 neighbor pixels extrema (b) Polynomial representation

x

y

x

y

Figure 4. Scale detection. In conventional SIFT, the scale-space is
discretized. In our method, the images are represented by polyno-
mials in the scale-space with the scale parameter s.

two images, IM2 was transformed and overlapped with IM1
using the given reference of the homography H and the key-
points in the non-overlapping region were removed. The
overlapping regions between the two keypoints (a radius of
3s was used) were calculated. The overlap error was de-
fined as ϵ = 1 − a∩AtbA

a∪AtbA , where a and b are the regions
defined by the ellipse parameters of the two keypoints, and
A is the linearization of the homography H . The keypoint
pairs where ϵ < 0.5 were counted as correspondences. The

6



SIFT (L=6) SIFT (L=11) SIFT (L=16) ProposedTest pattern

Figure 5. Results obtained with a simple test pattern. The red circles are the detected keypoints and the radius represents the scale.
Conventional SIFT could not detect the circles correctly even in this simple case.

repeatability R is defined as follows:

R =
#correspondences

min(#keypoint of IM1,#keypoint of IM2)
.

Figure 6 shows a comparison of the results using the Ox-
ford dataset1. We compared the proposed method with the
conventional SIFT using different numbers of scale layers
L. The ”Original” in the figure represent the results with
the original Lowe’s SIFT binary2. ”OSL6,” ”OSL8,” and
”OSL11” are the results obtained using the Open SIFT Li-
brary3 with scale layers L = 6, L = 8, and L = 11, re-
spectively. To ensure that the conditions were the same, the
keypoints were sorted by the Hessian response and the top
500 keypoints were used for matching. Our implementa-
tion4 was based on the Open SIFT Library and the same
detection parameters were used. The proposed method had
a higher repeatability than conventional SIFT because our
method could detect the keypoints at a small scale and there
were few missing important keypoints, as shown in Figure
5.

5.3. Computational time

Table 1 (a) and (b) show the computational time compar-
isons for the wall 1 and boat 1 datasets. The comparisons
were performed with a CPU with an Intel Core i7-4770 at
3.4 GHz and our code was implemented in C++. The detec-
tion step is time-consuming in SIFT because conventional
SIFT searches 27 neighboring pixels for all the scale lay-
ers, which increases the time in proportion to the number of
scale layers L. By contrast, the proposed method reduces
the detection time costs because it does not search the 27
neighbors.

6. Conclusions
In this study, we proposed a method for applying PCA to

scale-spaces. PCA is the standard method used for tasks in
computer vision applications. However, to apply the PCA

1http://www.robots.ox.ac.uk/ vgg/data/data-aff.html
2http://www.cs.ubc.ca/ lowe/keypoints/
3http://blogs.oregonstate.edu/hess/code/sift/
4http://navi.cs.kumamoto-u.ac.jp/ koutaki/

Conventional SIFT Proposed
L = 6 L = 8 L = 11 N = 3

Filtering time 28 35 44 33
Detection time 26 42 73 32
Total time 54 77 117 65
#keypoints 2167 3049 3748 4776
Total time / #keypoints 0.025 0.025 0.031 0.013

(a) wall 1 (1000×700)

Conventional SIFT Proposed
L = 6 L = 8 L = 11 N = 3

Filtering time 24 28 34 42
Detection time 23 33 59 24
Total time 47 61 93 66
#keypoints 1731 2315 2803 4136
Total time / #keypoints 0.027 0.026 0.033 0.016

(b) boat 1 (850×680)

Table 1. Computational time [ms]

method to scale-spaces, it is necessary to extend conven-
tional square matrix-based finite PCA to an infinite num-
ber of dimensions. To resolve this infinite eigenproblem,
we used spectral decomposition to develop integral equa-
tions where approximate solutions could be developed us-
ing polynomial equations.

As an application of this proposed method, we developed
a method for generating Gaussian blur images and sLoG
images with an arbitrary scale, which can be calculated by
simple linear combination. As a practical example, we pro-
posed a spectral SIFT detector that uses spectral decompo-
sition.

This scale-space processing is a basic technique, thus our
method can be applied to many existing scale-space pro-
cessing problems. In the future, we plan to apply spectral
decomposition to various scale-spaces including a scale-
space with multiple parameters such as a Gabor scale-space
or affine Gaussian scale-space [26] [27].
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