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Abstract

We present the Discriminative Ferns Ensemble (DFE)
classifier for efficient visual object recognition. The clas-
sifier architecture is designed to optimize both classifica-
tion speed and accuracy when a large training set is avail-
able. Speed is obtained using simple binary features and
direct indexing into a set of tables, and accuracy by using a
large capacity model and careful discriminative optimiza-
tion. The proposed framework is applied to the problem of
hand pose recognition in depth and infra-red images, using
a very large training set. Both the accuracy and the classi-
fication time obtained are considerably superior to relevant
competing methods, allowing one to reach accuracy targets
with run times orders of magnitude faster than the compe-
tition. We show empirically that using DFE, we can sig-
nificantly reduce classification time by increasing training
sample size for a fixed target accuracy. Finally a DFE re-
sult is shown for the MNIST dataset, showing the method’s
merit extends beyond depth images.

1. Introduction

The tradeoff of speed versus accuracy is an important
topic, widely discussed in the object detection and recogni-
tion literature [11, 8, 3, 18, 22]. In applications like Natural
User Interface (NUI), algorithms have to obtain high recog-
nition accuracy in real time, on low power platforms. Often
accuracy must be obtained with only a small fraction of the
available CPU resources, reserving CPU cycles for other
operations. The tradeoff is natural: high accuracy requires
a rich representation, with considerable computational cost
at all levels of the system. At the lowest level, this in-
cludes using dense sampling of complex local descriptors
[19, 23]. Further on, multiple spatial aggregation layers are

employed [16, 6], with large dictionaries at higher levels.
At the highest level the best accuracy is often obtained us-
ing non-linear kernels [16, 6], requiring kernel computation
with many support vectors.

In this work we attack the problem of hand pose classi-
fication using infra-red (IR) and depth images from a time
of flight depth camera, in the context of a NUI application.
There are dual demands for high accuracy and a very low
computation budget - a fraction of a millisecond. For our
problem, standard techniques achieved reasonable enough
accuracy for a moderate training set size, but were unable to
meet the classification time requirement. One can improve
speed by modifying the parameters of such techniques, like
grid density or dictionary size. However, experiments show
that this approach is limited: when the target speed is ob-
tained accuracy drops too much.

This calls for a wider consideration of recognition sys-
tems based on machine learning. Beyond accuracy and
speed, these systems have additional performance charac-
teristics: generalization ability (i.e. ability to learn from a
relatively small training set size), training time, and mem-
ory consumption. Suppose that it is possible to collect a
very large training set, there is no significant limitation on
training time, and a moderate amount of memory is avail-
able at test-time. The question then becomes: for a fixed
accuracy target, can we trade training set size for increased
speed at test time?

We propose pushing the speed-accuracy envelope at the
expense of larger training sets using three steps. First, we
use simple non-invariant features with sharp non-linearity,
as they are fast to compute. Using a large enough train-
ing set, we can hope that the task-relevant invariance will
be learned instead ofa priori encoded. Second, and most
important, we turn to an architecture with large capacity
and minimal computation, based on an ensemble of large
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Figure 1.Examples of hand images from our data set. The left columns
contain examples of ’Open’ ,’Closed’ and ’Lasso’ respectively. The two
right columns contain examples of the complement class ’Other’.

tables encoding the end results. Such table-based classi-
fiers, termed ’ferns’ [6, 21, 18], have high capacity with a
VC-dimension of2K for a single2K -entry table, and close
to M2K for a M -tables ensemble1. Third, since we face
a hard learning problem, with high capacity and minimal
prior, we develop a discriminative optimization framework
for a fern ensemble, which is a departure from the genera-
tive formulation used previously for ferns.

Focusing on speed optimization, we use as features spa-
tial aggregates of highly simplistic features, i.e. pixel-pair
comparisons; we then build a lookup table (fern) from a set
of such bit features. Instead of a huge single table, we learn
a fern ensemble. Each fern is based on a set ofK simple
binary features and a large table of2K -entries. The binary
features are concatenated into an index, and the correspond-
ing index entry in the table contains a weight contribution,
summed across the ferns to get the final classification. Each
table can be regarded as an efficient codeword dictionary: it
maps a patch into one of2K words, yet at the cost ofK op-
erations. The resulting architecture is highly non-linear, and
a feed-forward push of an image through it only requires
multiple bit computations and table access operations.

Ferns are traditionally formulated generatively, i.e., con-
ditional class probabilities are stored at the table entries. In
contrast, we train the ensemble discriminatively by mini-
mizing the regularized hinge loss, i.e., the loss minimized
by Support Vector Machines (SVM). The minimization
technique is related to ideas from the Predictive Feature Se-
lection (PFS) algorithm [2]. It is done agglomeratively in
a boosting-like framework, promoting complementariness
between chosen ferns and between bits in a single fern.

Our main technical contribution is hence in the intro-
duction of a Discriminative Ferns Ensemble (DFE)ap-
proach, and empirically demonstrating its ability to consid-
erably shift the speed-accuracy curve. The method is ap-
plied to hand pose recognition from IR and depth images,
and achieves accuracy comparable or better than the best
known methods while being one to two orders of magni-

1Assuming that the underlying space is of dimension higher thanK

andMK respectively, which are satisfied for the image sizes we consider

tude faster. Specifically it is significantly more accurate
than a classification based on deep random trees, which
have been used for similar tasks [15, 22], and considerably
more accurate than a more standard ensemble of random
ferns [6, 21]. We also tested several methods combining
fast dense SIFT features, DAISY, random forest dictionar-
ies, and SVM [20, 26, 25]. The best results achieved were
slightly less accurate than DFE, but classification time was
two orders of magnitude (i.e. 100 times) slower.

The second contribution is that we empirically show sig-
nificant improvements in classification speed – for a given
target accuracy – can be achieved by collecting larger train-
ing sets. This is done by optimizingK (log of the table
size) andM (number of ferns) for a given training set size.
In other words, if a DFE classifier is accurate, but not fast
enough, collecting larger training set can be used to acceler-
ate classification speed. Note this trade-off is different from
the known trade-off between training set size and accuracy.

Finally, we note that our approach was found practical
and recently integrated into a real commercial system.

We discuss related work in Section2, and present our
approach in Section3. In Section4 we summarize a set of
experiments in which ingredients of the method are tested
and the approach is compared with competing techniques.
We briefly conclude in Section5.

2. Related Work

The methods most similar to our approach are those
based on trees and ferns ensembles [22, 15, 21, 6, 12, 9].
Ferns are often regarded as a special case of trees, in which
the condition encoded at all the nodes with the same depth
is identical. Boosting of decision trees is a highly popular
technique [12, 9], but usually shallow trees of depth1−3 are
used, which cannot capture fine-grained partitions. Ferns
ensembles were suggested in recent years for image classi-
fication [6], keypoint recognition [21] and nearest neighbor
finding [18]. In these works ferns in the ensemble are cho-
sen independently of each other, and bits in a single fern are
chosen at random or using an information gain criterion.
At the leaves conditional class posteriors are computed and
averaged across ferns [6], or regulated with a prior and mul-
tiplied [21]. In our approach we regard the fern ensemble as
providing the features for a largeL2-SVM problem. Ferns
are added to the ensemble one-by-one in an agglomerative
procedure. The gradient of the SVM program w.r.t adding
new features is computed at each round and used to guide
choice of the bits in the new fern. Ferns (and bits) are hence
grown to be complementary, maximally reducing a linear
approximation of the loss at time of their addition. The
weights at the fern’s table (corresponding to the leaves of
a tree) are optimized using an SVM program applied to a
set ofM2k sparse features.

Classification and pose estimation in IR+depth images



Algorithm 1 Ferns Ensemble: Classification
Input : An image I of sizeSx × Sy,
classifier parameters(Bm, Am,Wm)Mm=1, thresholdt

Bm ∈ R
K×|Am|, Am ⊂ {1, .., Sx} × {1, .., Sy}, Wm ∈ R

2K

Output : A classifier decision in{0, 1}
Initialization: Score=0
For all fernsm = 1, ..,M

For all pixelsp ∈ Am

Compute a k-bit index= σ(BmIN(p))
Score=Score+Wm[index]

Return (Score>t)

was addressed in recent years in multiple works [22, 15, 5,
1, 10]. For a survey of earlier work on hand recognition
see [13]. Among these, the works presented at [22, 15] are
similar to ours, as they also turn to simple pixel-comparison
features and a tree ensemble architecture, to allow fast,
real time classification. However, they use a generatively-
optimized random forest approach, which is less accurate,
and requires more memory and CPU time than the proposed
method. We discuss the differences in section3.2, and com-
pare the methods empirically in section4. From a different
perspective, our work shares with some earlier work like
[7] the motivation to balance speed and accuracy. However
cascade-based solutions like discussed in this work are dif-
ferent, and actually complementary to our approach.

3. The Discriminative Ferns Ensemble

We describe the Fern Ensemble classifier in Section3.1
and analyze its running time in Section3.2. In Section3.3
we present the training procedure we use.

3.1. The Discriminative Ferns Ensemble Classifier

The ferns ensemble classifier operates on an image
patch, which we denote byI, consisting ofP pixels. For
a pixelp, we denote its neighborhood byN(p), and we de-
note byIN(p) the subpatch which is comprised of the pix-
els inp’s neighborhood. In what follows, we will consider
IN(p) as a vector inR|N(p)|. The ferns ensemble consists
of M individual ferns, and its pipeline includes three layers
whose structure we now describe.

Bit Vector Computation Let us focus on one particular
fern m. For each pixelp, we compute a local descriptor
of its neighborhood subpatchIN(p) using computationally-
light pairwise pixel comparisons of the form

Iq1
?

>Iq2 for q1, q2 ∈ N(p) (1)

Such a comparison provides a single bit value of0 or 1. For
convenience of notation, we may rewrite the bit obtained as
σ(βT IN(p)), whereβ is a |N(p)|-dimensional sparse vec-
tor, with two non-zero values, one equalling1, the other
equalling−1; andσ is the Heaviside function. For each

fernm and pixelp, there areK bits computed, and we de-
note thekth bit asbmp,k = σ((βm

k )T IN(p)). Collecting all
the bits together, theK-dimensional bit vectorbmp is:

bmp = σ(BmIN(p)) ∈ {0, 1}K (2)

where the matrixBm has rows(βm
1 )T , . . . , (βm

K )T ; and
now the Heaviside functionσ is applied element-wise.

Histogram of Bit Vectors We are interested in some
translation invariance, so we take a spatial histogram over
codewords. However, as in [21] the bit-vectorsthemselves
are the codewords; there is no need for an intermediate
clustering step. Denote the histogram for themth fern by
Hm(b), where bit vectorb ∈ {0, 1}K ; then

Hm(b) =
∑

p∈Am

δ(bmp − b) (3)

whereδ is a discrete delta function, andAm ⊂ {1, .., P} is
the spatial aggregation region for fernm. Note thatHm is
a sparse vector, with at mostP non-zero entries.

Histograms concatenationThe final decision is made
by a linear classifier applied to the concatenation of theM

fern histograms.

f(I) = WTH(I) =
M
∑

m=1

∑

b∈{0,1}K

wm
b Hm(b) (4)

whereH(I) = [H1(I), . . . , HM (I)] ∈ N
M2K andW =

[W 1, . . . ,WM ] ∈ R
M2K is a weight vector. Combining

Steps 1-3 in the pipeline, we arrive at the Discriminative
Ferns Ensemble Classifier:

f(I; ρ) =
M
∑

m=1

∑

b∈{0,1}K

wm
b

∑

p∈Am

δ(σ(BmIN(p))−b) (5)

with the parametersρ = {Wm, Bm, Am}Mm=1.

3.2. Classification Speed

Algorithm 1 describes the operation of a DFE classifier
at test time. The pipeline is extremely simple. For each fern
and each pixel in the fern’s aggregation region we compute
the bit vector, considered as a codeword index. The fern
table is then accessed with the computed index, and the
obtained weight is added to the classification score. The
complexity is O

(

MAK
)

whereA is the average number of
pixels per aggregation region:A = 1

M

∑

m |Am|.
It is interesting to compare the CPU time of a single fern

to a single tree with the depthK. From a pure compu-
tational complexity perspective, the number of operations
for both isK. Nevertheless, a closer look at their match
to common CPU architectures, including cache hierarchies
and vector machines, reveals large differences in expected



Algorithm 2 Ferns Ensemble: Training

Input : A labeled Training set{Ii, yi}Ni=1

ParametersM,K,C,Nc, {A
m}Mm=1

Output : A classifier(Bm, Am,Wm)Mm=1, thresholdt
Initialization: Z[i] = 1/|{Ii|yi = 1}| if yi = 1,

Z[i] = −1/|{Ii|yi = −1}| if yi = −1
Form = 1, ..,M

Fork = 1, ..,K
For c = 1, ..Nc

Sample a candidate columnβm
k,c ∈ R|N(p)|

For i = 1, .., N
ComputeHm(b, Ii, c) = Hm(b, Ii;B

m
c )

with Bm
c = [βm

1 , .., βm
k−1, β

m
k,c]

For b ∈ {0, 1}K

ComputeRZ(c) =
∑

b∈{0,1}K RZ(H
m(b;βm

k,c))

Choose winning candidatec∗ = argmaxcR(c),
and setβm

k = βm
k,c∗

Train an SVM withm2K featuresW · [H1, .., Hm]− t
SetZ[i] = yiαi for i = 1, .., N with αi SVM dual variables

Set{Wm}Mm=1, t based on the last SVM training.
Return(Bm, Am,Wm)Mm=1, thresholdt.

run time. First, a tree needs to store the bit computation
parameters for2K internal nodes. More importantly, dur-
ing tree traversal the working set is accessedK times in
an unpredictable manner. A fern’s operation requires only
a single access to its large working set (Wm), as the in-
dex computation is done using a small amount of memory,
O(K) in size, which fits in the cache without a problem.

Second, the usage of fixed pixel pairs in a fern enables
computation of the K-bit index without indirection and with
an unrolled loop. More importantly, ferns are amenable
to vectorization using SIMD (Single Instruction, Multiple
Data) operations, while trees are not. Applying a fern oper-
ation to several examples at the same time (i.e. vectorizing
the loop overp in Algorithm 1) is straightforward. Doing
so for a tree is likely to be extremely inefficient since each
example require a different sequence of memory accesses,
and gathering such scattered data cannot be done in parallel
in a SIMD framework. In Section4.4we further discuss the
differences of ferns and random forest, in terms of classifi-
cation time and memory.

3.3. Discriminative Training

The DFE classifier f(I; ρ) is given in Equation
(5), and we would like to learn the parameters
ρ = {Wm, Bm, Am}Mm=1 from a labeled training set
{(Ii, yi)}Ni=1. Unlike prior work on ferns, e.g. [21], we
turn to a discriminative rather than a generative formulation.
Specifically, we pose the problem as regularized Hinge-loss
minimization, similar to standard SVM:

min
ρ

1

2
‖W‖2 + C

N
∑

i=1

[

1− yif(Ii; ρ)
]

+
(6)

where[·]+ indicates the hinge loss, i.e.[z]+ = max{z, 0}.
Rewriting Equation (4) with explicit parameter and image
dependence one gets

f(I; ρ) =
∑

m,b

wm
b Hm(b, I ;Bm, Am) (7)

We can see thatf is linear inW , so optimizing (6) w.r.t
W for fixed {Bm, Am}Mm=1 is a standard SVM optimiza-
tion. However, optimizing for the latter parameters is chal-
lenging, specifically since they are to be chosen from a large
discrete set of possibilities. Hence, we turn to an agglom-
erative approach in which we greedily add ferns one at the
time. As can be seen from Equation (5), adding a single fern
amounts to an addition of2K new features to the classifier.
In order to do that in an sensible manner, we extend known
results for the case of a single feature addition [2, 4].

Let f(I) =
∑L−1

l=1 wlxl(I) be a linear classifier opti-
mized with SVM andL(f, {Ii, yi}Ni=1) the hinge loss ob-
tained for it (Eq. (6)) over a training set. Assume we add
a single featurexL to this classifierfnew(I) = fold(I) +
wLx

L(I), with small |wL| ≤ ǫ. Theorem1 in [2] gives a
linear approximation of the loss under these conditions:

L(fnew) = L(fold)− wL

N
∑

i=1

αiyix
L
i +O(w2

L) (8)

whereαi are the example weights obtained as a solution
to the dual SVM problem. The weightsαi ∈ [0, C] are
only non-zero for support vectors. For a candidate feature
xL, the approximated loss (8) is best reduced by choosing
wL = ǫ ·sign(

∑N
i=1 αiyix

L
i ), and the reduction obtained is

R(xL)
∆=|

∑N
i=1 αiyix

L
i |. The PFS algorithm [2] is based

on training SVM using a small number of features, fol-
lowed by computing the scoreR(x) for a large number of
unseen features; this allows one to add/replace existing fea-
tures with promising feature candidates. Note that the score
R(x) of a feature columnx can be seen as the correlation
RZ(x) = x · Z, whereZ = (z1, .., zn) with zi = yiαi is
the vector of signed example weights.

Here we extend the aforementioned idea to a set of fea-
tures, as introduced by a single fern. Assume we have
trained an SVM classifier over a fern ensemblefM−1(I)
with M − 1 ferns, and we now wish to extend to an addi-
tional fern. Assume further that the new weight vector is
small with||wm||∞ ≤ ǫ. Then we have

fM (I) = fM−1(I) + ǫ
∑

b∈{0,1}K

wm
b Hm(b, I) (9)

with |wm
b | ≤ 1 for all b. Treating the new fern contribution

as a single feature, we can apply the theorem stated above
and get

L(fM (I)) ≈ L(fM−1)− ǫ

N
∑

i=1

αiyi
∑

b∈{0,1}K

wm
b Hm(b, Ii)



= L(fM−1)− ǫ
∑

b∈{0,1}K

wm
b

N
∑

i=1

αiyiH
m(b, Ii) (10)

where the approximation in the first equation is due to
omission ofO(ǫ2) terms. If we wish to minimize the
approximated loss, the optimal choice forwm

b is wm
b =

sign(
∑N

i=1 αiyiH
m
t (b, Ii)), in an analogous way to the sin-

gle feature case. With thesewm
b we get

L(fM (I)) ≈ L(fM−1)− ǫ
∑

b∈{0,1}K

R(Hm(b)) (11)

This result is an intuitive extension of Theorem1 in [2] for
the case of multiple feature addition.

Our algorithm for fern ensemble growing is based on it-
erating between SVM training and building the next fern
based on Equation (11). This procedure is described more
precisely in Algorithm2. At each fern addition step we use
an SVM classifier trained on the previous ferns to get signed
example weights, in a manner similar to boosting. The en-
semble score

∑

b∈{0,1}K RZ(H
m(b)) is used to grow the

fern bit-by-bit in a greedy fashion. At each bit addition
stage we randomly selectNc candidates for the maskβm

k ,
termedβm

k,c; each candidate is chosen by randomly drawing
the two pixels needed for the comparison. The winning bit
is chosen as the one producing the highest ensemble score.
We currently do not optimize the integration area variables
{Am}Mm=1, but we experiment with several choices in Sec-
tion 4. The algorithm is presented for a single binary prob-
lem, but is easily extended to training of several classes with
sharedAm, Bm and separateWm. During optimization,
multiple SVMs are trained at each fern addition, andR(c)
scores of all of them are summed to make the bit choice.

4. Empirical Results

The method described in this paper was developed,
tested and compared to alternatives on a very large data
set for hand shape recognition. We describe the data set in
Section4.1and the method’s implementation details in4.2.
The impact of the main ingredients and parameters of the
method is tested in4.3. We compare the accuracy-speed
trade-off enabled by the proposed method and various com-
peting techniques in4.4. Trade-offs between accuracy, clas-
sification time, training sample size and memory are dis-
cussed in4.5. Finally we show a good result of the DFE on
the MNIST dataset [17].

4.1. Data Set

The task we consider is to recognize three different hand
shapes, and to discriminate between them and other unde-
fined hand states. The recognition results are used as part of

a NUI interface. The shapes are termed ’Open’, ’Closed’,
’Lasso’ and ’Other’, as shown in Figure1. The class ’Other’
includes a large variation in hand poses, including hands
holding objects. Hand detection is achieved by tracking the
skeleton in a sequence of depth+IR images, using methods
based on [22].

The images used for recognition are cropped around the
extracted hand position, rotated and scaled to two36 × 36
images of the depth and IR channels. A simple pre-
processing rejects IR and depth pixels where the depth is
clearly far beyond the hand, thereby removing some of the
background. The alignment and rotation of the hand is
based on estimated wrist position and is sometimes inac-
curate, making the recognition task harder.

A dataset of 519,000 images was collected and labeled
from video sequences of different people, with80, 000 ex-
amples made publicly available2. Images have considerable
variability in terms of viewpoints, hand poses, distances and
imaging conditions. The images were taken at distances of
up to 4 meters from the camera, where the quality of im-
age drops, and the depth measurement of fingers may be
missing. Data was divided into training and test sets with
420, 000 and99, 000 images respectively, such that persons
from the training set do not appear in test images and vice
versa. The data was collected to give over-representation
to hard cases. Given the data properties, the goal was to
achieve 2-5% false negative rate, at a false positive rate of
2%. Since the the test data is hard, the error rate in real
usage scenarios is expected to be much lower.

4.2. Implementation Details

In our experiments we tested the number of bits per fern
K in the range of[3, 18], and the number of fernsM in
[6, 768]. At each bit addition stepNc = 40 pixel compar-
ison features were randomly generated for evaluation. The
spatial aggregation area of the fernAm was randomly cho-
sen to be one of the4 standard quadrants of the image patch,
and the neighborhoodN(p) is 17× 17 pixels. We have ex-
perimented with limiting the aggregation areaAm further
by imposing a virtual checkerboard on the quadrant pixels:
for odd bit indices features are only computed for ’white’
pixels, and for even indices features are computed only for
’black’ ones. This policy was found to be useful in terms of
accuracy-speed trade-offs.

We have used the LibLinear package [14] for sparse
SVM training of our models. The classifier was imple-
mented in C and running times are reported on Intel core
i7, 2.6GHz CPU, using a single thread. Computation time
is reported for a single image in milliseconds, without usage
of SIMD optimizations. Accuracy of a single binary classi-
fier, i.e. one hand pose versus all, is computed as the false
negative error rate at the working point providing a false

2http://research.microsoft.com/en-us/projects/ThreeHandPose/default.aspx



Pipe variation % FN @ FP=2%

Baseline DFE 2.18
Single aggregation area 3.15
No checkerboard sampling 2.42
Naive Bayes + Boosting 3.87
Plain linear SVM 34.1
Naive Bayes, MI bits 35.9
Naive Bayes, Rand bits 47.6
Only Depth 4.65
Only IR 5.23

Figure 2.Variations and parameters. Left: Error for several DFE and Ferns algorithm variations. See text for explanation. The result of plain linear
SVM applied to depth+IR pixels is also given as a baseline.Middle: False negative rate of the DFE as a function ofK. Right: False negative rate as a
function ofM for several training procedures. DFE is our baseline variation. For both SVM.Indep and SVM.Rand, SVM is used as final classifier. For
SVM.Indep the bits are selected usingR(c) score, but without PFS weight update, i.e. using initialZ[i] for all ferns (see Algorithm2). For SVM.Rand bits
are randomly selected. NB.Boosted is Naive-Bayes with fern boosting and entropy-gain bit choice.

Figure 3. Successes and failures of the DFE classifier:Pairs of
depth+IR images are presented, where the top row shows the IR images
and the bottom the depth images in every pair. The 3 pairs on theleft show
successfully classified pairs for the 3 hand shape classes considered (Open,
Closed, Lasso). The pairs on the right show miss-classification errors (false
negatives).

positive (FP) rate of2%. Accuracy figures reported here are
averaged over the three classes. We selected this approach
rather than multi-class error rate, as in each specific NUI
usage context the three classification scores are combined
in a different way.

4.3. Parameters and Variations

Success and failure examples of the DFE classifier can
be seen at Figure3. We now concentrate on understanding
the contribution to performance of algorithm components.

Complexity of layers 1: At the first layer we encode
patches into codeword indices, and its complexity is con-
trolled by the number of bitsK used for the encoding. In
Figure2 (middle) the classifier accuracy is plotted as a func-
tion ofK for fixedM = 50. Based on this graph, we select
the value ofK = 13 in our subsequent experiments, as it is
the minimal value which yet provide close to optimal accu-
racy.

Complexity of layers 2: At the second, spatial aggrega-
tion layer, complexity is controlled by several algorithmic
choices. First, we can use multiple aggregation areas, or a
single aggregation area containing the whole image for all
ferns. Second, we can use or avoid using the checkerboard
technique for computational saving. Results are reported
in Figure2 (left). Baseline DFE usesM = 50 ferns with
quadrant ferns, checkerboard policy. The number of ferns
used in the conditions ’single area’ and ’no checkerboard’

are reduced by a factor4 and2 to get classifiers with approx-
imately the same speed as the the baseline. The results show
the advantage of baseline DFE over alternatives, hence led
to its definition as ’baseline’.

Complexity of layer 3, optimization policy: Figure2
(left) shows the accuracy for several ensemble training
strategies. The simpler alternatives uses Naive Bayes,
where the leaf weights are based on class posterior prob-
abilities [6, 21]. The ferns are trained independently, with
bits chosen at random (Naive Bayes, Rand bits) or by max-
imization of information gain (Naive Bayes, MI). For these
alternatives, the false negative rate is high3. Also, further
increasing of the number ferns does not help as much as
in the DFE or boosting framework, as the ferns are learned
independently. Another alternative is training complemen-
tary ferns by boosting, with bits chosen to maximize the
information gain on the boosting-reweighted sample (Naive
Bayes + Boosting). This significantly improves accuracy
relative to MI and random selection, but is still less accu-
rate than DFE. Figure2 (right) shows the effect of number
of ferns,M , on the false negative rate for selected methods.

From the above results, we can conclude that using dis-
criminative (SVM) approach for both the final classifier and
selecting of the fern bits, significantly improves accuracy.

The table in Figure2 also shows that IR and depth are not
redundant, and using both of them significantly improves
accuracy relative to using only one of them.

4.4. Speed-Accuracy Trade-Off Comparison

We have compared the fern ensemble method to several
alternative architectures, which also have an emphasis on a
good speed-accuracy trade-off. The methods compared are:

• Random forest applied to pixel comparisons as sug-
gested by [15]

• A 3-stages pipeline: a) Fast dense SIFT features com-
putation using the VLFeat library [24]. b) Encoding

3Note that FN is measured at false positive rate of 2%. Hence, FNnear
50% is far better than random. At FP=10% the false negative rates of Naive
Bayes MI bits and Rand bits drops to 11% and 18% respectively.



Figure 4.Speed-accuracy trade-offs and comparison to other methods. Left: Best results of false negative rate under constraint of classification CPU
time for various methods and parameters for each method. For DFE,we modified values ofM, K. For random forest [15], the points shown are for one and
two trees of depth 21. Fast SIFT can achieves accuracy comparable to DFE, but at cost of more than×100 classification time.Middle: Accuracy obtained
by DFE as a function of training sample size. X axis is the fraction of training set size relative to the full set (420,000 images). Right: The classification
CPU time, as a function of training sample size. This is measuredfor several target false negative rates (for a fixed FP=2%).

into a bag of features using a random forest dictio-
nary [20]. c) SVM classification with a linear approxi-
mation of the histogram intersection kernel, according
to [25]. We also tried the same pipeline, but replacing
the fast SIFT with dense Daisy features[26].

All the methods were implemented in C/C++, using the
original author’s code when possible. They were chosen
for comparison as each of them was developed with the aim
of obtaining a good balance of speed and accuracy. Multi-
ple working points were tested for each of these methods,
representing various optimization for speed and accuracy.
For the fast SIFT method, shifting between speed and accu-
racy was done by changing the stride parameter, controlling
the density of the SIFT greed. For the Daisy we also choose
the Daisy complexity to optimize speed/accuracy, as recom-
mended in [26].

The (CPU time, accuracy) of the best working points ob-
tained by each of the algorithms, including DFE, are plot-
ted together in Figure4 (left). We see that random forest
can achieve similar classification time to that of DFE, but
is significantly less accurate (FN=10.6% vs. FN=2% for
DFE, for the same CPU budget). Consistent with [15], we
found that the best accuracy is achieved by training on a
small number of deep trees, with little improvement when
this number is increased. This leaves us with less flexibility
on controlling the tradeoff between accuracy and classifi-
cation time. There are several reasons why using 50 ferns
DFE is about as fast as using two trees. First, each fern op-
erates on relatively small number of pixels (50), which is
only ˜4% of the image. Second, calculating the ferns bits
requires less operations than forest with the same depth, as
discussed in Section3.2. Third, the number of bits per fern
is 13, while the depth of tree is 21. Also, the memory size
of the forest is in order of 80MB vs. 2.5MB of ferns. Since
80MB cannot fit into the cache, we pay with more cache
misses.

The accuracy of with fast SIFT and Daisy alternatives,
can approach the accuracy of the DFE. However, their clas-
sification time is two order of magnitudes longer. By opti-

mize them for speed we significantly loose accuracy with-
out getting to the target classification time.

In the next section, we show that in addition to high ac-
curacy and fast classification, DFE approach enable signif-
icant flexibility for various trade-offs of speed, accuracy,
memory size and generalization from various sizes of train-
ing set.

4.5. Training Sample Size and Memory

As discussed before, the fern ensemble architecture
trades speed and accuracy for sample size and memory. For
each training set size, constraints on memory and classifica-
tion time we optimize accuracy by tuningM andK. In this
section we show that increasing the training set size enable
us not only to improve accuracy, but also to significantly
reduce the classification time.

Figure 4 (middle) shows the effect of increasing the
training set size on FN, for fixedM andK. We modify
the training set size we use from ˜0.2% of the full set (820
images) to the full training set (420,000 images). The sub-
set of training set is selected randomly. As expected, the
false negative rate reduces with increase of training set size.

In our problem, however, even with a training set size of
˜30,000 samples (0.07 in x-axis of Figure4) the accuracy we
got met minimum requirements for the product. However,
even after full code optimization, the classification time sig-
nificantly exceeded the target budget. The question is if we
can reduce classification time by increasing the training set
size and modifyingM andK.

Figure4 (right) shows the classification time as a func-
tion of the of training set size, relative to the full set, for
various target false negative rates. We can see that for a
fixed target accuracy, the classification time can be reduced
by an order of magnitude, if we increase the training set
size by an order of magnitude. In general, as training set
size increases, we slightly increaseK and significantly re-
duceM to achieve same target accuracy with lower classi-
fication time. This can be explained by the effect ofK on
the capacity of each fern, and hence should be adapted to



LUT entries Ferns #(M) Bits # (K) % FN @ FP=2%

768 48 4 10.7
1536 96 4 7.78
3072 96 5 6.07
6144 192 5 5.42
12288 384 5 4.21
24576 384 6 2.97
49152 768 6 2.32

Table 1. DFE accuracy under memory limits. LUT entries is the
total number of entries in all the lookup tables (ferns) together,
which is2KM . In our implementation, each LUT entry requires
6 bytes - two bytes per class, representing the SVM weights.

the training set size. On the other hands, the accuracy can
be improved by increasingM , but at a significant cost of
classification time. These results are significant for build-
ing practical systems. While it is well know that increasing
training set size enables improvement in accuracy, here we
show that it can also reduce classification time significantly.

Another interesting tradeoff enabled in the DFE frame-
work is between memory and accuracy. Table1 presents
false negative rate versus memory consumption for a fern
ensemble. Memory consumption can be reduced by low-
ering eitherM or K, and in the table we chose the opti-
malM, K parameters for each memory limit point. From
the table we can see adding a memory constraint leads to
significant reduction in the number of bits per fern, and in-
creasing the number of ferns. The result is very different
from the case of optimizing for classification time, where
optimal number of bits is high. This is not surprising, as the
memory size increases exponentially with number of bits,
but classification time increases only linearly. The result
classification time is about 5-10 larger when we optimize
for memory instead of for speed. Note, however, that in
our baseline implementation, with 50 ferns and 13 bits the
memory size is about 2.5MB, which still fits into the cache.

4.6. MNIST result

We tested the relevance of the DFE classifier to non-
depth imagery on the MNIST digit dataset, containing
60, 000 training images of size28×28 from10 digit classes,
and 10, 000 test images. A DFE withM = 10 ferns
andK = 13 bits was trained, with quadrant ferns and no
checkerboard. The DFE was used as it was used for hand
pose, without any domain adaptation or pre-processing of
the digit images. The test error was0.77%, which is among
the best results obtained without the usage of virtual sam-
ples. The classifier uses only8320 pixel comparisons and
runs in0.011 millisecond, compared to2 − 20 millions of
floating point operations in the leadingCNN methods.

5. Conclusions and Further Work

We have seen that thediscriminative fern ensemble
framework enables a significant push of the accuracy-speed
envelope for visual recognition. Thin, efficient architecture,

and discriminative optimization were found important for
this purpose. In terms of architecture, it would be inter-
esting to extend the table-based approach to deeper models
with more table layers. Another interesting direction is to
analyze the trade-off between classification time and train-
ing sample size for other algorithms.
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