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Abstract

We present a novel method for multiple people tracking
that leverages a generalized model for capturing interac-
tions among individuals. At the core of our model lies a
learned dictionary of interaction feature strings which cap-
ture relationships between the motions of targets. These fea-
ture strings, created from low-level image features, lead to
a much richer representation of the physical interactions
between targets compared to hand-specified social force
models that previous works have introduced for tracking.
One disadvantage of using social forces is that all pedestri-
ans must be detected in order for the forces to be applied,
while our method is able to encode the effect of undetected
targets, making the tracker more robust to partial occlu-
sions. The interaction feature strings are used in a Ran-
dom Forest framework to track targets according to the fea-
tures surrounding them. Results on six publicly available
sequences show that our method outperforms state-of-the-
art approaches in multiple people tracking.

1. Introduction

Many computer vision tasks are related to the problem
of understanding the semantic content of a scene from a
video sequence. Humans are often the center of attention
of a scene, therefore, the ability to detect and track multiple
people from a video has emerged as one of the top tasks to
address in our field. A common approach to multiple peo-
ple tracking follows the idea of estimating the hypotheses
of the locations of people using a detector for each frame.
Those hypotheses are then associated in time, so as to form
consistent tracks for each individual. One of the problems in
tracking-by-detection methods is that they are highly depen-
dent on detection results. Methods that use a physical model
to estimate pedestrians’ motion [19, 25] are completely un-
aware of the effect of undetected pedestrians, which reduces
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Figure 1: We estimate the velocity of the pedestrian in im-
age coordinates by learning a mapping from image features
to pedestrian velocity using a Hough Random Forest (RF)
framework. The green arrow indicates the ground truth ve-
locity of the pedestrian, and in red we plot the votes made
by the corresponding leafs of the learned RF.

its effectiveness in semi-crowded environments, where it is
very common to observe occlusions and it is very hard to
estimate a pedestrian’s trajectory.

In this paper, we propose to construct a model that es-
timates how a pedestrian moves according to the motion
and appearance features around him/her. An advantage of
our approach is that we relax the dependency of tracking
on detections, since now we can compute the motion of a
pedestrian taking into account his/hers environment, even
if other pedestrians are not explicitly detected. The pro-
posed approach is based solely on image features and effi-
cient classification techniques, which means it can be po-
tentially implemented in real-time and therefore used for
tasks such as pedestrian intention detection in autonomous
car navigation.



1.1. Related work

Multiple people tracking is a key problem for many com-
puter vision tasks, such as surveillance, animation or activ-
ity recognition. Tracking is commonly divided in two steps:
object detection and data association. First, we detect ob-
jects in each frame of the sequence and second, the detec-
tions are matched to form complete trajectories. In order
to deal with crowded environments, where occlusions and
false detections are common, researchers have focused on
creating reliable detectors that can work even if parts of the
target are occluded [12, 11, 30, 29] as well as on obtaining
a more robust data association. The data association prob-
lem is usually solved on a frame-by-frame basis [17] or one
track at a time [2], but recent works show that it is more reli-
able to jointly solve the matching problem for all tracks and
all frames, either in discrete space using Linear Program-
ming (LP) [14, 34, 26, 3] or in continuous space [].

Most tracking systems work with the assumption that the
motion model for each target is independent, but in reality,
a pedestrian follows a series of social rules, i.e. is subject
to social forces according to other moving targets around
him/her. These have been defined in what is called the so-
cial force model (SFM) [13, 15] which has been used for
abnormal crowd behavior detection [22], crowd simulation
[24] and has only recently been applied to multiple people
tracking [27, 25, 31, 19, 6, 1] and sports analysis [18]. The
problem with these methods is that they are limited to a few
hand-designed force terms, such as collision avoidance or
group attraction. Furthermore, its inclusion in an LP frame-
work either requires an iterative approach as in [19] or com-
plex slower solvers as in [20, 5, 7]. At the same time, these
models depend heavily on detections, since the forces will
only be computed among detected pedestrians. In the case
of crowded scenes, partially occluded pedestrians will never
have an effect on the trajectory of detected pedestrians.

In this paper, we aim at performing multiple people
tracking from uncalibrated monocular images. For this
goal, we introduce the interaction feature strings, which en-
code information about a pedestrian’s velocity depending
on his/her environment. These feature strings are created
using only image features (and therefore requiring no 3D
information of the scene), and then used in a Random For-
est (RF) framework, which we train to estimate the velocity
of a pedestrian at a certain frame. Random Forests [4] have
gained popularity these last years for applications like pose
estimation [28] or object detection [12], but, to the best of
our knowledge, have not been used so far in tracking for
predicting an object’s future position. A clear advantage of
our method is that it relaxes the dependency on detections,
since the effect of a partially occluded (and potentially not
detected) pedestrian can still be encoded in the interaction
feature string, while it will be ignored by common tracking-
by-detection methods [19, 16, 25].
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Figure 2: Diagram of the proposed approach. From a new
video, we compute interaction feature strings (Section 2)
and use them to train a Random Forest (Section 3), which
will output the estimated pedestrian velocity. This informa-
tion is used directly for tracking in a Linear Programming
framework (Section 4).

1.2. Contributions

The contribution of this paper is threefold:

e We propose a way to effectively estimate a pedestrian’s
velocity in image coordinates which works even under
camera motion.

e We introduce the interaction feature strings, used to
encode pedestrian interactions from low-level image
features. These lead to a much richer representation of
the physical interactions between targets when com-
pared to the previously used hand-designed, physics-
based terms of the Social Force Model.

e We are able to encode the effect of undetected pedestri-
ans, therefore relaxing the dependency of most track-
ing methods on detections.

The paper is organized as follows: in Section 2 we
present how to compute interaction feature strings using
low-level features. Section 3 introduces the Random Forest
framework used to estimate pedestrians’ velocities, while in
Section 4 we give a brief description of our tracking frame-
work. The last two sections are devoted to experimental
results and conclusions.

2. Interaction feature string

Our method is based on what we call interaction feature
strings, which encode image features that represent a par-
ticular scene configuration. A scene Z(p!) is defined as a
patch centered around a detected pedestrian ¢ at time ¢ and
position (z,y) € R? in pixel coordinates. It has a size of
[liSh, hisw], Where h; represents the pedestrian’s height, s,
and s,, are scaling factors. The patches are scaled according
to the pedestrian’s height to obtain a scale-invariant repre-
sentation that allows us to deal with scenes both closer and
further away from the camera. We set the scaling factors to
sp = 1.1 and s,, = 1 for all experiments. An example of a
scene in shown in Figures 3(a), 3(f), 3(k), 3(p).
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Figure 3: Examples of features computed for four scenes, with Ng = 9 x 9 and Nrpr = 7. (a,f,k,p) Original image scene
centered around a pedestrian. (b,g,l,q) Mean Optical Flow (MOF). (c,h,m,r) Difference of Optical Flows (DOF). (d,i,n,s)
Ternary Optical Flow (TOF). (e,j,0,t) Ternary Angular Optical Flow (TAOF). For TOF and TOAF, the value 1 is represented

in white, —1 in grey and 0O in black.

We divide the scene in Np blocks and compute a set
of features per block. For different types of interactions
between pedestrians, different blocks will contribute to de-
scribing the scene. For example, in a scene where a pedes-
trian walks alone, as in Figure 3(a), the central blocks will
contain most of the relevant information. If there are more
pedestrians involved in a scene, the outer blocks will be-
come more and more relevant.

For each of the blocks, we compute several descrip-
tive features Fy(p!) = (Fbl(pf»), F2(pY)... Fbe (pf)) €
RN, where N ¢ is the total number of feature channels
per block and b is the block index. We concatenate the
block features into one interaction feature string F(pf) =
{Fy,(p)},'7 . Note that, since we are interested in motion
features, we use N g frames ahead of the scene we are an-
alyzing. We analyze the effect of the choice of Npg as well
as Np in the experimental section.

The features we use include:

e Mean Optical Flow (MOF): We take the Optical
Flow of a scene Z(p!) in several consecutive frames
{t,...,t+Npg},letuscall them OF, ..., OF; n, ..
Note that all Optical Flows are computed on the scene
centered around pﬁ, i.e. pedestrian ¢ at time ¢, regard-
less of the timestamp of the image. We then aver-
age the Optical Flows in time, divide the scene in Ng
blocks, and take the mean of the Optical Flows of the
pixels inside each block as feature channel. This yields
2 x Np feature channels per scene, one for each image
axis and block.

e Difference of Optical Flows (DOF): We take the Op-
tical Flows as before OF,...,OF. N, , and make
the difference between consecutive Optical Flows, i.e.
[OFt — OFt—la AN aOFt—NFR-i-l — OFt_NFR]. We
then divide the scene in N blocks, and take the mean
Difference of Optical Flows of the pixels inside each
block. We have again 2 x Np feature channels per
scene.

e Histogram of Optical Flows (HOF): We take the Opti-
cal Flows OFy, ..., OF ., and average them. We
then divide the scene in Npg blocks, and take the his-
togram of the angles of the Optical Flows of the pixels
inside each block. We use 8 bins for the histograms,
therefore we have 8 x Np feature channels per scene.

e Ternary Optical Flow (TOF): We compute OF; and
OF, v, . and take the mean of the flows inside each
of the Np blocks. We then compare the norm of the
two OF descriptors and create a new descriptor TOF.
Each bin b of the new descriptor, which corresponds to
a block in our scene, will have the following values:

0 if[|[OF(b)|| = |OF 4 npr, ()]
TOF(b) = 1 if |[OF;(b)[| > [|OF 4 ;. ()
—1 if[|OF;(0)[| < [|OF ¢y s (D)

We have Np feature channels per scene. The idea of
TOF is to capture the general trend of the motion of
the scene, in a similar way as is done in [33] for action
recognition. The TOF is useful to disambiguate be-
tween pedestrians walking in different directions, see
Figures 3(a)-3(e) and 3(k)-3(0).

e Ternary Angular Optical Flow (TAOF): As before, we
have OF, and OF, v, ., and take the mean of the
flows inside each of the Np blocks. We then compare
the angle of the two OF descriptors and create a new
descriptor TAOF. Each bin b of the new descriptor will
have the following values:

1 if Z(OF.(b),OF 4 np. (b))
—1 if Z(OF(b), OF 4N, (D))
0 otherwise
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The TAOF is useful to disambiguate between different in-
teractions, such as pedestrians walking together vs. pedes-
trians walking in opposite directions, see Figures 3(f)-3(j)
and 3(p)-3(t).



An example of the features for four different scenes is
shown in Figure 3. Note that we do not compensate for
camera motion, and therefore it is included in our feature
strings and will also be taken into account in the pedestrian
velocity estimation. This is an important property of our
feature strings, since we are tracking in image coordinates.
Once we have a descriptive set of features for a scene, the
goal is to train a Random Forest to be able to estimate the
velocity of a pedestrian.

3. Hough Random Forests

Once we have the set of interaction feature strings ob-
tained from training data, we need a framework that al-
lows us to estimate pedestrians’ velocities. We make use
of a powerful discriminative learning technique, Random
Forests. Given a scene, we compute the interaction feature
string out of low-level features and then use it as input for
the Random Forest to produce the most likely pedestrian ve-
locity. This information is then used in a probabilistic track-
ing framework, such as Linear Programming, as we detail
in Egs. (5) and (8), to obtain the final set of trajectories.

A Random Forest consists of a set of random trees [4]
that are trained to learn a mapping from a feature string
F(p!) to a hypothesis space H. In our case, hypothesis h
represents the velocity of a pedestrian v = [v,, v,]. Since
v is a continuous variable, we make use of Hough Random
Forests [12]. The mapping is learned as explained in Sec-
tion 3.1 and is used to solve the data association problem in
multiple object tracking as detailed in Section 4.

3.1. Training

For each scene Z(p!) at a given pedestrian position p¢,
we compute an interaction feature string F(p!). We also
assume we have the annotated ground truth velocity v} of
the pedestrian. Each tree 7" in the forest is therefore trained
with the set S = {F(pt), vt}. Each leaf L of the tree stores
the probability distribution of pedestrian velocities p(v|L).

Binary tests. Following the standard random forest
framework [8], we start training at the root and choosing
a binary test to separate the training set S into the two child
nodes, left and right, such that S, N S = (). At each child
node we follow the same procedure until a termination cri-
terion is met; in our case we define the maximum tree depth
Dr. The final node, called a leaf node, should contain the
training examples with similar features. We consider two
types of binary tests or weak classifiers:

1. A decision stump classifier:

i 7 (ot
31:{0, if 7/ (p) > 0

1, otherwise

2. A classifier that compares different features in differ-
ent blocks:
By— {0, ifF () > Rl 4o

1, otherwise

For each type of weak classifier, we perform a
set of tests, with randomly chosen parameters
{b,j,b1,b2,71,j2,71,72}. From this pool of binary
tests we choose the best one according to the split criterion
explained next.

Split criterion. A good classifier should split the parent
set in such a way as to minimize the uncertainty of the child
sets. We use a similar measure as [12], namely the offset
uncertainty, defined as:

H(S) =Y [[v—val? 3)
vES

where v 4 is the mean of all velocities in set S. At any given
node, the set is then evaluated with our pool of binary tests
and the one that minimizes the uncertainty is chosen:

(H(SL|Bs =0) + H(Sgr|Bs = 1))
“4)

arg min
8,b,3,b1,b2,51,J2,71,T2

3.2. Testing

At testing time, we feed each tree T' with the feature
string of the scene and aim to estimate the pedestrian ve-
locity. Based on the input F(p}), the test example reaches
a certain leaf L. We use a voting scheme to estimate the
final velocity of the pedestrian vgg. The votes are collected
from all the N trees of the forest.

4. Tracking with Linear Programming

In this section, we present the tracking framework where
we incorporate the velocity vgr learned by the Random For-
est in order to solve the data association problem and im-
prove pedestrian tracking.

Let O = {p!} be a set of object detections with p! =
(z,y,t), where (x,y) is the 2D image position and ¢ is the
time stamp. A trajectory is defined as a list of ordered ob-
ject detections T, = {pfcll,pffz, e ,pfgv }, and the goal
of multiple object tracking is to find the set of trajectories
T+ = {T}} that best explains the detections. This can be
formulated as a minimization with the following objective
function:

T* = arg;nin Z Cin(i)fm(i> + Z Cout(i)fout(i)
+Z%MNHZGMWM) (5)
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Figure 4: Pedestrian velocity estimation error (degrees) wrt. several parameters: (a) Number of frames Nrp used to compute
the features. (b) Number of blocks Np used to represent a scene. (c) Number of trees N of the Random Forest. (d) Depth
Dy of those trees. Results plotted for each dataset: BAHNHOF (black squares), SUNNYDAY (pink diamonds), JELMOLI
(cyan crosses), LINTHESCHER (blue stars). Mean results for all datasets (yellow triangles).

subject to edge capacity constraints, flow conservation at
the nodes and exclusion constraints. This formulation cor-
responds to a Linear Program. We refer the interested reader
to [19, 34] for more details on the formulation.

The costs Cy, and Cy,, define how probable it is for a
trajectory to start or end. The detection cost Cye is directly
linked to the probability of the detection according to the
detector used.

The cost of a link edge encodes the velocity estimation,
and is expressed as:

Ci(i,7) = wrr - Cre(i, j) + (1 — wgg) - Ca(7,7)  (6)

where Cy(, j) is a term based on the distance between
detections p! and p§+At:

t+At

Cali f) = —log (1 3 |<pjvmmp;|) o

where Vi is the maximum speed of a pedestrian in pixels.
The term Cgrg(%, j) includes the information given by the
Random Forest. It evaluates how close the detection pﬁ*At
is to the prediction of the position of p! given the estimated

velocity Vgg:

t+At_ t
Cre(i, j) = —log <1 _ e Vmitz:w))) ®

The confidence weight wgg determines how much we
trust the Random Forest estimation. We fix this value at
wrr = 0.9. The Linear Program in Eq. (5) can be effi-
ciently solved using Simplex [19] or k-shortest paths [3].

5. Experimental results

In order to evaluate the multiple people tracking per-
formance of the proposed algorithm, we use four publicly
available datasets: BAHNHOF, SUNNYDAY and JEL-
MOLI from [10] and LINTHESCHER from [9]. These
datasets are taken from a mobile camera moving around in
crowded scenarios. Note that we do not use calibration or
odometry data, since we track in image coordinates.

5.1. Pedestrian velocity estimation

This set of experiments aims at showing how well our
approach estimates the velocity of a pedestrian. The setup
of this experiment is the following: we use one sequence
for testing and the other three for training. We measure the
error in degrees between the estimated pedestrian velocity
and the ground truth.

In the first experiment, we analyze how results are af-
fected by the parameters of our method, namely: (i) the
feature parameters described in Section 2, i.e. the number
of blocks Np and the number of frames we take to com-
pute the features Npg; (ii) the Random Forest parameters
from Section 3, i.e. the number of trees N and the depth
of the trees Dp. Results are presented in Figure 4, for
each sequence individually and also the mean for all four
sequences, which is shown in yellow triangles.

As we can see in Figure 4(a), taking 3 frames to compute
the interaction feature strings is not enough to create a sig-
nificant motion estimator. If we take 11-14 frames, which
corresponds to 0.8-1 second, we obtain much more accurate
velocity estimations. In Figure 4(b), we plot the results re-
garding the number of blocks Np. Best results are obtained
with 15 x 15 or 21 x 21 blocks. If we use less blocks, it
is possible that the Optical Flow of different pedestrians is
mixed into one block, creating features which are not de-
scriptive enough for the level of detail we are interested
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Figure 5: (a) Normalized histogram of the features used at
the nodes of the Random Forest. (b) Normalized histogram
of the weak classifiers used at the nodes (B and B>).
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Figure 6: (a) Comparison of pedestrian velocity estimation error (degrees) obtained by Optical Flow prediction, Social
Force Model prediction and the proposed approach. (b) Histogram of velocity estimation errors given by Optical Flow. (c)
Histogram of velocity estimation errors given by the Social Force Model. (d) Histogram of velocity estimation errors given
by the proposed approach. Mean results on the BAHNHOF, SUNNYDAY, JELMOLI and LINTHESCHER datasets.

in. If we look at the parameters of the Random Forest, we
see in Figure 4(c) that in general using more trees yields
a lower error, as expected. The depth of the trees, on the
other hand, reaches an optimum at 15, as we can see in Fig-
ure 4(d). After that, the Random Forest suffers from over-
fitting, specially for datasets with less training data, such
as BAHNHOF, SUNNYDAY or LINTHESCHER. For JEL-
MOLI (shown as cyan stars), which has the largest amount
of training data, results are greatly improved once we reach
depth 15 or more. For tracking, we take the values of
NFR = 11,NB = 15, DT =15 andNT = 10.

We also plot in Figure 5(a) a normalized histogram of the
features used by each node to split the data. The Histogram
of Optical Flows (HOF) is the one that is most used by the
Random Forest to split the data, since it contains a lot of
detailed information about the scene. Note in Figure 5(b),
that the decision stump weak classifier or binary test By
(see Section 3.1) is by far the most used, since the Optical
Flow of the pedestrian we are tracking is the most important
source of information to determine his/her velocity. The
other classifier By is used mainly to disambiguate between
difficult situations, e.g. when two pedestrians cross vs. when
they walk together.

The second experiment aims at comparing the perfor-
mance of our method with two baselines: (i) the Social
Force Model (SFM) [13] and (ii) the Optical Flow (OF). We
compare how well each method can estimate the velocity of
a pedestrian. Note that the SFM is computed in 3D real
world coordinates and contains three terms, namely con-
stant velocity assumption, collision avoidance and group at-
traction, as in [19, 31, 25]. The Optical Flow method takes
the mean Optical Flow of the central block of our method as
velocity of the pedestrian. These baselines will also be used
later for tracking. In Figure 6(a), we show the error in de-
grees of each method. As we can see, the proposed method
is able to estimate a pedestrian’s velocity 20 degrees more
accurately than SFM, and up to 40 degrees more accurately
than OF. In Figures 6(b), 6(c) and 6(d) we plot the quan-
tized relative frequency of the velocity estimation errors in

degrees. As we can see, our method makes more than 50%
of the estimations with less than 10 degrees of error, com-
pared to 20% of OF and 30% of SFM.

5.2. Multiple people tracking: knowledge transfer

In this section, we apply the learned model for multi-
ple people tracking. We compare the results with [32, 23]
which are presented on the BAHNHOF and SUNNYDAY
datasets. We use the same detections and the metrics de-
scribed in [21], which measure: Recall (correctly matched
detections / total detections in ground truth); Precision (cor-
rectly matched detections / total detections in the tracking
result); number of Mostly Tracked trajectories (MT, > 80%
of the track is correct); Mostly Lost (ML, < 20%); Par-
tially Tracked (PT, > 20% and < 80%); track fragmen-
tations (Frg), number of times a ground truth trajectory is
fragmented; and total number of identity switches (Ids).

Furthermore, since 3D calibration is available for both
sequences, we compare with the following state-of-the-art
trackers which use 3D detections:

e [34], a tracking algorithm based on Linear Program-
ming.

e [25], which includes social behavior, using the code
provided by the authors.

e [19], which includes social and grouping behavior on
a Linear Programming framework, using the code pro-
vided by the authors.

We also create two baselines using the same Linear Pro-
gramming formulation as presented in this paper. For all 3
methods, the same parameters will be used:

e LP + 2D: Linear Programming using only pixel dis-
tance between pedestrians to solve the data association
problem.

e LP + OF: Linear Programming with pedestrian veloc-
ity estimation coming only from Optical Flow.

e Proposed: Linear Programming formulation presented
in this paper with pedestrian velocity estimation
trained using Random Forests.



Method Rec. Prec. MT PT ML Frg Ids
Zhang et al. [34] 74.6 77.8 55.6 38.1 6.2 178 138
Leal-Taixé et al. [19] 74.1 75.3 55.1 369 7.9 184 131
Pellegrini et al. [25] 72.3 84.1 51.6 42.7 5.6 206 77

Milan et al. [23] 77.3 87.2 664 254 82 69 57
Yang & Nevatia [32]  79.0 90.4 68.0 248 7.2 19 11
LP+2D 80.7 83.6 64.1 29.6 6.2 91 70
LP + OF 76.1 80.2 55.9 33.5 10.5 104 75
Proposed 83.8 79.7 72.0 233 4.7 85 71

Table 1: Results on BAHNHOF and SUNNYDAY datasets.
MT = mostly tracked. PT = partially tracked. ML = mostly
lost. Frg = fragmented tracks. Ids = identity switches.

We show the comparative results averaged for both
datasets in Table 1. As we can see, our method obtains
the highest recall rate, outperforming state-of-the-art by al-
most 5%. Precision is slightly lower, mostly due to dou-
ble detections which create ghost trajectories easily treated
during post-processing. A high recall rate is more meaning-
ful for tracking, as is also shown by the fact that we have
a mostly tracked (MT) rate of 72% vs. 68% of state-of-the-
art. We also see that results with LP+2D are better than with
LP+OF, which estimates a pedestrian velocity only with the
Optical Flow direction. Even though the proposed method
strongly relies on OF information, its integration within our
framework increases the rate of mostly tracked (MT) pedes-
trians by 8% when compared to LP+2D. Note that LP+2D,
LP+OF and the proposed method all use the same parame-
ters for the LP. In general, methods working in 3D and with
Social Force Models depend highly on the proper calibra-
tion of the cameras. Since odometry information is found
automatically and is prone to errors, this severely affects the
efficacy of [19] and [25].

Next, we show the results on each sequence separately.
Aside from the four sequences used before, we also re-
port results on CROSSING and PEDCROSS?2 from [?9], for
which we do not have odometry information, and there-
fore we cannot report the results of methods that work
with 3D coordinates. For the sequences BAHNHOF and
SUNNYDAY we use the detections of [32], while for
the LINTHESCHER, JELMOLI, CROSSING and PED-
CROSS2, we use a part-based model detector [11].

In Table 2 we can see the results on all six sequences.
The proposed method outperforms all other methods with
higher recall rates and less mostly lost (ML) tracks. For
SUNNYDAY and CROSSING, we also obtain few identity
switches, 3 and 5 respectively. As we can see, even if Opti-
cal Flow features contain a lot of information on the pedes-
trian velocity, their naive use leads to a poor performance
as shown by the results obtained with LP+OF. This shows
that the proposed method is able to take the most out of a
feature channel (OF) that on its own is not able to provide
good velocity estimations.

Finally, we show some examples of velocity estimation
in Figure 7, where the ground truth velocity in pixel coor-

Dataset ~ Method Rec. Prec. MT PT ML Frg Ids
[19] 73.3 754 51.1 415 7.4 155 107
[25] 71.6 849 46.8 489 43 173 62
Bahnhof LP+2D 79.2 85.8 60.6 34.0 54 80 62

LP+OF 753 81.5 532 372 96 90 67
Proposed 82.4 80.6 70.3 25.5 42 81 68

[19] 78.1 753 733 16.7 10.0 29 24
[25] 75.5 80.5 66.6 233 10.1 33 15
Sunnyday LP+2D  87.5 73.7 80.0 10.0 10.0 11 8
LP+OF 820 719 633 26.7 100 12 6
Proposed 90.4 75.6 80.0 13.3 6.7 4 3

[19] 61.1 64.6 23.1 37.0 399 149 107
[25] 59.7 75.2 20.2 404 394 168 44
Linthesch. LP+2D  66.8 62.4 33.6 29.3 37.1 144 115
LP+OF 64.8 604 279 33.2 389 140 40
Proposed 67.9 58.6 31.7 33.2 35.1 172 132

[19] 554 70.6 149 51.1 340 36 25
[25] 535 76.7 17.0 46.8 36.2 48 15
Jelmoli LP+2D  62.8 68.2 27.5 40.5 32.0 30 25
LP+OF 51.1 663 19.1 425 384 14 15
Proposed 64.7 64.4 27.7 404 319 37 32
LP+2D 779 613 385 34.6 269 12 9
Crossing LP+OF  63.5 66.9 269 38.5 346 8 6

Proposed 78.8 56.6 42.3 30.8 26.9 8 5

LP+2D 57.6 62.6 26.0 36.0 38.0 71 65
Pedcross2 LP+OF 43.2 68.8 10.7 43.3 46.0 62 42
Proposed 58.2 60.0 25.3 40.7 34.0 67 72

Table 2: Results on six publicly available sequences. MT =
mostly tracked. PT = partially tracked. ML = mostly lost.
Frg = fragmented tracks. Ids = identity switches.

dinates is plotted in a green arrow and the one estimated by
our method in a red arrow. We can see the high accuracy of
the velocity estimations, even when the pedestrian is walk-
ing at low speed or along with the camera motion.

6. Conclusions

In this paper, we presented a novel method for multiple
people tracking on monocular images. Using only low-level
image features, we computed what we call the interaction
feature strings, which contain not only a rich representa-
tion of the velocity of the pedestrian, but also of the phys-
ical interaction between targets. The latter was previously
modeled using the Social Force Model, which needed ac-
curate 3D information of the pedestrian’s position and was
highly dependent on the detection rate. On the contrary, our
method implicitly encodes the effect of undetected targets,
making the tracker more robust to partial occlusions. The
interaction feature strings are then used to train a Random
Forest to estimate the velocity of a pedestrian. Results on
six publicly available datasets show that our method outper-
forms state-of-the-art approaches in multiple people track-
ing, obtaining higher recall rates and lower rates of com-
pletely untracked pedestrians.



Figure 7: Examples of estimated pedestrian velocities (red arrow) vs. ground truth velocities (green arrow). The proposed
method is able to estimate both direction and norm accurately, even in cases where pedestrians have very low speed.
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