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Abstract

A novel visual tracking algorithm using patch-based ap-
pearance models is proposed in this paper. We first divide
the bounding box of a target object into multiple patches
and then select only pertinent patches, which occur repeat-
edly near the center of the bounding box, to construct the
foreground appearance model. We also divide the input im-
age into non-overlapping blocks, construct a background
model at each block location, and integrate these back-
ground models for tracking. Using the appearance models,
we obtain an accurate foreground probability map. Finally,
we estimate the optimal object position by maximizing the
likelihood, which is obtained by convolving the foreground
probability map with the pertinence mask. Experimental re-
sults demonstrate that the proposed algorithm outperforms
state-of-the-art tracking algorithms significantly in terms of
center position errors and success rates.

1. Introduction

Object tracking is a fundamental vision tool to facil-
itate various higher-level applications, including surveil-
lance, object recognition, event analysis, and intelligent
robotics. Even though many attempts have been made to
develop efficient tracking algorithms, it is still challenging
to detect and trace objects with illumination variations, pose
changes, complex motions, and background clutters in a re-
liable manner. For robust tracking under these adverse con-
ditions, it is essential to design effective appearance models.

Recently, many appearance models have been pro-
posed [22, 24], and tracking algorithms can be roughly
divided into two categories according to their appearance
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models: bounding box models [3, 4, 7, 9] and patch mod-
els [5, 11, 12, 14, 16]. A bounding box model uses the entire
bounding box of a target object to extract object features,
such as color, texture, and motion. It is sensitive to rapid
and severe changes in structural appearance, which often
occur in dynamic sequences, e.g. movies and sports videos.
On the other hand, a patch model divides the bounding box
into multiple smaller patches and extracts features for each
patch separately. It can address appearance changes in a
target object more flexibly, but it may decrease tracking ac-
curacy when some foreground patches are not clearly dis-
tinguishable from background patches.

In this paper, we propose novel appearance models for
both foreground and background to achieve reliable and ac-
curate tracking. We first decompose the bounding box in the
first frame into multiple patches and then select only per-
tinent patches, whose color histograms are frequently ob-
served near the center of the bounding box, to construct
the foreground appearance model. Moreover, we design
multiple background appearance models to represent color
histograms locally and adaptively. Then, by exploiting the
foreground and background appearance models, we obtain
the foreground probability map. Finally, we determine the
optimal object position by convolving the foreground prob-
ability map with the pertinence mask, which records the
likelihood that each pixel location within the bounding box
belongs to the target object. This work has the following
contributions:

1. Pertinent patch selection for an accurate foreground
appearance model.

2. Localized multiple background appearance models.

3. Convolution scheme between the foreground proba-
bility map and the pertinence mask to suppress back-
ground clutters.

The rest of the paper is organized as follows: Section 2
summarizes related work. Section 3 overviews the proposed
algorithm in the Bayesian framework. Section 4 proposes



the appearance models, and Section 5 describes the tracking
process. Section 6 presents experimental results. Finally,
Section 7 draws conclusions.

2. Related Work

Histogram models: Comaniciu et al. [7] proposed a
nonrigid object tracking algorithm, which detects a target
object to minimize the Bhattacharyya distance between the
color histograms of reference and target bounding boxes.
Their histogram-based appearance model, however, is sen-
sitive to occlusions, since it loses spatial information. To al-
leviate this drawback, Adam et al. [1] divided the reference
bounding box into multiple patches to extract patch-based
histograms separately. He et al. [10] also decomposed a tar-
get object into overlapping regions, and constructed a his-
togram for each region using different weights of pixels.

Local part tracking: Hua and Wu [11] tracked local
parts of a target object independently, and reduced the false
detection rate using the relationships among the local parts.
Nejhum et al. [ 19] approximated a target object with a small
number of rectangular blocks, tracked, and refined the block
positions based on the object contour. Kwon and Lee [14]
employed a star model to connect local patches to the object
center. Cehovin er al. [5] proposed a coupled-layer model,
which combines local appearance with global appearance
to describe a target object. They connected local patches
using a triangulated mesh. Also, Yao et al. [23] proposed
an online learning algorithm to exploit the relation between
an entire object and its local patches implicitly.

Patch-based appearance models: Tang and Peng [20]
employed patch models in two scales: large scale patches
are used to discard unreliable small scale patches, and small
scale patches are used to estimate the confidence of each
input patch. In [16, 12], sparse dictionaries are used to de-
scribe patches in a bounding box. Liu et al. [16] measured
the similarity between two objects, based on the sparse co-
efficient histograms of the patches within those objects. For
more accurate tracking, Jia e al. [12] proposed an align-
ment pooling algorithm, which used sparse coefficients di-
rectly, instead of histograms or kernel densities, to measure
the similarity. These algorithms, however, consider fore-
ground appearance models only, and thus may fail when the
background contains a region similar to the target object.

Foreground probability (or confidence) map: Avi-
dan [3] proposed the ensemble classifier to estimate a fore-
ground probability map, on which the mean shift localiza-
tion is performed to detect a target. Wang et al. [21] seg-
mented an image into superpixels, and estimated the fore-
ground probabilities of the superpixels. They adopted the
Bayesian tracking framework [2] to track a target based on
the probability map.

3. Bayesian Tracking

We adopt the Bayesian framework [2] to formulate the
proposed tracking algorithm. Let x; and z; be the state and
the observation at time ¢, respectively. The posterior prob-
ability of x; given the observations z1.; = {z1,22,...,2}
can be written as

P(Xt|21:t) = Oétp(zt|Xt)P(Xt|Zl:t71)> (D

where v is a normalization term, p(z;|x;) is the likelihood,
and p(x¢|z1.4—1) is the prior probability of the state x;. We
define the state x; as the position of the bounding box
for the tracked object at time ¢. The proposed tracking algo-
rithm finds the optimal X; to maximize the posterior proba-
bility of the position given the appearance information z1 .,

X; = argmax p(X¢|z1.¢)- 2

The prior probability of x; is assumed to be uniformly
distributed within a search region, given by

if Xt € Rt,
otherwise,

1
p(Xt|z1:4-1) = { 6’ (3)
where R; is the search region, centered at the estimated po-
sition X;_7 of the bounding box {2;_; at time ¢ — 1. Also,
N is the number of candidate positions in R;. Hence, max-
imizing the posterior in (2) is equivalent to maximizing the
likelihood p(z:|x;). Thus, the likelihood design is one of
the most important factors in object tracking.

4. Patch-Based Appearance Models

Our appearance models use an HSV color histogram
with 48 bins: 16 bins for each channel of the hue, satura-
tion, and value. However, extracting a color histogram from
an entire bounding box may lose local color information,
leading to inaccurate tracking [7]. We propose patch-based
appearance models for the foreground and the background,
respectively, which obtain a color histogram locally from
each image patch smaller than the bounding box.

4.1. Foreground Appearance Model

In the first frame, the bounding box 2y of a foreground
object is provided manually or by an object detection algo-
rithm. Figure 1(a) illustrates the bounding box (red), which
contains the object to be tracked (blue). We decompose
the bounding box (2; into non-overlapping patches of size
8 x 8 and obtain a color histogram from each patch. In
Figure 1(a), the bounding box contains background infor-
mation as well, degrading the foreground probability map
in Figure 1(b). To construct a more accurate foreground
appearance model, we select only pertinent patches, which
convey the foreground information, from the bounding box
automatically.
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Figure 1. Pertinent patch selection: All patches in the bounding
box in (a) are used to obtain the foreground probability map in (b),
whereas only pertinent patches in (c) are used to obtain the better
map in (d). The bounding box is shown in red, the selected patches
in green, and the object to be tracked in blue, respectively.

We observe that foreground patches tend to be near the
center of the bounding box, whereas background patches
near the box boundary. Moreover, even when a background
patch is located near the center, it often has similar patches
in terms of appearance near the boundary. Based on these
observations, we assign a pertinence score to each patch.
The notion of pertinence is related to the saliency based on
the histogram contrast [6]. In [6], the saliency of a pixel
is proportional to its rarity, which is defined as the sum of
the differences from the pixel to the other pixels. On the
contrary, the proposed pertinence score of a patch represents
the frequency of the patch appearance within the bounding
box.

We define a shrunken region Q7 and an expanded region
Q{E , which have the same center as the bounding box €;.
When the size of Q; is w x h, those of Qf and QF are
0.6w x 0.6h and (w + 16) x (h + 16), respectively. We
decompose the expanded region Q¥ into non-overlapping
patches of size 8 x 8 and obtain their color histograms. We
then compute the saliency s (i) of the ith patch in 2, with
respect to the expanded region Q¥ as

sP(i) = min ZH D7, (€h)

where c(4) is the color histogram of the ith patch in 21, and
c®(j) is the color histogram of the jth selected patch from
QF. Note that s ( ) minimizes the difference between c(7)
and the selected ¢ (j)’s. Therefore, s¥ (i) is the sum of the
distances from c(¢) to its K nearest neighbor histograms
within the expanded region Q.

Similarly, we compute the saliency s° (i) of the ith patch
in €27, with respect to the shrunken region 03,

$%(i) = min Z”C D¢ s (5)

where ¢ (j) is the color histogram of the jth selected patch
from 7. Note that the ith patch is likely to be a foreground
one when s° (i) is small. This is because a foreground patch
tends to have many similar patches within €2{. In contrast,
a background patch often has a large saliency s° (7).

Next, we compute the pertinence score (7) for the ith
patch in ; as
N0

1/)(2) - Ss(i) . (6)
Note that 0 < (i) < 1, since Qf C QF and thus
s9(i) > sP(i). When the ith patch contains the background
information, s¥ (i) is usually much smaller than s°(i). In
general, a background patch has similar patches in the ex-
panded region, but not in the shrunken region. In contrast,
when the ith patch contains the foreground information,
sF (i) and s°(4) tend to be similar, and the pertinence score
1(1) is near 1. Therefore, the pertinence score () indi-
cates the likelihood that the ith patch belongs to the fore-
ground object.

If K in (4) or (5) equals the number of all patches in
QF or QF, sP(i) or s%(i) becomes the histogram con-
trast [6]. However, when K becomes large, some small
regions within the foreground object may yield larger s°
and small pertinence scores. Therefore, we fix K = 4.

We select the ith patch as pertinent patch, when (i) >
~v. We set v = 0.56. To remove outliers from the per-
tinent patch selection, we group the selected patches into
connected components. Then, we eliminate the connected
components whose sizes are smaller than the quarter of the
largest component. In Figure 1(c), green patches represent
pertinent ones. The pertinent patch selection improves the
accuracy of the foreground probability map, as shown in
Figure 1(d).

4.2. Multiple Background Models

The patch-based model has the advantages in handling
photometric and geometric changes in a target object, but
also the weakness that background patches are less dis-
tinguishable from foreground patches with a smaller patch
size. The conventional bounding box models [3, 9] con-
struct a single background model. However, in the proposed
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Figure 2. Background model construction: For blocks within the
bounding box 21, the background models are imported from the
nearest available blocks, i.e. B2 from B, and B3 and B, from Bs.

patch-based approach, the single background model does
not provide sufficient information for the tracker to separate
background patches from foreground ones. Therefore, we
propose using multiple background models.

We divide an input image into non-overlapping blocks
of size 8 x 8 and construct a background model at each
block location. Let B; denote the background model for the
jth block location, which maintains recent color histograms
observed at that location. In the first frame, 3; is initialized
with the color histogram of the jth block, if it is outside
the bounding box €2;. On the other hand, if the jth block
is within €4, B; is initialized with the color histogram of
the nearest available block. For example, in Figure 2(a), the
background models B,, B3, and B, import the background
color histograms from the nearest available blocks outside
Qq: By from By, and Bs and B4 from Bs.

From the second frame, we update the background mod-
els according to tracking results. After estimating the loca-
tion of the bounding box );, we update the models only
for the blocks outside ;. We add the color histograms
of those blocks into the corresponding background models,
which are implemented as queues. Each queue keeps ten
histograms, and the oldest histogram is discarded when a
new histogram is added.

5. Tracking

At time ¢, we define a search region R;, which includes
the bounding box {2;_; obtained at time ¢ — 1. Then, we
estimate the foreground probability of each pixel within R;,
by employing the foreground and background models. We
estimate the likelihood p(z;|x;) in (1), by convolving the
foreground probability map with the pertinence mask. Fi-
nally, we obtain the optimal position X; of the bounding box
Q;, which maximizes the likelihood p(z:|%;)

5.1. Foreground Probability

Suppose that the size of 2;_; is w x h. Then, we set the
size of the search region R; to (w+2d) x (h+26), where &
is set to 30 in this work. We divide R; into non-overlapping
patches of size 8 x 8. We extract the input color histogram
ci? from the mth patch P,,. Among the foreground his-
tograms of the pertinent patches, we find the two nearest
histograms ¢ and ¢ to c}l! in the feature space, using the
randomized k-d trees [17]. We also employ the cross-bin
metric [15] to measure the distance between histograms to
reduce the effects of quantization errors in the histogram
construction. Then, we compute the foreground distance dy
as the average of the two nearest distances.

To compute the background distance dy,, we employ only
the 25 local background models, which are geometrically
close to the mth patch P,,, instead of using all background
models. Similarly to d¢, we compute the background dis-
tance dy, as the average distance from the input histogram
¢! to the two nearest histograms c{, and ¢ in the 25 back-
ground models.

Consequently, the foreground probability of each pixel u
in P, is given by

F(u)—( il )2 %
B df-i-db ’

We normalize I'(u) into the range of [0,1], and then set
I'(u) = 0 when the normalized value is smaller than 0.9.

5.2. Pertinence Masking for Likelihood Estimation

We may select the position x;, which maximizes the
sum of the foreground probabilities within the correspond-
ing bounding box, as in [3]. This approach is effective,
when the bounding box includes only foreground pixels,
as shown in Figure 3(a). However, when the bounding
box includes some background pixels with relatively large
foreground probabilities, as shown in Figure 3(b), it may
yield an inaccurate result. Therefore, we suppress the fore-
ground probabilities of those background pixels using the
pertinence mask M, in Figure 3(c).

The pertinence mask M, is defined as the window of
foreground probabilities, which is updated at time ¢ — 1. It
has the same size as the bounding box. Then, we compute
the likelihood p(z|x;) by

p(ze|xt)
N ﬁ Z (D(x¢ + k)M, (k) + D(x¢ + k)M, (k)),
k
)]

where | M| is the number of pixels within the mask, k de-
notes the relative position in M,, I'(-) = 1 — T'(+), and
M() =1 — M(-). The first term T'(x; + k)M, (k) in (8)
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Figure 3. Likelihood estimation using the pertinence mask: Fore-
ground and background pixels are shown in blue and green, re-
spectively. The numbers are the foreground probabilities. The
bounding box is at the correct position in (a), whereas the bound-
ing box is drifted incorrectly due to the background pixels with
high probabilities in (b). The pertinence mask M, in (c) prevents
this drift in (d).

counts valid foreground probabilities, matched with the per-
tinence mask, while the second term I'(x; + k)M, (k) im-
plicitly gives penalties to foreground probabilities on non-
pertinent pixel locations. Using the pertinence mask, we
can track the object more reliably, as shown in Figure 3(d).

The foreground probabilities of pixels in a target object
vary at each frame. When the tracked position X; satisfies
p(z¢|%:) > 0.75, we update the pertinence mask M; to
Mt+1 via

Mip1(k) = (1 = M) My(k) + AT'(x; + k) 9

where A is an update factor. It is fixed to A = 0.0005. If
the tracked position does not satisfy the condition, M1 =
M;.

6. Experimental Results

We report the performance of the proposed algorithm
on ten test sequences: “Liquor,” “Box,” “Board,” “Lem-
ming,” [ 18] “Basketball,” “Skating2,” [13] “Bolt,” “Bird2,”
“Girl,” [21] and “Occlusionl” [1], whose sample frames
are shown in Figure 4. We compare the proposed algo-
rithm with four state-of-the-art trackers: STRUCK tracker
(ST) [9], superpixel tracker (SPT) [21], compressive tracker
(CT) [25], and local histogram tracker (LHT) [10]. We use
illumination invariant features for LHT, since these features

yield better tracking results than intensity features. The
proposed algorithm is implemented in C++ without opti-
mization, and achieves the average processing speed of 3.4
frames per second on a computer with a 3.3 GHz processor
and 8 Gbyte RAM.

Figure 5 compares the tracking accuracy of the pro-
posed algorithm with those of the conventional algorithms,
in terms of center position errors. A center position er-
ror is defined as ||x, — X||, where x, is the center posi-
tion of the ground truth bounding box and X is its esti-
mated position by a tracker. The proposed algorithm pro-
vides smaller center position errors than the conventional
algorithms on most test sequences, especially on “Basket-
ball,” “Bird2,” “Bolt,” “Box,” “Lemming,” and “Skating2.”
In “Basketball,” “Bolt,” and “Skating2,” there are fast ob-
ject motions, but the proposed algorithm handles the rapid
structural changes effectively using patch-based foreground
appearance models. Moreover, in “Basketball,” “Bolt,” and
“Box,” the proposed algorithm alleviates the effects of back-
ground clutters by employing multiple background mod-
els. In “Board,” “Bird2,” and “Lemming,” the proposed
algorithm suppresses background information within ini-
tial bounding boxes, based on the pertinent patch selection
and masking, to provide reliable tracking results. Note that
the proposed algorithm yields relatively bad performance
on the beginning part of the “Girl” sequence. It is because
the girl is fully occluded by a man at the 111th frame.

Table 1 compares the average center position errors, as
well as the average success rates that are measured by the
PASCAL scoring method [8]. The PASCAL method de-
clares a frame as successful, when the overlapping area
between the ground truth bounding box and the estimated
bonding box is larger than half of the total area occupied
by the two boxes. The PASCAL method then counts the
number of successful frames. For each metric on each test
sequence, the best performance and the second best one are
marked in bold fonts and underlined, respectively. We ob-
serve that the proposed algorithm yields the center posi-
tion error of 20 pixels and the success rate of 85% on av-
erage, which outperforms the conventional algorithms sig-
nificantly.

Figure 6 compares the tracking results qualitatively. In
the “Board” and “Skating2” sequences, the initial bounding
boxes include large portions of the background. Therefore,
the conventional algorithms cannot track the target objects
correctly. In contrast, the propose algorithm constructs an
accurate foreground appearance model by excluding those
background patches, and tracks the objects reliably. Also,
some small parts in the background, which are similar to
a target object, degrade the tracking performance of the
conventional algorithms. For example, in “Basketball,” the
players wear the uniform with the same green color. Hence,
the conventional algorithms suffer from the ambiguity. On
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Figure 5. Comparison of the center position errors of the proposed algorithm and the conventional algorithms: ST [9], SPT [21], CT [25],

and LHT [10].

the contrary, the proposed algorithm employs only local in-
formation to model the background appearance. Thus, we
can alleviate the effects of such ambiguity.

7. Conclusions

In this paper, we proposed a robust visual tracking al-
gorithm, which uses patch-based appearance models adap-

tively. We first introduced the notion of pertinence score
to construct a more accurate foreground model by exclud-
ing the background information within a bounding box. We
also proposed using multiple background models to repre-
sent different locations locally and adaptively. We gener-
ated a foreground probability map, which was then con-
volved with the pertinence mask to suppress the effects
of background clutters. Experimental results demonstrated



Table 1. Comparison of the center position errors (CE) and the success rates (SR) [8] between the proposed algorithm and the conventional
algorithms: ST [9], SPT [21], CT [25], and LHT [10]. The best result is marked in bold fonts and the second best result is underlined.

Sequence CE SR
ST SPT CT LHT Proposed | ST SPT CT LHT Proposed
Basketball | 195 7 67 163 7 0.03 0.83 026 0.02 0.98
Bird2 54 11 22 12 12 036 097 053 093 0.9
Board 38 158 90 19 18 0.7 0.14 0.09 0.94 0.95
Bolt 392 7 352 8 13 0.02 0.67 0 0.78 0.56
Box 9 217 32 108 14 095 008 039 04 09
Girl 138 12 191 269 38 0.2 095 0.04 0.07 0.79
Lemming | 21 89 125 83 13 08 059 0.19 047 0.88
Liquor 128 8 179 27 53 0.4 099 021 0.72 0.67
Skating?2 142 278 73 17 15 0.19 003 0.16 0.7 0.83
Occlusionl | 17 34 20 13 17 1 0.26 0098 1 0.99
Average 113 82 115 72 20 047 055 029 0.6 0.85

that the proposed algorithm achieves more accurate tracking
results than the conventional state-of-the-art trackers.
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Figure 6. Examples of the tracking results of the proposed algorithm and the conventional algorithms: ST [9], SPT [21], CT [25], and
LHT [10].



