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Abstract

Hashing technique has become a promising approach for
fast similarity search. Most of existing hashing research
pursue the binary codes for the same type of entities by
preserving their similarities. In practice, there are many
scenarios involving nearest neighbor search on the data
given in matrix form, where two different types of, yet
naturally associated entities respectively correspond to its
two dimensions or views. To fully explore the duality
between the two views, we propose a collaborative hashing
scheme for the data in matrix form to enable fast search
in various applications such as image search using bag of
words and recommendation using user-item ratings. By
simultaneously preserving both the entity similarities in
each view and the interrelationship between views, our
collaborative hashing effectively learns the compact binary
codes and the explicit hash functions for out-of-sample
extension in an alternating optimization way. Extensive
evaluations are conducted on three well-known datasets
for search inside a single view and search across different
views, demonstrating that our proposed method outper-
forms state-of-the-art baselines, with significant accuracy
gains ranging from 7.67% to 45.87% relatively.

1. Introduction

Recently hashing technique has attracted great attentions
in fast similarity search [3, 5, 12–15, 18]. Based on the
concept of locality sensitivity [7], it represents data points
using the binary codes that preserve the original similarities
among data. The retrieval of similar data points can then
be completed in a sublinear or even constant time, by
Hamming distance ranking based on fast binary operation
or hash table lookup within a certain Hamming distance.
Moreover, the binary compression of original data can
largely reduce the storage consumption.

Existing hashing approaches usually find the compact

binary codes by exploiting the data correlations among
the data entities (e.g., the cosine similarities between
feature vectors). In practice, there are many scenarios
involving nearest neighbor search on the data matrix with
two dimensions corresponding to two different coupled
views or entities. For instance, the classic textual retrieval
usually works based on the term-document matrix with
each element representing the correlations between two
views: words and documents. Recently, such bag-of-
words (BoW) model has also been widely used in computer
vision and multimedia retrieval, which mainly captures the
correlations between local features (even the dictionaries
using sparse coding) and visual objects [16, 17]. Besides
the search applications, the rapidly developed recommen-
dation studies based on collaborative filtering, analyzing
relationships between users and interdependencies among
items to identify new user-item associations, also impose
strong requirements on the nearest neighbor search with a
collected rating matrix between users and items [2, 10, 20].

In the literature, rare works have been reported to
regard the hashing problem with the matrix-form data,
considering the duality between different types of entities or
views. It is difficult to directly apply the traditional hashing
methods to simultaneously hashing two types of entities
and meanwhile preserving their correlations. Recently, [19]
and [20] attempted to address the problem by concentrating
on the duality between views under different scenarios.
[19] viewed both documents and terms as the same type
of entities in a bipartite graph, and pursued the binary
codes for them following the idea of spectral hashing [18].
To handle the unobserved/missing ratings in collaborative
filtering, [20] directly learned the binary codes that can
recover the observed item preferences of all users. Both
methods mainly explore the correlations between two views
in order to preserve the occurrences or preferences in the
training matrix. However, they neglected the fact that the
entities’ neighbor structures inside each view play rather
important roles in compact binary codes pursuit in nearest
neighbor search [4, 6] or collective patterns discovery in
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Figure 1. The proposed collaborative hashing for nearest neighbor search over data in matrix form.

collaborative filtering [10, 20].
In this paper we propose a collaborative hashing (CH)

scheme for nearest neighbor search with data in matrix
form. By simultaneously preserving both the inner simi-
larities in each view (intra-view) and the interrelationships
across views (inter-view), it learns the compact hash codes
and the hash functions for entities in two views. As
Figure 1 demonstrates, the proposed collaborative scheme
fundamentally works as follows: On the one hand, fusing
the semantic correlations between the coupled views will
enhance the discriminative power of the features in each
view, and subsequently helps obtain more compact and
meaningful hash codes for each view. On the other hand, by
retaining the duality between two correlated views based on
the collective patterns discovered through hash grouping in
each view, the collaborative hashing embeds different types
of entities into a joint semantic Hamming space, which
enables fast and accurate search across views.

Therefore, the proposed collaborative hashing can serve
as a unified framework for applications including: (1)
search inside a single view: the most typical example is
the visual search using local descriptors [16,17]; (2) search
across different views: Recommendation using user-item
ratings falls in this direction [2, 10, 20]. In many successful
recommendation algorithms, matrix factorization serves as
a core technique for collaborative filtering [10]. It turns the
item suggestions into the search based on their similarities
in a low dimensional Euclidean space. Instead of the
Euclidean space, our collaborative hashing aims to find
binary codes in Hamming space, guaranteeing efficient
storage and fast similarity search across users and items.

We essentially summarize our contributions as follows:
1. We propose a collaborative hashing scheme general

for nearest neighbor search with data in matrix form. By
simultaneously considering both the intra-view (in each
view) and the inter-view (across views) relationships in one
framework, it enables fast similarity search widely involved
in many applications such as image search using bag of
words and recommendation using user-item ratings.

2. We formulate it as an optimization problem with a loss

function, which incorporates the binary quantization loss
for the neighbor relations in each view, and the divergence
between the training data and the predictions based on the
binary codes for the interrelationships across views.

3. We adopt the projection-based linear hash functions,
and present an alternating optimization way to effectively
learn both the binary codes and the explicit hash functions
for out-of-sample extension.

Our extensive empirical study on several large-scale
benchmarks highlights the benefits of our method for
visual search and item recommendation, with significant
performance gains over state-of-the-art hashing methods.

2. Collaborative Hashing

2.1. Notation

Suppose we have the data matrix U = (uij) ∈ Rn×m,
consisting of n entities (images, users, etc.) of type I in
one dimension and m entities (visual words, items, etc.) of
type II in another dimension. Therefore, the matrix actually
characterizes the associations between the two types of
entities in terms of observations like word counts or user-
item ratings: Each entry uij in the matrix indicates the
presence of entity j of type II in entity i of type I, and its
value reflects the strength of their association.

Existing hashing algorithms either independently treat
the two views of the data matrix [2,4], or mainly concentrate
on the correlation information between the two views [19,
20]. In our collaborative hashing, we will simultaneously
learn the discriminative hash functions for both views,
which not only preserve the locality in each view, but also
capture the correlations between views.

Specifically, the problem of collaborative hashing can be
formally defined as respectively learning b hash functions
hi(·), i = 1, . . . , b and gj(·), j = 1, . . . , b for different
types of entities, and generating the corresponding compact
binary codes H = [h1 . . . hn] ∈ {−1,+1}b×n and
G = [g1 . . . gm] ∈ {−1,+1}b×m that well preserve
the semantic relationships conveyed by the matrix U .
For simplicity, we apply the linear-form hash functions



hi(x) = sign(wT
i x) and gi(x) = sign(vTi x) where W =

[w1 . . . wb] and V = [v1 . . . vb] are the projection
parameters for both types of hash functions.

2.2. Formulation

Our basic idea is trying to exploit the intrinsic relations
in the matrix data: both the neighbor structures in each
view and the semantic correlations between views. Corre-
spondingly, two types of losses will be employed to guide
the hash function learning in our formulation: the binary
quantization loss of hash functions and the correlation
prediction loss using the binary codes.

Firstly, we respectively treat each row and column of U
as the features of the corresponding entities of type I and
type II, and hash them into binary codes. Note that the
hashing process, grouping similar entities for the collective
patterns discovery, serves as an important characteristic of
the collaborative scheme. Since the binary quantization in
hashing behaves like the clustering algorithms [4, 6, 15],
minimizing such quantization loss faithfully preserves the
similarity structure of the data in each view:

Equan =
1

n

n∑
i=1

‖hi−Rhũi‖2+
1

m

m∑
j=1

‖gj−Rgûj‖2. (1)

Here Uh = [ũ1 . . . ũn] ∈ Rb×n and Ug = [û1 . . . ûm] ∈
Rb×m are the compressed feature representations for the
involved two types of entities (see the initialization details
in Section 2.3.4). Rh ∈ Rb×b and Rg ∈ Rb×b are
orthogonal rotation matrices for better quantization:

RThRh = I and RTg Rg = I. (2)

Besides the quantization error along each view, we
should also explore the duality between the two views.
Intuitively, the learned binary codes for two views should
also preserve their correlations (the word counts in BoW
features, the ratings in recommendation, etc.) in the
Hamming space, rather than the latent Euclidean space
in traditional collaborative filtering. Consequently, the
correlation between entity i of type I and entity j of type
II can be predicted efficiently in Hamming space [12, 20]:

c(hi,gj) =
1

2
+

1

2b
hTi gj . (3)

with the prediction scaling variable σ, the correlation
prediction error on all the training samples can be given by:

Erate =
1

nm

n∑
i=1

m∑
j=1

(σc(hi,gj)− uij)2 . (4)

Here, we first consider the basic case that all elements in U
are observed. A well-known example is the bag-of-words

feature, of which each element is regarded to be observed
occurrence. For the sparse observation, we will give a
simple, yet efficient solution in Section 2.5.2.

Putting the quantization error and prediction error to-
gether, we can minimize the following objective function

E = Equan + λErate, (5)

where λ is a fixed weight, balancing the importance of
similarities in a single view and across views. By rewriting
the objective in matrix form with an n ×m matrix of ones
J , we can get

min
H,G,Rh,Rg,σ

1

n
‖H −RhUh‖2F +

1

m
‖G−RgUg‖2F

+
λ

nm
‖σ
(

1

2
J +

1

2b
HTG

)
− U‖2F

s.t. H ∈ {−1,+1}b×n, G ∈ {−1,+1}b×m

RThRh = I, RTg Rg = I.

(6)

To further reduce the redundancies within the binary
codes H and G, we introduce the uncorrelated constraints:

HHT = nI and GGT = mI. (7)

Note that the above formulation reveals an interesting
connection between learning binary codes and factorizing
the matrix in collaborative filtering. In particular, both
methods approximate the correlations in low-dimensional
space: when σ is already known, the last term in (6) is quite
similar to the factorization loss in collaborative filtering.
But our collaborative hashing here mainly focuses on the
Hamming space for efficient storage and similarity search.

Next we will give an alternating optimization solution to
(6), which can efficiently learn both the binary codes and
the explicit hash functions for out-of-sample extension.

2.3. Optimization

The optimization problem can be solved by alternating
among variables. We sequentially describe the updating
steps for each variable, assuming the others are fixed.

2.3.1 The Binary Codes

Fixing other variables and using the fact that the binary
codes H are constrained to be uncorrelated in (7), we can
rewrite the objective function in (6) as

max
H

trace
(
HTDh

)
s.t. HHT = nI, H ∈ {−1,+1}b×n

(8)

where Dh =
1

n
RhUh +

λσ

2bnm
G
(
UT − σ

2
JT
)

. By
relaxing the discrete constraint on H , the problem can



be solved efficiently by the singular value decomposition
(SVD): H = sign(S̃hS

T
h ) with the SVD Dh = S̃hΠSTh .

Likewise, we can update hash codes G by solving

max
G

trace
(
GTDg

)
s.t. GGT = mI, G ∈ {−1,+1}b×m

(9)

with Dg =
1

m
RgUg +

λσ

2bnm
H
(
U − σ

2
J
)

. The near-

optimal solution G = sign(S̃gS
T
g ), given Dg = S̃gΛS

T
g .

2.3.2 The Rotation Matrices

With the learned hash codes for both views, we can rewrite
the objective function with respect to Rh as

min
Rh

‖H −RhUh‖2F

s.t. RThRh = I
(10)

The optimal Rh in the above problem can be obtained
by solving SVD of matrix HUTh : Decomposing HUTh as
T̃h∆TTh , then Rh = T̃hT

T
h .

For the rotation matrixRg in another view, we efficiently
solve a similar optimization problem as follows:

min
Rg

‖G−RgUg‖2F

s.t. RTg Rg = I
(11)

Based on the decomposition of GUTg = T̃gΩT
T
g , we obtain

the optimal rotation Rg = T̃gT
T
g .

2.3.3 The Prediction Scalar

The range of the observations in training data varies in
different scenarios (e.g., [0,+∞) in BoW features, and
1-5 in recommendation), while our correlation prediction
c(·, ·) ∈ [0, 1]. Therefore, a scalar variable should be
introduced to match the scales between the predictions
and the true observations. By fixing other variables, the
optimization problem with respect to the scalar σ turns to

min
σ

‖σ
(

1

2
J +

1

2b
HTG

)
− U‖2F . (12)

With M =
1

2
J +

1

2b
HTG and the vector representation

of the matrix, the problem is equivalent to a least square
problem

min
σ

‖σvec(M)− vec(U)‖2F , (13)

whose close-form solution will be

σ =
vec(M)T vec(U)

vec(M)T vec(M)
. (14)

2.3.4 Initialization

In practice, hashing based on principle component analysis
(PCA) can give good initializations of H and G [4].
Specifically, suppose we have the mean vectors µh and µg
of the features UT and U respectively for the two types
of correlated entities, then we can obtain the projection
matrices Ph and Pg by taking the top b eigenvectors
of the covariance matrix (UT − µh1

T )T (UT − µh1
T )

and (U − µg1
T )T (U − µg1

T ), which preserve the most
information in corresponding feature spaces. Based on
the projection matrices, we can initialize the compressed
feature representations Uh and Ug by

Uh = PTh (UT − µh1T ) and Ug = PTg (U − µg1T ). (15)

The orthogonal rotation matrices Rh and Rg will not
change the variances of Uh and Ug . With the randomly
generated Rh and Rg , the binary codes can be initialized:

H = sign(RhUh) and G = sign(RgUg). (16)

2.4. Out-of-Sample Extension

The binary codes for the training entities are learned
during the training stage of collaborative hashing. Never-
theless, it is usually required to handle the out-of-sample
extension problem in many applications [4, 18]. In our
method, we also learn the near-optimal rotation matricesRh
and Rg that balance the binary code assignment to preserve
the neighbor relationships globally. Therefore, we can
encode the out-of-sample data efficiently using the linear
transformations composed of the rotations and the afore-
mentioned projections. This indeed makes our method
distinct from the most related work [20] that can only learn
binary codes for the training data.

Specifically, for hash functions hi and gi, i = 1, . . . , b,
the projection parameters are given by W = PhR

T
h and

V = PgR
T
g . Given a new entity x from any view, we can

encode it using the corresponding hash functions

hi(x) = sign
(
wT
i (x− µh)

)
, (17)

gi(x) = sign
(
vTi (x− µg)

)
. (18)

We list our Collaborative Hashing (CH) in Algorithm 1,
which empirically converges fast in less than 20 iterations.

2.5. Applications

As aforementioned, the proposed collaborative hashing
serves as a general framework for applications following
different search paradigms.

2.5.1 Search Inside a Single View

First, CH can be directly used to address the standard
nearest neighbor search problem widely involved in infor-
mation retrieval and computer vision. The search process



Algorithm 1 Collaborative Hashing (CH).
1: Initialize Uh, Ug by (15), and H , G by (16);
2: repeat
3: Estimate σ according to (14);
4: Update the binary codes H and G respectively

according to (8) and (9);
5: Update the rotation matrices Rh and Rg respectively

according to (10) and (11);
6: until Converge
7: Return the binary codesH ,G, and hash functions h and
f according to (17) and (18).

is conducted on the same type of entities (i.e., inside a
single view). In computer vision, a well-known example
is the image search, where given a query image we expect
to get the most similar ones from a large database. In these
applications, the feature matrixU is usually described based
on the bag-of-words model, and each element uij represents
the occurrence of word j in image i.

More recently, [11] studied the cross-modal relationships
between words and images, beyond simply identifying the
word presence. Similarly, CH can also capture the semantic
correlations between the coupled views. Unlike prior
studies, we mainly focus on the pursuit of discriminative
hash codes for fast similarity search inside each view.

The search scheme here is exactly the same to that of
traditional hashing methods using binary codes. With the
hash functions given in (17) or (18), for any query the
nearest neighbors in the same view can be found efficiently
by Hamming distance ranking or hash table lookup.

2.5.2 Search Across Different Views

Another search paradigm supported by our CH is seeking
highly correlated entities of different types (i.e., across
different views). The collaborative filtering for recommen-
dation is one typical example that suggests the items with
highest predicted ratings for specific users. In collaborative
filtering, matrix factorization exploits the collective taste
patterns from the user-item rating matrix, and improves
the search quality by preserving preferences of users over
items in a low-dimensional Euclidean space [10]. However,
searching over a large database in the continuous space is
quite slow. The compact binary codes learned by CH can
hopefully help address the problem in a Hamming space.

In recommendation applications, the data matrix U
records the user-item preferences: each nonzero elements
uij represents the rating given to the item j by user i.
Since there are lots of unobserved/missing user-item ratings
in practice, the observation matrix U will be quite sparse.
To tackle such case, only the observed data should be
considered in the optimization including (8), (9) and (12).

We replace the correlation prediction error in (4) by

Erate =
1

‖A‖1
‖σ
(

1

2
J +

1

2b
HTG

)
◦A− U‖2F , (19)

where ◦ is the Hadamard product operator, andA = (aij) ∈
{0, 1}n×m is a binary matrix with nonzero entries aij
indicating whenever uij is observed (usually ‖A‖1 � nm).
Regarding the estimation of σ, instead of (14) we have

σ =
vec(M ◦A)T vec(U)

vec(M ◦A)T vec(M ◦A)
(20)

With the hash codes H for users and G for items, to user
i we can recommend the item j with largest c(hi,gj).
Therefore, the recommendation problem can also be solved
using Hamming distance ranking or hash table lookup.

3. Experiments
In this section we will evaluate the proposed collabora-

tive hashing for two useful scenarios: search with bag-of-
word features and recommendation using user-item ratings,
which respectively correspond to the two search paradigms
mentioned above. The proposed collaborative hashing
method (CH) will be compared with both a number of
state-of-the-arts standard hashing methods such as Locality
Sensitive Hashing (LSH) [3], Spectral Hashing (SH) [18],
Iterative Quantization (ITQ) [4], and Random Maximum
Margin Hashing (RMMH) [9], and existing matrix hashing
methods including Laplacian Co-Hashing (LCH) [19] and
Binary Codes for Collaborative Filtering (BCCF) [20].

LCH simultaneously hashes both terms and documents
according to their semantic similarities. Following the idea
of spectral hashing, it learns the hash codes by solving an
eigenvalue problem for the term-document similarity graph.
BCCF was proposed to generalize the existing hashing
works to the context of collaborative filtering. It learns
binary codes for both users and items by forcing them to
accurately preserve the item preferences of users.

To evaluate the hashing performance, we employ two
common nearest neighbor search methods following prior
hashing research: Hamming distance ranking and hash
table lookup. The former ranks all points in the database
according to the Hamming distances from the query, while
the later constructs a lookup table using the binary codes,
and returns points falling within certain Hamming radius
(usually 2) from the query codes as the retrieved results.

All experiments are conducted on a workstation with
Intel Xeon CPU E5645@2.40GHz and 24GB memory,
and the results reported in this paper are averaged over
ten independent training/testing data splits. For parameter
sensitivity, our experiments indicate that CH is relatively
robust with respect to λ in a large range. Thus we roughly
set it to 1,000 in all experiments. For all baselines, we fine
tuned their parameters for the best performance.



Table 1. MAP (%) of different hashing algorithms using 32 - 128
bits on Holidays dataset.

HOLIDAYS HASH 32 BITS 64 BITS 128 BITS

+15K

LSH 1.63±0.29 3.63±0.34 7.05±0.51
SH 12.65±0.67 16.36±0.60 21.19±1.32

RMMH 8.00±0.87 11.28±1.40 16.56±1.64
ITQ 18.86±0.75 25.42±0.61 30.73±0.72
LCH 17.96±0.47 25.95±0.72 31.87±0.50
CH 20.95±0.82 27.54±0.49 32.34±1.30

+25K

LSH 1.01±0.19 1.68±0.24 4.38±0.56
SH 8.84±1.13 11.76±0.75 15.59±1.05

RMMH 5.39±1.03 7.59±1.14 11.60±0.40
ITQ 16.49±0.81 22.92±0.96 28.52±0.71
LCH 12.67±1.13 20.94±0.82 29.73±0.77
CH 18.42±0.56 25.61±0.64 31.23±0.51

+100K

LSH 0.56±0.12 1.14±0.13 2.69±0.19
SH 8.00±0.91 8.03±1.13 9.09±0.57

RMMH 4.22±0.43 4.98±0.36 7.67±0.93
ITQ 12.34±0.60 17.21±1.38 22.18±1.11
LCH 8.67±0.83 15.64±1.27 22.41±0.70
CH 12.53±0.62 18.53±0.80 24.02±0.23

3.1. Search with Bag of Words

3.1.1 Datasets and Protocols

Hashing is widely adopted in visual search based on bag of
visual words or high dimensional sparse codes. To evaluate
our collaborative hashing in visual search following the
paradigm “search inside a single view”, we employ the
popular Holidays image dataset [8]. It mainly contains
1,491 personal holidays photos of high resolutions: 500
queries representing distinct scenes or objects and 991
corresponding relevant images with various attacks (e.g.,
rotations, blurring, etc.) to the queries. The dataset covers a
very large variety of scene types.

Similar to [1, 8], for large-scale retrieval the Holidays
dataset is respectively appended with 15K, 25K and 100K
Flickr images (forming Holidays+15K, +25K, and +100K).
We represent Holidays+15K images using 10K visual
vocabularies, and Holidays+15K and +100K using 20K
ones (trained based on SIFT features of an independent
dataset Flickr60K [8]). In all experiments, 500 queries in
Holidays serve as the testing images, and 10K images are
randomly sampled from each dataset as the training sets.

Following prior hashing research [4, 12], we will report
both the precision and recall performance of Hamming
distance ranking, and the precision within Hamming radius
2 (PH2) when using hash table lookup.

3.1.2 Results and Discussions

We will compare our collaborative hashing to the traditional
state-of-the-art hashing methods (LSH, SH, RMMH, and
ITQ). As to existing hashing methods for data in matrix
form, since BCCF cannot tackle the out-of-sample hashing
problem, in our experiments we will only adopt LCH that
co-hashes both types of entities in the data matrix.
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Figure 3. PH2 using 32 bits on Holidays datasets.

Table 1 presents the mean average precisions (MAP) of
different hashing methods on three Holidays datasets. Per-
formances of all methods improve when using longer hash
codes, and clearly CH achieves the highest performance
in all cases with remarkable superiority (up to 11.08%,
11.80%, and 7.67% performance gains on three datasets
over the best competitors).

We also compare precision-recall (P-R) performances
using 64 bits on all datasets in Figure 2. LCH explores
the duality between images and visual words, and achieves
better performance than LSH, RMMH and SH. However, its
performance is inferior to that of ITQ in most cases, which
indicates that the utilization of inner relationships among
images plays an indispensable role in the performance im-
provement. We have the same conclusion from Table 1 by
comparing performances of ITQ and LCH using less than
128 hash bits. Here, collaborative hashing, incorporating
the correlations between views in addition to the neighbor
structure of each view, boosts the discriminative power
of the learned hash codes, and thereby obtains the best
performance (the largest areas under the curves) in all cases.

Besides Hamming ranking evaluation, we also conduct
hash table lookup on these datasets, and report retrieval
precisions within Hamming radius 2 (PH2) in Figure 3.
Although in our experiments as the number of distractor
images increases from 15K to 100K, performances of all
hashing methods drop, but in all cases CH consistently
outperforms other methods with large margins.

3.2. Recommend using User-Item Ratings

3.2.1 Datasets and Protocols

Besides the basic search along a single view, an attractive
advantage of collaborative hashing is that the learned
compact hash codes, well preserving the correlations be-
tween the two views, can efficiently and accurately predict
the ratings of unseen items in recommendation systems.
We adopt two datasets to evaluate the recommendation
performance of CH: MovieLens 1M and Netflix, whose
statistics are summarized as follows:

• The MovieLens 1M dataset contains 3,900 movies,
6,040 users and about 1 million ratings. In this dataset,
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Figure 2. Performance comparison of different hashing methods using Hamming ranking on Holidays datasets.

about 4% of the user-movie ratings are observed. The
ratings are integers ranging from 1 (bad) to 5 (good).

• The Netflix is one of the largest benchmarks for
collaborative filtering. It contains over 100 million
ratings for 17,770 movies by 480,189 users. All the
ratings are also ranged from 1 to 5.

We split the two datasets into training and testing sets as
follows: for MovieLens, we randomly sample 80% ratings
as the training set and the rest 20% is used as the testing
one. As discussed in [20], in this dataset a lot of ratings
are not observed, which may lead to biased evaluation
results. Therefore, as [20] did, on Netflix we construct a
relatively dense dataset consisting of 5,000 items with the
most ratings and 10,000 users with at least 100 ratings.
Then, we also sample 80% ratings and the rest as the
training and testing sets respectively. For both datasets,
items with ratings equal to 5 are regarded as the groundtruth
items recommended to users.

In order to comprehensively evaluate the item recom-
mendation performance using binary codes, besides MAP
and PH2 we further employ Normalized Discounted Cumu-
lative Gain (NDCG) as prior recommendation research [20]
does. NDCG is widely adopted to evaluate the ranking
quality in practice, mainly focusing on whether the obtained
binary codes can accurately preserve the original relevance
orders of the items for different users. We use NDCG
calculated at different cutting points (NDCG@5 and @10)
in the ranking list as the evaluation metric, and each item
rating labeled by users serves as the true relevance value.

3.2.2 Results and Discussions

The proposed collaborative hashing can capture the item
preferences of different users in recommendation systems,
and therefore can accurately predict ratings for specific
users. Traditional collaborative filtering based on matrix
factorization represents users and items in a latent, low-
dimensional Euclidean space, and thereby converts the item
recommendation to the nearest neighbor search in such
space. Instead, collaborative hashing discovers a Hamming

space where entities can be encoded using compact binary
codes, which largely improves the efficiency of both
recommendation and storage.

In the scenario of recommendation across views (i.e.,
users and items), we employ LCH and BCCF designed for
recommendation as the baselines. Both methods outperfor-
m the standard collaborative filtering using binarized low-
rank matrix factorization. Moreover, we also evaluate the
traditional hashing methods including LSH and ITQ, which
independently hash the entities in each view.

Table 2 shows the NDCG results on the two datasets,
comparing BCCF, LCH, and naive hashing solutions using
LSH and ITQ. As we can see, the NDCG calculated at
different cutting points (5 and 10) increases when using
more hash bits, and CH consistently achieves the best
performance with up to 45.87% and 15.09% performance
gains respectively on the two datasets, indicating that CH
can preserve the order of user preferences very well. LSH
and ITQ, only relying on the inside similarities of each
view, give the worst performances in all cases. These
observations demonstrate that exploring the duality between
views is quite beneficial to the high-quality recommen-
dation. Furthermore, compared to LCH and BCCF, our
CH faithfully leverages the preference preservation between
two views based on the neighbor patterns in each view, and
thus performs best on both datasets.

We also depict the MAP of Hamming ranking with
respect to 16 - 64 hash bits and PH2 of hash lookup using 16
bits in Figure 4. Again, we can observe that the proposed
hashing method ranks first with a large margin compared
to the best competitors LCH and BCCF in terms of both
MAP and PH2. This fact leads to the conclusion that our
collaborative hashing can largely improve performances by
elegantly taking advantages of the neighbor structure inside
the same view and the correlations across different ones.

4. Conclusion

In this paper, we proposed a collaborative hashing
scheme for data in matrix form that can learn hash codes
for both types of entity in the matrix, making the proposed



Table 2. NDCG (%) of different methods using 16 - 64 bits on MovieLens and Netflix.
DATASETS HASH

16 BITS 32 BITS 48 BITS 64 BITS
NDCG@5 NDCG@10 NDCG@5 NDCG@10 NDCG@5 NDCG@10 NDCG@5 NDCG@10

MOVIELENS

LSH 2.99±0.22 3.00±0.23 2.89±0.13 2.88±0.09 2.90±0.14 2.91±0.13 2.93±0.22 2.90±0.20
ITQ 4.35±0.72 4.38±0.74 3.97±0.59 3.94±0.62 4.24±0.86 4.10±0.70 4.00±0.52 3.92±0.46
LCH 22.72±1.43 20.77±1.26 23.52±0.73 21.77±0.69 27.64±0.95 25.43±0.76 30.89±0.69 28.24±0.57

BCCF 20.87±0.42 19.02±0.33 26.11±0.42 23.24±0.30 28.43±0.29 25.12±0.16 30.47±0.27 26.71±0.18
CH 28.26±0.70 26.39±0.55 36.15±0.40 33.09±0.42 41.07±0.49 37.28±0.37 45.06±0.37 40.64±0.28

NETFLIX

LSH 2.57±0.16 2.57±0.16 2.69±0.21 2.65±0.18 2.67±0.20 2.65±0.19 2.62±0.12 2.63±0.10
ITQ 3.75±0.82 3.64±0.63 3.38±0.71 3.49±0.68 3.07±0.60 3.10±0.59 3.17±0.51 3.25±0.48
LCH 20.92±0.70 19.50±0.65 28.04±0.38 25.93±0.34 33.00±0.45 30.21±0.26 36.97±0.24 33.50±0.23

BCCF 20.12±0.66 18.79±0.56 28.04±0.45 25.70±0.36 31.90±0.55 29.27±0.34 34.59±0.60 31.62±0.46
CH 23.75±0.55 22.25±0.43 33.48±0.38 31.02±0.34 38.41±0.43 35.45±0.32 42.55±0.51 38.95±0.39
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Figure 4. Performance comparison of different methods on MovieLens and Netflix.

method conceptually unique compared with the existing
methods. The key idea of the proposed method is that
the learned binary codes of each type of entities should
attain their neighbor structure, and meanwhile accurately
preserve the correlations between different types of entities.
We adopted a loss function in our optimization formulation,
consisting of the binary quantization loss for each view and
the deviation of predictions based on the binary codes. An
efficient alternating optimization method has been proposed
to learn both the hash codes and functions well preserving
data distributions and the correlations. Comprehensive
results over two classic applications are considerably en-
couraging: the proposed collaborative hashing significantly
outperforms the state-of-the-art hashing methods.
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