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Abstract

Outliers are pervasive in many computer vision and pat-
tern recognition problems. Automatically eliminating out-
liers scattering among practical data collections becomes
increasingly important, especially for Internet inspired vi-
sion applications. In this paper, we propose a novel one-
class learning approach which is robust to contamination
of input training data and able to discover the outliers that
corrupt one class of data source. Our approach works un-
der a fully unsupervised manner, differing from traditional
one-class learning supervised by known positive labels. By
design, our approach optimizes a kernel-based max-margin
objective which jointly learns a large margin one-class clas-
sifier and a soft label assignment for inliers and outliers.
An alternating optimization algorithm is then designed to
iteratively refine the classifier and the labeling, achieving a
provably convergent solution in only a few iterations. Ex-
tensive experiments conducted on four image datasets in the
presence of artificial and real-world outliers demonstrate
that the proposed approach is considerably superior to the
state-of-the-arts in obliterating outliers from contaminated
one class of images, exhibiting strong robustness at a high
outlier proportion up to 60%.

1. Introduction
A lot of recent vision research has exploited a massive

number of images from the Internet as a source of train-

ing data for building learning models, including learning

object categories [8], query-related visual classifiers [12],

query-adaptive graph rankers [18], query-specific semantic

features [28], etc. In a typical Internet image powered ap-

plication, one can crawl abundant images corresponding to

a textual query (e.g., an object name or a semantic concept)

by querying into web image search engines such as Google

and Bing, or photo sharing websites such as Flickr, and then

build a model for the target object/concept associated with

the image collection. However, such images gathered via

web crawling are often noisy, which could compromise the

learning model. Therefore, pruning the irrelevant images,

i.e., the outliers, becomes necessary.

Existing methods for outlier removal or detection either

construct a profile about normal data examples and then

identify the examples not conforming to the normal pro-

file as outliers [6, 10, 24, 26], or explicitly isolate outliers

based on statistical or geometric measures of abnormality

[7, 13, 17]. A variety of methods can be found in the sur-

vey [32]. It is noticeable that most prior methods adopt-

ed the “few and different” assumption about the outlierness

nature, so a relatively large fraction of outliers approaching

50% may lead to impaired performance.

To better mitigate this issue, we propose a novel ap-

proach for outlier removal, which automatically eliminates

the outliers from a corrupted dataset so that the remaining

samples belong to one or multiple dense regions, e.g., man-

ifolds or clusters. Our approach attempts to cope with the

high outlier level through equally concerning normal exam-

ples and outliers, and then formulates an elegant learning

model to unify normal characterization, achieved by one-

class classifier learning, and outlier detection.

As a tight connection, our approach falls into the One-
Class Learning paradigm [24, 26], but differs in the input

data configuration. One-class learning (or classification) is

engaged in distinguishing one class of target data objects

from all other possible objects, through learning a classifier

with a training set merely containing the examples from the

target class. Such a learning problem is more difficult than

a conventional supervised learning problem due to the ab-

sence of negative examples. Since negative examples may

often be insufficient due to difficult acquisition or costly

manual labeling, one-class learning is usually favored and

has found its usage in broad applications including image

retrieval [5], document classification [20], web page classi-

fication [31], and data stream mining [16].

Nonetheless, existing one-class learning methods such

as the representative One-Class Support Vector Machine
[24] did not explicitly handle uncertain input data, though

they can tolerate a small quantity of outliers. Another well-

known method Support Vector Data Description [26] found

that when integrating outlier examples into one-class learn-

ing, classification accuracy will be boosted. However, more

often we are not aware of the outliers beforehand for a learn-



ing task. Assuming no special input configuration, our ap-

proach deals with an uncertain data mixture, where neither

positive samples nor outliers are labeled in advance.

Our approach brings a new insight into the commonly

investigated outlier detection problem from a learning per-

spective. The core idea is to tailor an unsupervised learning

mechanism to tackle uncertainty of input data, where the

dubious outliers are gradually discovered via a self-guided

labeling procedure and then separated from the trustable

positive samples by training a large margin one-class clas-

sifier. In doing so, our approach not only enables effective

outlier removal but also yields a confidence value for any

asserted “positive” sample.

Consequently, the proposed one-class learning approach

can readily be applied to two emerging Internet vision ap-

plications: web image tag denoising [19] and web image

search re-ranking [12, 18]. For tag denoising, the identified

outlier images should not take the respective tag; for re-

ranking, the entire images are re-ranked according to their

confidence values produced by our approach. Extensive ex-

periments carried out on three public image databases and

a new web image database collected by ourselves with arti-

ficial and real-world outliers show remarkable performance

gains of our approach over the state-of-the-arts in outlier

removal and one-class learning.

2. Related Work
There has been substantial previous work concentrating

on outlier detection or removal, investigated by various ar-

eas ranging from computer vision to data mining. We sum-

marize these methodologies into three major categories.

From a geometric point of view, the first category of

methods exploit sample reconstruction to do outlier detec-

tion. In particular, one can reconstruct a sample using the

principal subspace acquired by PCA, Kernel PCA, Robust

PCA [4, 14, 29], and Robust Kernel PCA [22, 29], or the

representatives [7] which summarize the entire dataset. The

outliers are thus identified as the samples taking on high re-

construction residues. This style of methods still follow the

basic “few and different” assumption about outliers.

The second category of methods treat the outlier detec-

tion problem as a probabilistic modeling process, result-

ing in an outlierness measure based on a probability den-

sity function. Then the samples with low probability den-

sities are judged to be outliers. Complying with this prin-

ciple, tremendous probability density estimation schemes

have been explored, including parametric estimators [32]

and nonparametric estimators such as the kernel density es-

timator (KDE) (i.e., the classical Parzen-Rosenblatt window
method [23]) and the more recent robust kernel density es-

timator (RKDE) [11].

Instead of exploring the characteristics of outliers, the

third category describes normal objects through learning a

compact data model such that as many as possible normal

samples are enclosed inside. Two commonly used models

are hyperplane and hypersphere. The former was proposed

by one-class support vector machines (OC-SVMs) [24], and

the latter was advocated by support vector data description

(SVDD) [26]. It has been proven that OC-SVMs and SVDD

are essentially equivalent when stationary kernels (k(x,x)
is a constant) are adopted [24]. Though having shown ad-

vantages, they both need a clean training set consisting of

known normal examples, labeled by “positive”, to learn the

hyperplane and hypersphere models. If the training set is

corrupted with a relatively large fraction (e.g., 50%) of out-

liers, the performance of both OC-SVMs and SVDD is very

likely to deteriorate because they do not explicitly handle

outliers during model training.

Let us use a toy example to illustrate the outlier issue

of OC-SVMs and SVDD. Fig. 1(a) shows a 2D toy dataset,

where the outliers stem from uniformly distributed random

noise and the groundtruth positive (i.e., normal) samples are

within a big and dense cluster located at the center. Note

that the outlier proportion is as high as 50%. Taking this

corrupted dataset as a training set, OC-SVM is biased to the

outliers near the boundary of the normal points, and com-

parable with RKDE in precision of the judged positive sam-

ples, as revealed by Figs. 1(b)(c). Note that we use a Gaus-

sian kernel so OC-SVM and SVDD output the same result.

In contrast, our proposed unsupervised one-class learning

(UOCL) approach (see Fig. 1(d)) achieves the highest preci-

sion, thereby exhibiting strong robustness at the high outlier

level.

In machine learning, there exist some approaches related

to the uncertain learning paradigm discussed in this paper,

including supervised binary class learning with label uncer-

tainty [3, 30], semi-supervised one-class learning with pos-

itive and unlabeled examples [15, 21], unsupervised learn-

ing of two normally distributed classes [1], etc. All these

are beyond the scope of this paper.

3. Unsupervised One-Class Learning
In this section, we tackle the outlier present one-class

learning problem by proposing a reliable unsupervised

learning model to automatically obliterate outliers from a

corrupted training dataset. The proposed model is built

upon two intuitive assumptions: 1) outliers originate from

low-density samples, and 2) neighboring samples tend to

have consistent classifications. We specially term this mod-

el Unsupervised One-Class Learning (UOCL) and design a

provably convergent algorithm to solve it.

3.1. Learning Model

Given an unlabeled dataset X = {xi ∈ R
d}ni=1, we

pursue a classification function f : Rd �→ R similar to OC-

SVMs. By leveraging a kernel function κ : Rd × R
d �→ R
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(b) RKDE (precision=0.8197, recall=1)
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(c) OC−SVM (precision=0.8418, recall=0.9933)
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(d) UOCL (precision=0.9740, recall=1)

Figure 1. The outlier removal results on a 2D toy dataset where the percentage of outliers is 50%.

that induces the Reproducing Kernel Hilbert Space (RKHS)

H, the Representer theorem [25] states that the target clas-

sification function is in the following expression:

f(x) =

n∑
i=1

κ(x,xi)αi, (1)

where αi is the expansion coefficient contributed by the

functional base κ(·,xi). Let us introduce a soft label as-

signment Y =
{
yi ∈ {c+, c−}}n

i=1
to the input data X ,

which takes on a positive value c+ for the positive sam-

ples whereas a negative value c− for the outliers. Let

y = [y1, · · · , yn]� be the vector representation of Y . The

use of soft labels will help handle a high fraction of outliers,

as validated later.

Now we establish the UOCL model as minimizing the

following objective:

min
f∈H,{yi}

n∑
i=1

(
f(xi)− yi

)2
+ γ1‖f‖2M − 2γ2

n+

∑
i,yi>0

f(xi)

s.t. yi ∈
{
c+, c−

}
, ∀i ∈ [1 : n],

0 < n+ =
∣∣{i|yi > 0}∣∣ < n, (2)

where γ1, γ2 > 0 are two trade-off parameters controlling

the model. Note that we impose the constraint 0 < n+ < n
to discard two extreme cases: no positive sample and full

positive samples. In order to remove the influence of vary-

ing ‖y‖2 =
∑n

i=1 y
2
i on the optimization in Eq. (2), we

design the values (c+, c−) of soft labels such that ‖y‖2 is

constant. For instance, (1,−1), (
√

n
2n+ ,−

√
n

2(n−n+) ), or

(
√

n−n+

n+ ,−
√

n+

n−n+ ) satisfies this requirement. It is worth-

while to point out that optimizing Eq. (2) using other soft

labels of unfixed ‖y‖2 could lead to trivial solutions, e.g.,

the soft labels ( 1
n+ ,− 1

n−n+ ) always result in n+ ≈ �n/2	.

Since neither positive samples nor outliers are known

before the learning task, UOCL is fully unsupervised and

hence uses the squared loss (f(xi)−yi)
2 instead of a hinge

loss used by many (semi-)supervised learning models where

exact labels are needed.

The term ‖f‖2M in Eq. (2) is the manifold regularizer [2],

which turns out to endow f with the smoothness along the

intrinsic manifold structure M underlying the data cloud

X . We construct this term by making use of a neighborhood

graph G whose affinity matrix is defined by

Wij =

⎧⎨
⎩

exp

(
−D(xi,xj)

ε2

)
, i ∈ Nj or j ∈ Ni,

0, otherwise,

(3)

where D(, ) is a distance measure in R
d, the set Ni ⊂ [1 : n]

contains the indices of k nearest neighbors of xi in X , and

ε > 0 is the bandwidth parameter. Let us define a diagonal

matrix D with diagonal elements being Dii =
∑n

j=1 Wij ,

and compute the graph Laplacian matrix L = D −W [2].

Then, we can write the manifold regularizer as follows

‖f‖2M =
1

2

n∑
i,j=1

(
f(xi)− f(xj)

)2
Wij = f�Lf , (4)

in which the vector f = [f(x1), · · · , f(xn)]
� ∈ R

n is

the realization of the function f , prescribed by Eq. (1), on

the training dataset X . For concise notations, we define the

coefficient vector α = [α1, · · · , αn]
� ∈ R

n, the kernel

matrix K = [κ(xi,xj)]1≤i,j≤n ∈ R
n×n, and the vectorial

kernel mapping k(x) = [κ(x1,x), · · · , κ(xn,x)]
� ∈ R

n,

so the target classification function f can be expressed as

f(x) = α�k(x) and f = Kα.

The last term −∑
i,yi>0 f(xi)/n

+ in the objective of

problem (2) accounts for maximizing the margin averaged

over the judged positive samples. Due to lacking in accurate

labels, we consider an average margin, unlike SVMs and

OC-SVMs which optimize a margin for individual exam-

ples. The strategy of average margin maximization over the

positive samples is able to suppress the bias caused by the

dubious outliers, pushing the majority of the true positive

samples far away from the decision boundary f(x) = 0. To

avoid unbounded optimization, we further bound the range

of
{
f(xi) = α�k(xi)

}n

i=1
by fixing ‖α‖ = 1. Thus,

sup
{
f(xi)|1 ≤ i ≤ n

}
= max1≤i≤n ‖k(xi)‖.

By incorporating Eq. (4) and ignoring the constant term

‖y‖2, we rewrite problem (2) as
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(b) Convergence curve of UOCL @ Caltech−101
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Figure 2. Convergence test of UOCL. At the t-th iteration, the ob-

jective function value is plotted as ln
(
Q(αt, ỹt) + n

)
. (a) On

“MITcoast” category (360 samples) of UIUC-Scene with 30%

outliers; (b) on “Faces” category (435 samples) of Caltech-101
with 30% outliers.

min
α,ỹ

Q(α, ỹ) := α�K(I+ γ1L)Kα− 2α�Kỹ

s.t. ‖α‖ = 1, ỹ ∈
{
c+ +

γ2
‖ỹ‖+ , c−

}n×1

,

0 < ‖ỹ‖+ < n, (5)

in which ‖a‖+ stands for the number of positive elements

in vector a, and the new label assignment vector ỹ takes the

same signs as y. While the objective function Q of problem

(5) is convex, the feasible solution set is not a convex set,

making problem (5) a combinatorial optimization problem.

To highlight the uniqueness of the proposed UOCL mod-

el, we point out that UOCL formulated in Eq. (5) can work

under a self-guided mechanism, leading to a large-margin

and neighborhood-smooth one-class classifier f along with

a soft label assignment ỹ (equivalent to y) that directly in-

dicates inliers and outliers. Different from previous outlier

removal and one-class learning methods, our UOCL mod-

el does not overly emphasize positive samples nor outliers.

Instead, it treats inliers and outliers fairly and makes them

compete against each other through optimizing the label as-

signment ỹ with the soft labels (c+, c−).

3.2. Algorithm

Problem (5) that fulfills the UOCL model is not trivial to

solve because it is a mixed program involving a continuous

variable α and a discrete variable ỹ. Here we devise an

alternating optimization algorithm which bears a theoretical

foundation for convergence and obtains a good solution.

First, we consider the α-subproblem of problem (5) with

ỹ fixed:

min
‖α‖=1

α�K(I+ γ1L)Kα− 2(Kỹ)�α, (6)

which falls into a constrained eigenvalue problem that has

been well studied in [9]. Subject to a fixed ỹ, the global

minimizer α to subproblem (6) is solved as

α∗(ỹ) =
(
K(I+ γ1L)K− λ∗I

)−1
Kỹ, (7)

in which λ∗ is the smallest real-valued eigenvalue of the

matrix

[
K(I+ γ1L)K −I
−(Kỹ)(Kỹ)� K(I+ γ1L)K

]
.

Second, we deal with the ỹ-subproblem of problem (5)

with α fixed, that is

max
ỹ

(Kα)�ỹ

s.t. ỹ ∈
{
c+ +

γ2
‖ỹ‖+ , c−

}n×1

,

0 < ‖ỹ‖+ < n. (8)

This discrete optimization problem seems daunting but can

be exactly solved in O(n log n) time. The theorem below

addresses a simpler case under a given integer m = ‖ỹ‖+ ∈
[1, n− 1].

Theorem 1. Given an integer m ∈ [1, n − 1] and a vector
f ∈ R

n, an optimal solution to the problem

max
ỹ

f�ỹ

s.t. ỹ ∈
{
c+ +

γ2
m

, c−
}n×1

,

‖ỹ‖+ = m (9)

satisfies ỹi > 0 if and only if fi is among m largest elements
of f .

Proof. We prove this theorem by contradiction.

Suppose that such an optimal solution is ỹ. Accordingly,

we define its positive support set C = {i|ỹi > 0, i ∈ [1 : n]}
of |C| = m, and the complement of C is C = [1 : n] \ C.

If the conclusion does not hold, then there exist i ∈ C
and j ∈ C such that fi < fj . Now we construct another

feasible solution ỹ′ corresponding to a new positive support

set C′ = (C \ {i}) ∪ {j}. Then we derive

(ỹ′)�f =
(
c+ +

γ2
m

) ∑
s∈C′

fs + c−
∑
s∈C′

fs

=
(
c+ +

γ2
m

) ( ∑
s∈C\{i}

fs + fj
)
+ c−

( ∑
s∈C\{j}

fs + fi
)

>
(
c+ +

γ2
m

) ( ∑
s∈C\{i}

fs + fi
)
+ c−

( ∑
s∈C\{j}

fs + fj
)

=
(
c+ +

γ2
m

)∑
s∈C

fs + c−
∑
s∈C

fs = ỹ�f ,

which indicates that ỹ′ results in a larger objective value

than ỹ, so ỹ is not optimal. By contradiction we conclude

that the theorem holds.

Theorem 1 uncovers that one optimal solution to prob-

lem (9) can be simply attained by sorting f in a descending

order and then cutting off at the m-th sorted element before



Algorithm 1 UOCL
Input: The kernel and graph Laplacian matrices K,L ∈ R

n×n,

model parameters γ1, γ2 > 0, and soft labels c+ > 0, c− < 0.

Initialize
α0 = 1√

n
,m0 = arg max

m∈[1:n−1]
(Kα0)

�q(Kα0,m),

ỹ0 = q(Kα0,m0), T = K(I+ γ1L)K, t = 0;

repeat

bt := Kỹt, λt := smallest eigenvalue of

[
T −I

−btb
�
t T

]
,

αt+1 :=
(
T− λtI

)−1
bt,

mt+1 := arg max
m∈[1:n−1]

(Kαt+1)
�q(Kαt+1,m),

ỹt+1 := q(Kαt+1,mt+1), t := t+ 1,

until convergence.

Output: The one-class classifier f∗(x) = α�
t k(x) and the

soft label assignment ỹ∗ = ỹt over the training dataset.

and including which ỹi > 0 while after which ỹi < 0. We

write this optimal solution as q(f ,m). Note that if some

identical elements appear in the vector f , there may ex-

ist multiple optimal solutions ỹ∗ that yield the same ob-

jective value. Subsequently, we go back to the original ỹ-

subproblem (8) whose optimal solution is obtained by

ỹ∗(α) = q
(
Kα,m∗(α)

)
, (10)

in which

m∗(α) = arg max
m∈[1:n−1]

(Kα)�q(Kα,m). (11)

It is worth mentioning that if a tie arises in determining the

optimal m∗(α), we always choose the largest integer as m∗

in order to include as many as possible inliers, i.e., the po-

tential positive samples.

So far, we have exactly solved two subproblems (6)(8)

stemming from the raw problem (5) which is too difficult to

optimize directly. As such, we can devise an alternating op-

timization algorithm to find a good solution to problem (5).

By taking advantage of Eqs. (7)(10)(11), we describe this

optimization algorithm, still dubbed UOCL, in Algorithm 1

and prove its convergence by Theorem 2. After reaching a

convergent label assignment ỹ∗, the positive samples or the

outliers are simply determined by checking whether ỹ∗i > 0
or not.

Theorem 2. The optimization algorithm alternating be-
tween α and ỹ converges.

Proof. Because of the alternating optimization strategy, we

accomplish αt+1 = argmin‖α‖=1 Q(α, ỹt) and ỹt+1 =
argminỹ Q(αt+1, ỹ) for any iteration t. Thus, we can de-

rive

Q(αt, ỹt) ≥ Q(αt+1, ỹt) ≥ Q(αt+1, ỹt+1), ∀t ∈ Z.

Figure 3. Comparison of labels (hard and soft) used in UOCL on

the UIUC-Scene and Caltech-101 datasets.

As Q is bounded from below, the nonincreasing sequence

{Q(αt, ỹt)}t must converge to Q∗ = limt→∞ Q(αt, ỹt).

Remarks: i) The UOCL algorithm essentially employs the

kernel density estimate function as the warm start f0 =
K1/

√
n to launch its alternating procedure. This implies

that the outliers are initially sought as those low-density

samples and later gradually separated from the coherent

high-density regions which give rise to the confident pos-

itive samples. ii) The target one-class classifier f is trained

in an iterative and self-guided manner: at each iteration t, it

absorbs a noisy label assignment ỹt but yields a smooth yet

discriminative output ft+1 = Kαt+1 by enforcing graph

Laplacian regularization and average margin maximization;

a refined labeling ỹt+1 is achieved via quantizing ft+1 and

then serves re-training of f at the next iteration. When con-

vergence is reached, the locations of the positive entries in

both f and ỹ will concentrate on a coherent high-density

subset of the input dataset X . iii) The time complexity of

the UOCL algorithm is bounded by O(n3). In practice, UO-

CL usually converges rapidly within a few iterations, which

is illustrated by Fig. 2 where only three iterations are needed

for UOCL to converge.

3.3. Discussions

While UOCL can work with any soft labels (c+, c−)
such that c+ > 0, c− < 0, and ‖y‖2 is constant, we

wish to investigate the impact of the choice of (c+, c−)
on the performance of UOCL. In particular, we evaluate

three kinds of labels (1,−1), (
√

n
2n+ ,−

√
n

2(n−n+) ), and

(
√

n−n+

n+ ,−
√

n+

n−n+ ) all satisfying ‖y‖2 = n. Fig. 3

plots mean average precision of the one-class classifier

f∗ learned by UOCL using different label settings on the

UIUC-Scene and Caltech-101 datasets. The results in

Fig. 3 reveal that the soft labels (
√

n
2n+ ,−

√
n

2(n−n+) )

and (
√

n−n+

n+ ,−
√

n+

n−n+ ) are better than the hard labels

(1,−1), and that (
√

n−n+

n+ ,−
√

n+

n−n+ ) surpasses the oth-

er two significantly, especially at increasing outlier propor-



tions. The reason is that (
√

n−n+

n+ ,−
√

n+

n−n+ ) incorporates

the number n+ of the positive samples to accomplish an

adaptive balance of the labeling, i.e.,
∑n

i=1 yi = 0, so that

the positive samples and outliers are treated in a more bal-

anced way. As a result, the adaptively balanced soft labels

(
√

n−n+

n+ ,−
√

n+

n−n+ ) can enable our UOCL model to dis-

cover and suppress a high fraction of outliers.

Note that our learning objective in the raw problem (2)

does not leverage the RKHS regularization term ‖f‖2H =
α�Kα that appears in most (semi-)supervised kernel ma-

chines such as SVMs, OC-SVMs, and LapSVMs [2]. We

find that including ‖f‖2H into the objective of Eq. (2) al-

most does not affect the performance of UOCL. Moreover,

we argue that the main purpose of UOCL is not to gain the

generalization capacity on test data, but to tackle the cor-

rupted training data and clean up the outliers.

In running UOCL: the assumption “outliers from low-

density samples” has been used as the initialization, where

the low-density samples found by the kernel density estima-

tor f0 = K1/
√
n are initially judged to be the outliers; the

number n+ of the asserted inliers will change during the op-

timization until the label assignment ỹ converges; the inlier

configuration of multiple modes can be handled as long as

these modes have comparable high densities.

4. Experiments
We evaluate the proposed UOCL approach in terms of

two tasks, outlier image removal and image re-ranking.

We use three public image datasets: UIUC-Scene1,

Caltech-1012, and the INRIA web image dataset [12], and

our gathered Google-30 dataset which consists of 30 cat-

egories (e.g., ‘accordion’, ‘butterfly’, ‘clownfish’, ‘eagle’,

‘elephant’, ‘ewer’, ‘gecko’, ‘hat’, ‘horse’, ‘panda’, etc.) of

crawled web images using the Google image search engine.

On UIUC-Scene, we use all 15 object categories, and for

a single category simulate outlier images with a proportion

0.1 ≤ ρ ≤ 0.6 as the images randomly sampled from the

other categories. On Caltech-101, we choose 11 object cat-

egories each of which contains at least 100 images, and also

simulate outlier images with a proportion 0.1 ≤ ρ ≤ 0.6
as uniformly randomly sampled images from the other cat-

egories besides a respective category. On INRIA, we se-

lect 200 text queries each of which incurs an outlier pro-

portion 0.136 ≤ ρ ≤ 0.6 and contains 14 ∼ 290 im-

ages. On Google-30, 15 categories incur outlier proportions

0.0197 ≤ ρ ≤ 0.5599 and contain 326 ∼ 596 images.

In INRIA and Google-30, outliers are realistic, which are

those irrelevant images with respect to the text queries. In

all datasets, groundtruth labels for inliers and outliers are

1http://www-cvr.ai.uiuc.edu/ponce_grp/data/
2http://www.vision.caltech.edu/Image_Datasets/

Caltech101/

available. In INRIA each image is represented by an �2 nor-

malized 5 ∗ 1024-dimensional sparse-coding feature vector

[27], while in the other datasets every image is represented

by an �2 normalized 21 ∗ 1024-dimensional sparse-coding

feature vector.

We compare UOCL with a variety of competing meth-

ods, including five reconstruction-based outlier detection

methods PCA, High-dimensional Robust PCA (HR-PCA)3

[29], Kernel PCA, Kernel HR-PCA (KHR-PCA) [29], and

Sparse Modeling Representative Selection (SMRS) [7], two

density-based methods Kernel Density Estimator [23] and

Robust Kernel Density Estimator (RKDE) [11], along with

the traditional one-class learning method One-Class SVM

(OC-SVM) [24]. Note that OC-SVM is an essentially su-

pervised method, but in this paper it is made to work under

the unsupervised setting.

Now we characterize outlierness measures for these

methods. The measure used by the subspace methods is

the squared reconstruction residue and the outliers are thus

the samples incurring high residues. The measure of SMRS

is the row-sparsity index (rsi) [7] calculated upon a sparse

reconstruction coefficient, which only applies to the repre-

sentatives. The representatives with high rsi are decided to

be outliers. For KDE/RKDE, the outlierness measure is the

estimated probability density function, and the samples with

low densities are outliers. We adopt the same Gaussian k-

ernel for KDE/RKDE, and its bandwidth is chosen via least

square cross validation. We follow [11] to set the other pa-

rameters of RKDE. For OC-SVM/UOCL, the output of the

learned one-class classifier f directly indicates the outliers,

i.e., x such that f(x) < 0. We feed the same Gaussian ker-

nel κ(x,x′) = exp(−‖x−x′‖2/2σ2) to OC-SVM/UOCL,

and estimate σ2 =
∑n

i,j=1 ‖xi − xj‖2/n2. The model re-

jection rate parameter ν associated with OC-SVM is chosen

via a max-margin principle; in a similar way we choose the

model parameters γ1, γ2 in UOCL such that the maximum

average margin of the judged inliers is obtained. On all

datasets, UOCL uses the soft labels (
√

n−n+

n+ ,−
√

n+

n−n+ ).

To construct kNN graphs, we define D(, ) as the squared

Euclidean distance and fix k = 6.

To acquire the cut-off thresholds for the seven outlier de-

tection methods, we perform binary clustering over the out-

lierness measure values via deterministic seeding (two ini-

tial seeds are the largest and smallest values, respectively).

For each method, the cut-off threshold is set to the mean of

two cluster centers. In summary, all compared methods can

return a subset that contains the “asserted” positive (normal)

data examples. Except SMRS which cannot obtain outlier-

ness measure values for full samples, the others can re-rank

full samples according to the outlierness measure values or

classifier outputs.

3Because the tried datasets are all in high dimensions, we run this latest version
of Robust PCA (also Robust KPCA).



Table 1. UIUC-Scene & Caltech-101 datasets: mean precision (mPre), mean recall (mRec), mean F1 score (mF1), mean average precision

(mAP), and mean running time over the image categories of seven outlier detection methods and two one-class learning methods. All time

is recorded in second. For each column, the best result is shown in boldface.

Method UIUC-Scene (60% outliers) Caltech-101 (60% outliers)

mPre mRec mF1 mAP Time mPre mRec mF1 mAP Time
Initial 0.4011 1.0000 0.5726 – – 0.4019 1.0000 0.5734 – –

PCA 0.5352 0.8626 0.6587 0.6957 0.63 0.5058 0.8465 0.6321 0.6483 0.22

HR-PCA [29] 0.5336 0.8623 0.6577 0.6948 0.70 0.5221 0.8710 0.6520 0.6591 0.60

KPCA 0.5619 0.8294 0.6580 0.6122 0.54 0.5428 0.8154 0.6504 0.6436 0.25

KHR-PCA [29] 0.4684 0.8999 0.6147 0.5910 0.65 0.5073 0.8825 0.6428 0.6346 0.72

SMRS [7] 0.4536 0.8612 0.5933 – 1.91 0.5394 0.8690 0.6531 – 4.32

KDE [23] 0.5086 0.8851 0.6448 0.6892 0.46 0.4949 0.8579 0.6266 0.6470 0.18
RKDE [11] 0.5475 0.8943 0.6760 0.7306 0.47 0.5003 0.8736 0.6346 0.6570 0.19

OC-SVM [24] 0.5816 0.6209 0.5934 0.6350 2.23 0.5290 0.7155 0.6012 0.5981 4.74

UOCL (our approach) 0.7027 0.8822 0.7754 0.8157 1.31 0.6795 0.8587 0.7483 0.8027 2.28
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Figure 4. The results on the UIUC-Scene and Caltech-101 datasets.

Since groundtruth labels are available on all datasets, we

can compute precision, recall, and F1 score for the outlier

removal results achieved by all methods, and also compute

average precision for the re-ranking results achieved by all

methods except SMRS. The running time is also reported.

Such results are shown in Tabs. 1 and 2 and Figs. 4 and 5.

Through these results, we can see that UOCL achieves

the highest mean precision and mean F1 score for most cas-

es in terms of the outlier removal performance. It also con-

sistently accomplishes the highest mean average precision

and precision curve in terms of the re-ranking performance.

The accuracy gains of UOCL over the other methods are

more prominent when the proportion ρ of outliers increas-

es. For example, on UIUC-Scene the gains in mPre, mF1,

and mAP of UOCL over the best competitor are respective-

ly 21%, 15%, and 12% at ρ = 0.6; on Caltech-101 the

gains in mPre, mF1, and mAP of UOCL over the best com-

petitor are respectively 25%, 15%, and 22% at ρ = 0.6.

While the accuracy gains on INRIA and Google-30 are less

sharp, UOCL still accomplishes the highest mean precision,

mean F1 score, mean average precision, and precision curve

among all compared methods. The reason for decreased

accuracy improvements may be that for some complicated

query concepts the inlier images are less coherent and prob-

ably distributed in some isolated and sparse clusters, for

which UOCL is likely to only capture the densest clusters

and lose the inliers in the sparse clusters. All these experi-

mental results disclose: 1) OC-SVM falls short at the high

outlier level; 2) HR-PCA shows the robustness to some ex-

tent as it can remove some outliers in discovering the prin-

cipal subspace; 3) UOCL exhibits the strongest robustness

to the outlier images, producing the most coherent image

subset from a contaminated image set with a high fraction

of artificial or real-world outliers.

5. Conclusions
The proposed unsupervised one-class learning (UOCL)

approach is highly robust to contamination of input training

data and capable of suppressing outliers with a high propor-

tion up to 60%. Extensive image outlier removal and image

re-ranking results on four image datasets demonstrate that

UOCL considerably outperforms the state-of-the-arts. The

success of UOCL stems from three primary factors: 1) the

self-guided learning mechanism jointly optimizes a large

margin one-class classifier and a label assignment for in-

liers and outliers; 2) the adaptively balanced soft labels are

exploited to handle the high outlier level; 3) the alternating

optimization algorithm achieves rapid convergence.
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