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Abstract
This paper presents a framework for simultaneously

tracking, learning and parsing objects with a hierarchi-
cal and compositional And-Or graph (AOG) representation.
The AOG is discriminatively learned online to account for
the appearance (e.g., lighting and partial occlusion) and
structural (e.g., different poses and viewpoints) variations
of the object itself, as well as the distractors (e.g., similar
objects) in the scene background. In tracking, the state of
the object (i.e., bounding box) is inferred by parsing with the
current AOG using a spatial-temporal dynamic program-
ming (DP) algorithm. When the AOG grows big for han-
dling objects with large variations in long-term tracking,
we propose a bottom-up/top-down scheduling scheme for
efficient inference, which performs focused inference with
the most stable and discriminative small sub-AOG. During
online learning, the AOG is re-learned iteratively with two
steps: (i) Identifying the false positives and false negatives
of the current AOG in a new frame by exploiting the spa-
tial and temporal constraints observed in the trajectory; (ii)
Updating the structure of the AOG, and re-estimating the
parameters based on the augmented training dataset. In ex-
periments, the proposed method outperforms state-of-the-
art tracking algorithms on a recent public tracking bench-
mark with 50 testing videos and 30 publicly available track-
ers evaluated [34].

1. Introduction
1.1. Objective and Motivation

Given a specified object in the first frame of a video,

the objective of online object tracking is to locate it in

the subsequent frames with bounding boxes. Online ob-

ject tracking, especially long-term tracking, is a very chal-

lenging problem due to (i) the variations of the object it-

self, which include the appearance and structural variations,

scale changes, occlusions (partial or complete), and the sit-

uations of disappearing and reappearing, etc., and (ii) the

complexity of the scene, which includes camera motion, the

background clutter, distractors, illumination changes, and

∗Tianfu Wu is the corresponding author

frame cropping, etc. In recent literature, object tracking

has received much attention due to practical applications in

video surveillance, activity and event prediction, etc.

This paper presents an online Tracking-Learning-Parsing

(TLP) framework to address the issues above. The object

to be tracked is modeled by an And-Or graph (AOG) [39]

which is a hierarchical and compositional representation

with a directed acyclic graph (DAG) structure. The hy-

pothesis space of AOG is constructed using the quantization

method [31] recently proposed for learning object detectors

in PASCAL VOC datasets. The AOG is discriminatively

trained online to account for the variations of objects against

background stated above. Our TLP framework is of similar

spirit to tracking-learning-detection (TLD) [19], tracking-

by-detection [2] and self-paced learning of tracking [16].

Note that the AOG in this paper is learned for the tracked

object instance, rather than at the object category level. The

motivation of introducing the AOG is four-fold.

i) More representational power: Unlike TLD [19] and

many others which model an object as a single template or a

mixture of small number of templates and thus does not per-

form well for articulated objects (e.g., person), an AOG rep-

resents an object in a hierarchical and compositional man-

ner which has three types of nodes: an And-node represents

the rule of decomposing a complex structure (e.g., a walk-

ing person or a running basketball player) into simple ones;

an Or-node represents alternative structures at both object

and part levels which can capture different poses and view-

points and partial occlusion; and a Terminal-node grounds

the representational symbol to image data using different

appearance templates to capture local appearance change.

Both the structure and appearance of the AOG will be dis-

triminatively trained online to account for the variations of

a tracked object against its scene backgrounds.

ii) More flexible computing schemes: Firstly, due to the

DAG structure of an AOG, we can use a dynamic program-

ming (DP) algorithm in inference; Secondly, the compo-

sitional property embedded in an AOG naturally leads to

different bottom-up/top-down computing schemes as the α-

β-γ computing processes studied in [32], which can track
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Figure 1. Illustration of our tracking-learning-parsing (TLP) framework using the “shaking” video in the dataset [34]. See text for details.

Also see the video demos in the supplementary material. (Best viewed in color and magnification)

the object by matching the object template directly (α), or

computing some discriminative parts first and then combine

them into object (β), or doing both (α+ β). Usually, at the

beginning of tracking, the AOG has a few number of nodes

so we can track the object by parsing with the AOG using

DP efficiently. As time evolves, the AOG can grow through

online learning, especially for objects with large variations

in long-term tracking, and thus faster inference is entailed

for the sake of real time applications.

iii) More robust tracking and online learning strategies:

While the whole object has large variations or is partially

occluded from time to time during tracking, some parts

might remain stable and are less likely to be occluded,

so they can be used to robustly track the object using a

bottom-up/top-down computing scheme, and also to im-

prove the accuracy of appearance adaptation of Terminal-

nodes (e.g., identifying appearance changes or occlusion of

other nodes). This idea is similar to finding good features to

track [30], and we find good part(s) online for both tracking

and learning.

iv) Fine-grained tracking results: Beside predicting the

bounding boxes of the tracked object, the output of our

method (i.e., the parse trees) has much more information

which is potentially useful for other modules beyond the

tracking such as activity or event prediction.

1.2. Method Overview
As illustrated in Fig.1, our framework consists of three

components:

i) The AOG for modeling the tracked object. Given the

input bounding box of the object in the first frame (top-left),

we divide the bounding box into a r × c cells (3 × 3 here).

The set of primitive parts are then enumerated in the r × c
cells, which quantize the hypothesis space of AOG using

the method proposed in [31]. The quantization is capable of

exploring a large number of latent part configurations (cap-

turing discriminative and stable parts at different frames),

meanwhile it makes the problem of online learning AOG

feasible. We will elaborate the construction of the AOG in

Sec. 3.1. See two examples, the initial AOG and one online

updated AOG , in the bottom-left of Fig. 1.

ii) The spatial-temporal DP algorithm for tracking-by-
parsing with AOG. At time t, given the previous bound-

ing box, the spatial DP algorithm is used to compute the

matching score and parse tree of a sliding window inside

the search range (which can be either some neighborhood

around the location and scale predicted based on the previ-

ous bounding box or the whole feature pyramid). A parse

tree is a realization of the AOG by selecting the best child

node for each encountered Or-node, and is the best inter-

pretation of the object at current frame. For example, the

parse tree of the object in Frame 60 is illustrated by the red

arrows in the AOG (bottom-middle). We maintain a DP ta-

ble memoizing the candidate object states generated by the

spatial DP algorithm in the past n frames (e.g., 20 in our

experiments). The temporal DP algorithm is then used to

find the optimal solutions for the n frames, which can help

correct tracking errors (i.e., false negatives and false posi-

tives collected online) by leveraging more spatial-temporal



information. The formulation of the spatial-temporal DP is

given in Sec. 4. We study the scheduling scheme for infer-

ence with a big AOG in handling objects with large varia-

tions during tracking (Sec. 5.3).

iii) The online learning of the AOG. The AOG is discrim-

inatively trained online with only the whole object bound-

ing box in the first frame being given. In this paper, we

adopt the weakly-labeled latent SVM framework [12]. De-

tails on online learning is given in Sec.5. The learning is

done incrementally as time evolves, starting with a small

set of positive examples (bootstrapped based on the given

bounding box) and a set of negative examples (mined from

outside of the given bounding box) to train the initial AOG.

In the subsequent frames, the AOG is re-learned iteratively

with two steps: The first step collects the false positives and

false negatives of the current AOG in a new frame by ex-

ploring the temporal and spatial constraints in the trajectory,

similar to the P-N learning proposed in TLD [19], and the

second step updates the structure of the AOG (e.g., adding

a new object template and/or some part configurations and

corresponding templates) if necessary, and re-estimates the

parameters based on the augmented training dataset. One
key issue of learning the AOG online is how to maintain

the purity of the positive and negative training set collected

online (similar issue of learning single object template is

discussed in [16] and [19]). The spatial-temporal DP algo-

rithm for tracking-by-parsing stated above can help main-

tain the robustness of learning. Some object examples col-

lected online are shown in the bottom-right in Fig. 1.

In experiments, the proposed framework is tested on a

recent public benchmark [34] consisting of 50 video clips

with different types of variations. Experimental results

show that our method outperforms the state-of-the-art track-

ing methods consistently.

2. Related Work
In the literature of object tracking [36], either single ob-

ject tracking or multiple-object tracking, there are often two

types of settings:

i) The offline visual tracking [37, 28, 6], which assumes

the whole video sequence has been recorded already, and

then utilizes two steps; the first step generates object pro-

posals in all frames of the input video by using some of-

fline trained detectors (such as DPMs [11]) and then obtains

“tracklets”, and the second step finds the optimal object tra-

jectory (or trajectories for multiple objects) by solving an

optimization problem (e.g., the K-shortest path or min-cost

flow formulation) for the data association.

ii) The online visual tracking, which is designed for live

videos, and starts tracking when the bounding box of an ob-

ject of interest was specified in certain frame. Most popular

methods can be divided into four streams: (1) Appearance

modeling of object itself as a whole, such as the incremen-

tal learning [29], kernel-based [8], particle filtering [17],

Figure 2. Illustration of constructing the compositional space of

AOG using the method in [31]. Here, the full structure of the AOG

is constructed for a 2× 3 grid.

sparse coding [26] and 3D-DCT representation [23]. (2)

Appearance modeling of object with parts, such as patch-

based [22], coupled 2-layer model [7] and adaptive sparse

appearance [18]. The major limitation of the appearance

modeling of object itself is the lack of background mod-

els, especially when there are distracotrs (e.g., players in

sport games). To address this issue, it leads to so called

discriminant tracking. (3) Tracking by discrimination using

a single classifier, such as the support vector tracking [3],

multiple instance learning [4], the struck [14], the circu-

lant structure-based kernel method [15], and the discrim-

inant saliency based tracking [25]. (4) Tracking by part-

based discriminative models, such as the online extension

of the DPM model [35], and the structure preserving track-

ing method [38].

Our method belongs to the fourth stream of online vi-

sual tracking. Unlike the predefined or fixed part configu-

rations with the star-model structure used in previous work,

we learn both the structure and appearance of the AOG on-

line which is, to our knowledge, the first method to address

the problem of online explicit structure learning in tracking.

Our contributions. This paper makes four contributions to

the long-term online visual tracking problem:

i) It presents a generic tracking-learning-parsing (TLP)

framework which can learn and track objects with online

discriminatively trained AOGs.

ii) It presents a spatial-temporal DP algorithm for

tracking-by-parsing with AOG and outputs fine-grained

tracking results using parse trees.

iii) It proposes a simple yet effective bottom-up/top-

down scheduling scheme for inference when the AOG

grows big in tracking.

iv) It outperforms the state-of-the-art tracking methods

on a recent public benchmark [34].

3. Problem Formulation
3.1. The AOG and Structure Quantization

Let B denote the input bounding box. We first divide it

into a r × c-cell grid (e.g., 2 × 3 in Fig. 2). The maximum

grid size is 3 × 3 cells in this paper to control the model



complexity. The full structure of AOG is constructed us-

ing breadth-first search (BFS) [31]. By “full structure”, it

means all the possible compositions on top of the cell grid

with binary composition being used for And-nodes.

The AOG is a directed acyclic graph, denoted by G =
(V,E). The node set V consists of three subsets of Or-

nodes, And-nodes and Terminal-nodes respectively, which

represent different aspects of modeling objects in a gram-

matical manner [39]. From the top to bottom, the AOG

consists of: The object Or-node (plotted by green circles),
which represents alternative object configurations; A set of
And-nodes (solid blue circles), each of which represents a

typical configuration of the tracked object; A set of part Or-
nodes, which handle local variations and configurations in

a recursive manner; A set of Terminal-nodes (red rectan-
gles), which link the whole object and parts to the image

data (i.e., grounding the symbols), and take into account

appearance Or-node (i.e., local appearance mixture) and oc-

clusions (e.g., the head-shoulder of a walking person before

and after opening a sun umbrella). Note that some part Or-

nodes are shared between different And-nodes.

A parse tree is an instantiation of the AOG with the best

child node of each encountered Or-node being selected. See

the example illustrated by the red arrows in Fig. 1. All the

terminal-nodes in a parse tree represents a part configura-

tion when collapsed to image domain, as the parsing results

(rectangles in different colors) shown in top-right in Fig. 1.

3.2. Formulation of Object Tracking
Let Λ denote the image lattice on which the video frames

are defined. Denote a sequence of video frames within

time range [0, T ] by I0:T = {I0, · · · , IT }. Let Ct =

(Bt, B
(1)
t , · · · , Bkt

t ) be the configuration collapsed from

the parse tree of the tracked object in It where Bt is the

object bounding box Bt and (B
(1)
t , · · · , B(kt)

t ) are a small

number kt of part bounding boxes within Bt.

The objective of tracking is to predict Bt in It, and we

treat (B
(1)
t , · · · , Bkt

t ) as latent variables which are modeled

to leverage more information for computing Bt. Note that

we do not track (B
(1)
t , · · · , Bkt

t ) explicitly.

We first derive the formulation from the generative per-

spective by considering a first-order Hidden Markov Model

as usual,

The prior model: B0 ∼ p(B0) , (1)

The motion model: Bt|Bt−1 ∼ p(Bt|Bt−1) , (2)

The likelihood: It|Bt ∼ p(It|Bt). (3)

Instead of following the traditional derivation

based on the prediction model p(Bt|I0:t−1) =∫
p(Bt|Bt−1)p(Bt−1|I0:t−1)dBt−1 and the updating

model p(Bt|I0:t) = p(It|Bt)p(Bt|I0:t−1)/p(It|I0:t−1)
(which is a marginal posterior probability), we seek to

maximize a joint posterior probability directly,

p(B0:t|I0:t) = p(B0:t−1|I0:t−1)
p(Bt|Bt−1)p(It|Bt)

p(It|I0:t−1)

= p(B0|I0)
t∏

i=1

p(Bi|Bi−1)p(Ii|Bi)

p(Ii|I0:i−1)
. (4)

By taking logarithm at both sides in Eqn.(4), we have,

B∗
0:t =argmax

B0:t

log p(B0:t|I0:t)
= argmax

B0:t

{log p(B0) + log p(I0|B0)+

t∑

i=1

[log p(Bi|Bi−1) + log p(Ii|Bi)]}. (5)

where the image data term p(I0) and
∑t

i=1 p(Ii|I0:i−1) are

not included in the maximization as they are treated as con-

stant terms. In online tracking, we have groundtruth for B0

and thus p(I0|B0) can also be treated as known after the

object model is trained based on B0. Then, Eqn.(5) can be

reproduced as,

B∗
1:t =argmax

B1:t

log p(B1:t|I0:t, B0) (6)

=argmax
B1:t

{
t∑

i=1

[log p(Bi|Bi−1) + log p(Ii|Bi)]}.

which leads to the spatial-temporal DP algorithm for

tracking-by-parsing with AOG.

4. Tracking-by-Parsing with AOG using
Spatial-Temporal DP Algorithm

By following the derivation in [32], we show that

only the log-likelihood ratio matters in computing the log-

likelihood log p(Ii|Bi). We can obtain,

p(Ii|Bi) = p(IΛBi
, IΛBi

|Bi) = p(IΛBi
|Bi)q(IΛBi

)

= q(IΛ)
p(IΛBi

|Bi)

q(IΛBi
)

, (7)

where ΛBi
is the remaining domain (i.e., ΛBi

∪ ΛBi
= Λ

and ΛBi
∩ ΛBi

= ∅), and q(IΛ) is the probability model of

scene background which does not need to be specified ex-

plicitly in the computation. This derivation gives an alterna-

tive explanation for the discriminant tracking v.s. tracking

by appearance modeling of object itself.

So, we will treat Eqn.(6) from the discriminative

perspective, i.e., we do not compute log p(Ii|Bi) and

log p(Bi|Bi−1) in the probabilistic way, instead we com-

pute the matching scores of online discriminatively trained

AOG. Denote by Score(Ii|Bi) = log
p(IΛBi

|Bi)

q(IΛBi
) . We can
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Figure 3. Examples of the initial AOGs learned for the “Jogging”, “Motorrolling” and “Sylvester” in the benchmark [34]. Depending on

both the object and the background, the initial AOGs for different objects have different complexity.

re-write Eqn.(6) in the minimization form,

B∗
1:t =argmin

B1:t

Cost(B1:t|I0:t, B0;G) (8)

=argmin
B1:t

{
t∑

i=1

[Cost(Bi|Bi−1)− Score(Ii|Bi;G)]}.

where the scores are computed based on the online learned

AOG so we add G to the equation.

The spatial DP computes Score(Ii|Bi;G), and the tem-

poral DP solves the optimal solution of B∗
1:t in Eqn.(8).

4.1. The Spatial DP Algorithm
To compute Score(Ii|Bi;G), we do parsing inside ΛBi

with the current AOG G with the optimal configuration

C∗
i being sought. We denote this parsing process by

Parse(Ii|Bi;G) which is given in Algorithm.1 in the sup-

plementary material. The basic idea is that for a given can-

didate Bi, we want to find the best of all possible parse

trees in the AOG, and for each parse tree we want to find

the best part configuration (through local deformation of the

Terminal-nodes). The DP algorithm is used to solve these

two rounds of maximization efficiently.

In practice, at time t, given the previous bounding box

Bt−1, the spatial search space is defined by the feature

pyramid which is processed in a “center-surround” manner:

the “center” means the neighborhood of both pyramid lev-

els and corresponding spatial domain defined by Bt−1, and

the “surround” is the remaining portion in the feature pyra-

mid. We first run the spatial DP algorithm with the current

AOG inside the “center”. If the DP solution has high confi-

dence matching score based on the online learned threshold,

it will be accepted. Otherwise, it keeps all the candidates

with scores greater than some threshold (e.g., 70% of the

high confidence threshold), and then run DP algorithm in

the “surround” with all the candidates kept in the similar

manner, followed by running the temporal DP algorithm.

4.2. The Temporal DP Algorithm
Assume that all the candidates for B1, · · · , Bt are mem-

oized after running the spatial DP algorithm for tracking-

by-parsing in I1 to It, Eqn.(8) corresponds to the classic

DP formulation with −Score(Ii|Bi;G) being the local cost

term and Cost(Bi|Bi−1) the pairwise cost term.

To compute Cost(Bi|Bi−1), we use a thresholded mo-

tion model, as experimented in [16]: the cost is 0 if the tran-

sition is accepted by the measured median flow [19] (which

is a forward-backward extension of the Lucas-Kanade opti-

mal flow [5]) and +∞ otherwise.

In practice, we often do not need to run the temporal

DP in the whole time range [1, t], especially for long-term

tracking, since the tracked object might have changed sig-

nificantly, instead we only focus on some short time range

(e.g., the past 20 frames used in our experiments).

5. Online Learning of the AOG
In this section, we present the online learning of AOG

consisting of two components: (i) Learning the initial AOG

given the the input bounding box in the first frame. (ii) Up-

dating the AOG with the results from tracking-by-parsing.

Appearance feature and learning framework. We use the

modified HOG feature used in DPM [11], and adopt the

weakly-labeled latent SVM framework (WLLSVM) [12] to

estimate the appearance parameters.

Local deformation. In this paper, we do not use the

quadratic deformation term as done in the DPM, instead we

use local max when summing the scores over child nodes

for an And-node (as written in Algorithm.1 in the supple-

mentary). The local deformation range is proportional to

the side lengths of a terminal-node (e.g., 0.1 in this paper).

Denote by D+
t the online collected positive dataset, and

by D−
t the online collected negative dataset at time t.

5.1. Learning the Initial AOG
We have D+

0 = {(I0, B0)}. We augment it by warping a

small number (20 in our experiments) of positives (i.e., cre-

ating new positives by adding random Gaussian noise and

random small affine transformations). The initial D−
0 use

the whole remaining image IΛB0
for mining hard negatives

during training. This mining step improves the tracking sig-

nificantly which is also observed in [16].

The initial AOG, denoted by G0. The structure is learned

by pruning. We first train the full object template, denoted

by ω. Then, the appearance parameters for each terminal-

node v in the full AOG is initialized by cropping out the

corresponding portion in ω, denoted by ωv . We evaluate

the “goodness” of a terminal-node v by its variance, over
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Figure 4. Illustration of the scheduling, which improves both the computing efficiency and the robustness of online learning of the AOG.

all positives, of the full object template score minus the

terminal-node score, which is used in the DPM cascade

[10] to order the parts. The smaller the variance is, the

more stable and important the terminal-node is. Then, we

threshold the variance to prune the terminal nodes and di-

vide the set of terminal-node based on the “on/off” states,

i.e., VT = V on
T ∪ V off

T . Based on V on
T , we learn the ini-

tial AOG. To maintain the structure, we require that all the

child nodes of an And-node need to be turned “on”, which

is implemented by two rounds of traversal of the full AOG:

i) Turn on/off all the And-nodes and Or-nodes in the full

AOG using DFS. An encountered Or-node turns on if

one of its child turns on. An encountered And-node

turns on if and only if all of its child nodes turn on.

ii) Retrieve the initial AOG using BFS. Start from the root

Or-node, add all turned-on child nodes of an encoun-

tered Or-node or And-node, and add any encountered

Terminal-node.

Note that some Terminal-nodes in V on
T might not be in-

cluded in the initial AOG, and they can be added back dur-

ing updating if the condition was satisfied. Fig. 3 shows

three examples of learned initial AOGs.

We re-train the appearance parameters of the whole ini-

tial AOG jointly using modified WLLSVM [12] and esti-

mate the threshold for all nodes in the initial AOG using the

PAA method [10]. After training, we keep the positive and

negative support vectors in the training cache which will be

reused in updating the AOG. With the learned initial AOG,

we start tracking-by-parsing as stated in Sec.4. During the

tracking, we update the AOG based on the tracking results.

5.2. Online Updating of the AOG
The goal of updating the AOG online is to account for

both the structural and appearance variations of the tracked

object, as well as to handle hard negatives (distractors) in

the background.

We will keep the appearance parameters of termi-

nal nodes in the initial AOG unchanged since they are

learned with groundtruth input, which will help locate a re-

appearing object (e.g., after moving out of the scene or be-

ing completely occluded). So, the appearance of a terminal-

node is represented by a mixture (i.e., appearance Or-node)

in updating.

At time t, with the tracking-by-parsing results, we update

the AOG in the following way,

i) Maintaining D+
t and D−

t based on D+
t−1 and D−

t−1:

(1) If the tracking result Bt has a high confidence

parsing score, it is added to D+
t and then all other

high-scoring candidates generated during the search

are added to D−
t ; (2) Correct the previously augmented

examples in D+
t−1 and D−

t−1 according to the consis-

tency with the temporal DP result (i.e., correct previ-

ously false positives and false negatives). This con-

trols the purity of the training dataset similar to the P-N

learning in TLD [19].

ii) Updating the training cache based on the parse trees

obtained from D+
t and D−

t with the current model.

iii) Relearn the appearance parameters for all Terminal-

nodes in the current AOG.

iv) Updating the structure of the AOG: (1) Initialize all the

remaining Terminal-nodes based on the updated ob-

ject template; (2) Evaluate the “goodness” of all the

Terminal-nodes and turn them on/off as done in learn-

ing the initial AOG; (3) Retrieve the new structure of

the AOG using DFS and BFS.

v) Retrain the AOG if the structure has been updated in

step iv).

Please see the video demos in the supplementary material

for illustrating the AOG learning and updating. We will

study more theoretically-sound online learning framework

for the AOG in tracking, which is a very challenge problem

under general settings.

5.3. Scheduling in the AOG
When the tracked objects have large variations, the AOG

can grow big, especially in long-term tracking. To improve

the computational efficiency, we propose a simple yet ef-

fective scheduling scheme which do focused inference with

identified “alert” sub-graph of the AOG (Fig. 4).

The scheduling is based on the ordering of nodes in the

AOG and estimating a two-sided thresholds, i.e., early ac-

ceptance/early rejection threshold, for each node.

i) The Terminal-nodes in the AOG are sorted using the

variance as “goodness” measure as done in the learning.

ii) A two-sided threshold is estimated for each Terminal-

node and And-node using the decision policy method [33].



AOGTracker Struck[14] CXT[9] VTD[20] VTS[21] OAB[13] CPF[27] LSK[24] Frag[1] MIL[4] SPO[38]

Prec. 0.851 0.773 0.658 0.650 0.645 0.604 0.599 0.589 0.582 0.574 0.587

Suc. 0.748 0.694 0.579 0.583 0.581 0.540 0.502 0.556 0.530 0.496 0.488
Table 1. Overall performance comparison of the top 10 trackers evaluated on the 50-video benchmark [34]. We follow the evaluation

protocol proposed in [34] to compute the precision and success rate.
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Figure 5. Plots of overall performance comparison for the 50
videos in the benchmark [34]. The proposed method (“AOG-

Tracker”) obtains better performance in terms of precision (left)

and success (right) plot.

iii) The tracking-by-parsing (Algorithm.1 in the supple-

mentary) is then modified: (1) Instead of following the DFS

completely to compute scores in the step 0, we schedule

the computation of the nodes according to the ordering; (2)

Bottom-up computing with DFS in the AOG starting from

the first Terminal-node in the ordering to prune the search

space; and (3) Top-down verification using the two-sided

threshold with the BFS in the AOG to exploit early stop.

By this scheduling, we can also improve the robustness

of online learning through finding good part or partial part

configuration to guide the updating of the AOG, especially

for handling occlusion and large variations of some parts.

See the illustration in Fig. 4.

With the scheduling scheme, our tracker can run 2 to 3

frames per second on a single CPU core.

6. Experiments
We test our method on a recent public benchmark [34]

consisting of 50 video clips which have different challeng-

ing aspects such illumination variation, scale variation, non-

rigid deformation, occlusion, and out-of-view, etc. For the

benchmark, most published tracking algorithms1 (30 pub-

licly available trackers) are evaluated including Struck [14],

IVT [29], MIL [4], TLD [19] and structure preserving

tracker [38], etc.. We follow the same evaluation protocol

proposed in [34]. Due to space limit, we show quantitative

comparison results only in this section, and qualitative re-

sults and video demos showing the details of online learning

of our method will be presented in the supplementary.

Overall, our method outperforms them consistently (see

Fig.5 and Table. 1). In addition, Fig. 6 shows the compari-

son on different subsets such as non-rigid deformation and

out-of-view subsets. Note that Fig. 5 and Fig. 6 show the

top 10 trackers only for clarity.

1https://sites.google.com/site/trackerbenchmark/benchmarks/v10
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Figure 6. Detail comparisons in different subsets divided based

on main variation of the object to be tracked (e.g., objects in

15 videos have the non-grid deformation including “Basketball”,

“Bolt”, “Couple”, “Crossing”, etc.). The details of the subsets re-

fer to [34]. The proposed method (“AOGTracker”) obtains better

or comparable performance in all the subsets.

For more close-view evaluation, we show four examples

of the center distance error per frame in Fig. 7 with the top 4

tracker compared, which show that our method can handle

occlusion, pose change and illumination well. The robust-

ness of our AOG tracker lies in the hierarchical and compo-

sitional structure which are discriminatively trained online
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Figure 7. Comparisons on the center distance error per frame.

to account for the variations.

7. Discussion and Conclusion
This paper presents a tracking-learning-parsing frame-

work for simultaneously tracking and learning objects with

hierarchical models in the directed acyclic And-Or graph

structure. We present a spatial-temporal dynamic program-

ming algorithm for tracking-by-parsing with the AOG. We

also present the method of online learning the AOG in-

cluding its structure and appearance parameters. To handle

the complexity when the AOG grows big in tracking ob-

jects with large variations, we study a simple yet effective

scheduling scheme for inference, which improves both the

computational efficiency and the robustness of learning. In

experiments, we test our method on a recent public bench-

mark and experimental results show better performance.
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