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Abstract

In this paper we aim for zero-shot classification, that
is visual recognition of an unseen class by using knowl-
edge transfer from known classes. Our main contribution
is COSTA, which exploits co-occurrences of visual concepts
in images for knowledge transfer. These inter-dependencies
arise naturally between concepts, and are easy to obtain
from existing annotations or web-search hit counts. We esti-
mate a classifier for a new label, as a weighted combination
of related classes, using the co-occurrences to define the
weight. We propose various metrics to leverage these co-
occurrences, and a regression model for learning a weight
for each related class. We also show that our zero-shot
classifiers can serve as priors for few-shot learning. Exper-
iments on three multi-labeled datasets reveal that our pro-
posed zero-shot methods, are approaching and occasionally
outperforming fully supervised SVMs. We conclude that co-
occurrence statistics suffice for zero-shot classification.

1. Introduction

Zero-shot classification aims to reveal the relevant class
of an image, in the case where no visual examples of that
class are provided during training [12, 16, 20]. In the ab-
sence of direct annotated data, visual classes should be de-
scribed and classified indirectly. This indirect classification
usually takes place in two stages. First, the visual appear-
ance of object classes is described using semantic proper-
ties, such as attributes [12, 28] or class hierarchies [16, 20].
Second, a transfer scheme has to be provided at test time for
the new (unseen) class, e.g., an attributes-to-class mapping,
or its position in the hierarchy.

In this paper we introduce COSTA, using the co-
occurrence statistics of visual concepts for transfer learning.
First, we use a set of known labels as knowledge data, with-
out requiring attribute annotation or a specific hierarchy.
Second, our transfer scheme relies on co-occurrence statis-
tics between the new class and the known labels. These are
easy to obtain, e.g., by active learning, web engines or user-
provided image tags. Our approach is illustrated in Figure 1.

COSTA leverages, by design, the bias of natural co-

Figure 1. Illustration of COSTA, the classifier for an unseen label
is estimated using a weighted combination of existing classifiers
and their co-occurrence statistics.

occurrences of visual concepts. These emerge naturally in
complex images, when multiple concepts appear together
in images. The underlying hypothesis is that concept-to-
concept inter-dependencies reveal a significant part of the
latent image semantics. This bears three important advan-
tages as compared to attribute-based classification [12].

First, many concepts can be described as an open set
of concept-to-concept inter-dependencies. For example a
chair is probably better described by contextual cues that
are easier to recognize, such as indoors, table or desk, rather
than by its composing parts that we may not even be able to
define [7, 14]. This contrasts to the restricting assumption
of attribute-based classifiers where a class is a closed set of
object specific semantic attributes.

Second, the mapping between unknown concepts and the
known labels requires only computing their respective co-
occurrences. Hence, we avoid the high-level mappings from
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attributes to classes, which are challenging to automate [21]
and often need to be provided by specialists [12, 28]. Co-
occurrence statistics are relatively straightforward to obtain
from external sources.

Third, in our framework all visual concepts are treated
equally, objects, scene descriptions and classes are all la-
bels. There is no need to distinguish between classes, to
be observed, and attributes, to describe classes. There-
for, COSTA inherently allows for zero-shot recognition in
multi-labeled datasets, for which we are the first to provide
a principled method. Moreover, since we make no assump-
tions on the nature of concepts, we may as well combine
object classes, attributes, scene descriptions and any other
textual image description as labels.

In fact, we observe that within a natural image there are
usually many relevant concepts [29], although just a few of
them are annotated [5]. As a result, even if we have the
image features for learning an unknown concept, we can-
not actually facilitate the learning in the absence of the ac-
tual labels. Exploiting, however, inter-concept dependen-
cies unlocks the learning of such unknown concepts. This
is particularly useful for concepts whose appearance cannot
be easily learned, either due to the small object size, large
intra-class variation, or the scarcity of annotations.

We summarize our novelties as follows. First, in this pa-
per we introduce the use of co-occurrence statistics for zero-
shot recognition, which is applicable for multi-label zero-
shot classification. Second, we show that for certain types
of concepts it is better to learn an indirect model, based on
concept-concept relationships, rather than directly using vi-
sual examples. Third, we demonstrate that co-occurrence
statistics could also be obtained from web search engines.
This allows for effortless zero-shot classification, albeit
with an expected decrease of performance. Forth, we show
that our zero-shot recognition model based on concept co-
occurrences can serve as a prior in a few-shot learning set-
ting, which significantly improves performance when just a
few positive instances are available.

2. Related work
In this section we discuss some of the most relevant

work to zero-shot learning, few-shot learning, and using co-
occurrence statistics.

Zero-shot learning. Due to the ever increasing number
of available images and categories to be recognized it be-
comes infeasible to label images for each possible class. In
their pioneering work [12] Lampert et al. propose to use
an attribute-based representation to capture semantic prop-
erties of an image, for multi-class zero-shot classification.
This is an extreme case of transfer learning where for a new
class no training instances are available, only a description
of a class in terms of attributes. For learning animal classes,

for example, these attributes could consists of has fur and
eats fish. Given a set of trained attribute classifiers, an im-
age is classified to a class by comparing its attribute predic-
tions to a set of predefined attribute-to-class mappings.

The work has generated momentum for zero-shot clas-
sification, and the attribute-based representation has devel-
oped in several ways. For example, by including learned
non-semantic attributes for better discrimination [19, 25], or
to learn an attribute embedding specific for zero-shot pre-
diction [1]. Instead of relying on a predefined mapping,
in [21], linguistic knowledge databases and web search hit
counts are used to automatically obtain the attribute-to-class
mapping. They obtained the best automated results by us-
ing the hit counts of the Yahoo search engine, which we will
also use in our experiments.

Most of these works exploit expensive, expert-driven,
annotations to obtain semantic attributes and/or rely on dif-
ficult to obtain class-to-attribute mappings. Furthermore,
they all focus on multi-class classification of images that
contain a single main object. In this paper we also focus on
zero-shot classification, but our method is suitable for multi-
label image classification. To describe novel concepts, we
exploit label-to-label relationships, which are easy to obtain
under the assumption that visual concepts have unique co-
occurring patterns in images.

Few-shot learning. In few-shot learning it is assumed
that besides a few positive instances also example images
from (loosely) related classes are provided [13]. The goal
is to exploit the related classes to improve the classification
accuracy. Hierarchies of objects and classes are concep-
tually appealing for such kind of knowledge transfer. For
example, the WordNet hierarchy has been used to obtain
zero-shot priors for large scale image classification [16, 20].
In [23] hierarchies are used to transfer knowledge from well
represented classes to related classes with just a few ex-
amples. And in [2] the authors transfer valuable features
from already known classes for describing a novel class us-
ing feature adaptation. In our work, we do not impose any
hierarchy on the objects, instead we use the co-occurrences
of visual concepts to transfer knowledge to new classes.

In [20], various knowledge-transfer methodologies are
evaluated for few-shot and zero-shot recognition. The au-
thors conclude that knowledge transfer has little added
value when ample training images are available for all
classes. In contrast, transfer learning was found to be ef-
fective in a zero-shot and few-shot classification setting. In
the current work we do not aim to improve upon methods
that focus on few-shot learning, instead we illustrate that
our zero-shot prediction model serves as a reasonable prior
for few-shot classification. To do so, we rely on the the
weighted least-square support vector machines for learning
from few examples [26].
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Co-occurrence statistics. Co-occurrences have been re-
peatedly considered for capturing higher order relationships
between classes, concepts and labels. They have been used
to improve image segmentation [11], object detection [3,
22], to reason about what to expect in a scene [4, 14], and
for image and attribute classification [8, 15]. In general,
we notice that co-occurrences of objects, labels and textures
have been recognized as a strong clue for label and attribute
prediction. However, we are not aware of any works that
use label co-occurrences to enable zero-shot classification.

3. Zero-shot multi-label classification
In this section we define our zero-shot framework using

label co-occurrences. We first introduce our co-occurrence
based classification method. Second, in Section 3.2 we de-
scribe a regression interpretation to obtain zero-shot classi-
fier. Third, in Section 3.3 we illustrate the use of the zero-
shot model as prior for few-shot classification.

3.1. Co-occurrence based classification

Our goal is to estimate a classification function for an
unseen label l, using a set of existing classifiers. We assume
that we have a set of linear classifiers, trained on a collection
of annotated images with k labels. These classifiers could
be obtained from binary SVMs or logistic regression, and
are represented by their weight vectors wk ∈ Rd×1. We
assume, without loss of generality, that the weight vectors
are augmented such that the biases are included.

We propose to estimate the weight vector ŵl to classify
the unseen label l, as

ŵl =
∑
k

wk slk, (1)

where slk represents a measure of similarity between the
known label k and the unseen label l. In this paper, we
base these similarities on the co-occurrence statistics be-
tween the new label and existing labels.

Co-occurrence similarities. We explore different simi-
larity measures based on the co-occurrence of two labels.
Let cij denote the total number of images for which label i
and label j are relevant according to an auxiliary resource,
for example the ground-truth labelling, a web search engine
or a user provided input in the case of active learning. Also,
ci denotes the total number of images depicting label i, and
m denotes the total number of labels. The similarities we
explore are:

• Normalized co-occurrences,

sn
ij =

cij
ci
, (2)

where the similarity is directly proportional to the
number of co-occurrences.

• Binarized co-occurrences, motivated by the binarized
class-to-attributes mappings used in attribute-based
zero shot classification[12, 28]:

sb
ij = [[cij ≥ t]], (3)

where t is a global threshold set as t = 1
m2

∑
i,j cij .

• Burstiness corrected co-occurrences. Burstiness is the
phenomena that the frequency of an observation is sig-
nificantly larger than a statistically independent model
would predict. The square-root function is used in im-
age retrieval and classification to correct for burstiness
of visual features [10, 24]. Similarly, we aim to reduce
the burstiness in labellings, and use:

ss
ij =

√
cij , (4)

• The Dice’s coefficient,

sd
ij =

cij
ci + cj

, (5)

is a measure used in many Natural Language Process-
ing systems. It aims to estimate the semantic related-
ness between two terms, based on hit counts from web
search engines.

Defining a concept by what it is not. The similarities de-
fined above, are based only on positive co-occurrences, i.e.,
how often two labels are relevant for an image. However,
knowing what is not related to the concept might be a very
informative clue about the visual scope of a concept, which
is also shown in an image retrieval setting [9].

In addition to the positive co-occurrences, denoted by
c++
ij , we also use the other possible co-occurrence relations:

the presence of label i with the absence of label j, the ab-
sence of label iwith the presence of label j, and the absence
of both labels, denoted by c+–

ij ,c–+
ij , and c––

ij respectively. For
each of these definitions of co-occurrence we use the simi-
larity measures defined above.

Using the positive and negative co-occurrences, the
weight vector wl of an unknown label can be estimated as:

ŵl =
∑
k

wk s
++
lk −wk s

+–
lk −wk s

–+
lk +wk s

––
lk , (6)

Estimate co-occurrence from web data. So far, we have
not discussed how to obtain the co-occurrence statistics re-
quired for our zero-shot recognition framework. To show
the potential of our framework, in most of the experi-
ments we estimate label co-occurrences from the ground-
truth labelling of our image datasets. Alternatively, the co-
occurrence statistics could be estimated from large text cor-
pora, e.g., Wordnet or Wikipedia, or internet search engines,
such as Yahoo, Google and Bing.
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Following [21], we use the hit counts estimations of
the Yahoo web search, Yahoo image search and Flickr-tag
search engines to estimate to co-occurrences. We estimate
the similarities defined above, using cHC

ij denoting the hit
count for a query consisting of label i and j. The positive
and negative co-occurrences are estimated by using the hit
counts cHC

i of the individual labels i, and an estimate of the
total number of images cHC

total =
∑

i ci.

3.2. Regression to estimate classifiers

To improve the classifier for the unseen label l, we pro-
pose to learn a weighted version of Eq. (1), given by:

ŵl =
∑
k

ak wk slk, (7)

where ak is a weight for classifier k, which is independent
from the unseen label l.

Ideally, we set the classifier weights a ∈ Rk×1 such that,
the estimated weight vector ŵl equals the ideal weight vec-
tor wl, which would have been be obtained by learning on
the visual data with annotations available. This could be
seen as a regression problem, where a is set to regress ŵ
towards w. However, since we aim for zero-shot classifica-
tion, we do not have access to the unseen labels l, nor the
ideal weight vectors wl at train time. Therefore we use the
known labels k in a leave-one-out setting for learning.

We minimize the following regression squared-loss:

Lreg =
∑
i

‖wi −
∑
k

akwk sik‖22, (8)

=
∑
i

∑
d

(
wid − a>vid

)2
, (9)

where index i and k both run over the known labels, and
sii = 0. The vector vid contains the k co-occurrence
weighted weight vectors vidk = sik wkd.

Note that the loss is formulated over train classes and not
over train images. Moreover, Eq. (9) shows that a can be
obtained in closed-form using ridge-regression. In practice
we observe that regularization is not needed for good per-
formance, the dimensionality of a is much smaller than the
number of training instances (k vs. d k).

3.3. Zero-shot prior for few-shot prediction

In a few-shot classification setting a few, e.g., up to 8,
positive images are provided per label to learn a classifier.
In such a setting a strong prior could benefit the perfor-
mance by guiding the SVM classifier. In this section we
consider a simple model adaptation method where the zero-
shot model acts as a prior for the few-shot classifier.

In the case that we employ linear SVM classifiers with
squared hinge-loss, the objective to minimize becomes:

Lfew =
C

2

∑
i

[
1− yil w>l xi

]2
+
+

1

2
‖wl− β wz‖22, (10)

where wz is the prior obtained from the zero-shot model,
and β ∈ (0, 1) is a scaling parameter to control the degree
to which the label classifier should be similar to the zero-
shot model. It can be shown that the optimal solution for
wl, for a specific value of C, is given by [18, 27]:

ŵl = wg + βwz, (11)

where wg is the weight vector obtained from optimizing the
standard SVM formulation, i.e., using Eq. (10) with β = 0.
We will use wg also as a baseline few-shot classifier. Note
that the optimal parameter C could differ when including
the prior. In our experiments, we first determine the optimal
value of C for wg using cross-validation, then we obtain wl

by using β = 1.

4. Experiments
In this section we experimentally validate our models for

zero-shot and few-shot image labelling using co-occurrence
statistics. Since we are interested in a zero-shot classifica-
tion setting, for most experiments we split the labels of the
datasets into two disjoint sets: the known classes and the un-
seen classes. The true zero-shot classifiers use labels from
the known classes only. Since we are not aware of any meth-
ods that do zero-shot recognition on multi-label data sets
nor using multi-label co-occurrence statistics, we compare
with the binarized version of co-occurences, the closest to
what attributes could be for multi-labeled datasets. Further-
more, for all datasets we report results obtained in a fully
supervised setting, where the SVM classifiers use the train-
ing labels from all classes, be it known or unseen.

4.1. Experimental set-up and data sets

Image features. For all our experiments we use the Fisher
Vector (FV) image representation [24]. Per image a sin-
gle FV x is extracted, and we follow a common pipeline
and use: (i) SIFT descriptors, projected with PCA to 96-
dimensions; (ii) Mixture-of-Gaussian codebook with 16
components; (iii) power-normalization and `2 normaliza-
tion. The final FV is only 3K dimensional, despite the com-
pactness its performance is still competitive.

Implementation. For all experiments where SVM classi-
fiers are used, we train linear SVMs [6] and employ two-
fold cross-validation on the train data to set the value of
C. Performance is measured by mean Average Precision
(mAP). For the few-shot and zero-shot experiments, the
mAP is averaged only over test labels. For the few-shot
experiments, we fix β = 1, see Eq. (11).

We also report the supervised upper bound (SUB) per-
formance, obtained by training SVMs on the full ground-
truth annotations. The SUB serves as the ideal classifier
which could be obtained from this data.
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iCLEF10 H-SUN CUB-Att
[17] [4] [28]

Nr. train images 8,000 4367 5994
Nr. test images 10,000 4317 5794
Nr. labels 93 107 312

Avg. nr. img / label 925 219 545
Avg. nr. lab / img 12.0 5.34 31.5

SUB in mAP 35.7 28.3 16.6

Table 1. Basic statistics of the three data sets used in our experi-
ments, together with the mAP performance of supervised SVMs.

Data sets. Computing co-occurrences naturally implies
that visual concepts must appear frequently together in
the image corpus. Although examining a picture will
most definitely reveal hundreds of categories present in the
frame [29], most often only a handful of those are eventu-
ally considered [5]. Since for scarcely labeled datasets co-
occurrences will reveal only very little information, we fo-
cus on richly annotated multi-labeled datasets. We evaluate
our methodology on three recent, publicly available, multi-
labeled datasets, demonstrating the potential for zero-shot
and few-shot recognition.

The iCLEF10 data set was used in the ImageCLEF 2010
Photo Annotation task[17]. The images are labeled with 93
diverse concepts, containing objects, abstract concepts and
aesthetic quality. This allows for computing co-occurrence
statistics sufficiently well. On this dataset we obtain 35.7%
mAP with our 3K dimensional features. This is some-
what below the 39.0% mAP reported by the challenge win-
ners [17], however their FV used a larger codebook, both
SIFT and color features, and spatial pyramids.

The H-SUN data set was introduced by [4] for object de-
tection and recognition using hierarchical contextual mod-
els. The dataset contains 107 different concepts, most of
which are objects. For our experiments we only use the
image labelling (not the bounding-box annotations), and
we obtain 28.3% mAP. Unfortunately [4] does not provide
mAP results, however our SVM results are comparable to
the much larger FVs of [15] where 29.8% mAP is reported.

The CUB-Att data set refers to the attribute data of the
Caltech-UCSD Birds 2011 dataset [28], which contains 200
types of birds and per image attribute annotations. While
this dataset is often used for attribute-based prediction, we
focus on the multi-label performance using the 312 binary
attributes. To the best of our knowledge, we are the first to
report attribute performance in mAP, averaged over all la-
bels we obtain 16.9% mAP. To compare our features we rely
on the AUC performance over the attributes, in [1] 61.8%
AUC is reported using 64K dimensional FV, our 3K dimen-
sional features obtain 59.4% AUC.

iCLEF10 H-SUN CUB-Att

Co-Occurrences
Normalized 24.3 15.0 14.4
Binarized 22.2 15.0 13.3
Square-root 22.2 15.2 13.1
Dice 25.7 18.5 14.7

Positive & Negative Co-occurrences
Normalized 27.1 14.9 16.7
Binarized 22.6 12.7 13.5
Square-root 27.5 15.6 16.5
Dice 28.4 17.3 16.4

Regression on co-occurrences
Co-Oc Normalized 28.0 19.1 16.2
Co-Oc Dice 27.5 18.6 16.2
P&N Normalized 30.7 20.9 16.7
P&N Dice 30.4 21.1 16.7

Table 2. Overview of zero-shot recognition in a leave-one-out set-
ting, evaluated on the three data sets. We evaluate several similar-
ity measures based on the co-occurrence statistics.

4.2. Zero-shot learning

Co-occurrence similarities. In our first experiment we
evaluate the performance of the different similarity metrics.
We consider the performance of the similarities (i) when us-
ing positive co-occurrences alone, and (ii) when using pos-
itive and negative co-occurrences. For both settings we also
evaluate the performance when employing regression.

In this experiment, each label is used to estimate a zero-
shot classifier in a leave-one-out manner, i.e., when using
all m − 1 other labels. We evaluate the performance by
averaging AP over all labels. The results for the three data
sets are shown in Table 2.

From the results we observe that our most simple mod-
els, where zero-shot classifiers are estimated just on the
positive co-occurrences of labels already obtains reasonably
good performance. From the different similarities, the Dice
coefficient seems to perform best, and clearly outperforms
the binarized co-occurrences which are most similar to at-
tributes. For the iCLEF10 and H-SUN data sets the per-
formance compared to SUB, decreases by about 10% mAP,
while for the CUB-Att the decrease is less than 2% mAP.

Furthermore, we observe that we could improve these re-
sults considerably by adding more advanced co-occurrence
statistics. By including both positive and negative co-
occurrences we increase performance up to 3% mAP on
iCLEF10. Finally, using regression to estimate the zero-
shot classifiers yields the best performance on all datasets.
On CUB-Att , the P&N Regression models (16.7% mAP)
are even slightly outperforming SUB (16.6%).

For the remaining experiments we will report perfor-
mance obtained by the Dice coefficient, either when us-
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Figure 2. Illustrating the per label performance measure in average precision (AP), comparing the P&N Dice model and, the Regr. P&N
Dice model. Note how the zero-shot classifiers approach the SUB performance, and occasionally even outperforms this upper bound.

ing co-occurrences (Co-Oc Dice), positive and negative co-
occurrences (P&N Dice), or regression on P&N (Reg. P&N
Dice), and we also report results from regression on the
P&N normalized similarity (Reg. P&N Norm).

To better understand the performance of our zero-shot
model, we visualize the average precision (AP) per label in
Figure 2. We compare the supervised upper bound to the co-
occurrence from P&N Dice and its regressed variant (Reg.
P&N Dice). From the results we observe that, surprisingly,
on each dataset there are concepts which could be better de-
scribed by our zero-shot model than by the supervised upper
bound. For example, on the H-SUN dataset, the labels that
improve more than 5% over the SVMs are showcase, rug,
vase, oven, armchair, and poster. We hypothesize that these
labels are less supported by visual examples in the data set,
but do co-occur strongly with related labels.

Disjoint label sets. In the second experiment we evaluate
the performance when the set of known labels is completely
disjoint from the labels used for evaluation. We consider
two scenarios, when the set of known labels consist of 75%
of the available train labels, and the scenario when it con-
sist of 50% of the labels. In both scenarios we evaluate the
performance on a held-out set of 25% of the labels.

We compare the results to the SUB, using all train data,
and also to the leave-one-out setting from above, both
evaluated just on the held-out labels. Moreover, we ad-
justed the attribute-based classification approach [12] for
multi-label classification: Images are ranked according to
the probability for unknown label l. Using p(l|x) =

1
p(al)

∏K
k=1 p(a

l
k|x), where al is the attribute representa-

tion of l (defined as the binarized co-occurrence vector),
p(a) =

∏
k p(ak), using the empirical means of training

labels and p(ak|x) = σ(w>k x), see [12] for details. We
denote this as attributes in the table.

The results for all three data sets are presented in Ta-
ble 3. Note that evaluation is performed on the held-out set,
causing different SUB mAP values compared to Table 1.

From the results we observe that the performance of our
co-occurrences based methods are robust against smaller

training sets. For example, the decrease in performance
from the leave-one-out setting to using just 50% of the avail-
able train data on the iCLEF10 dataset is just 3% mAP. On
the CUB-Att the performance remains the same, which is
probably due to the high correlations between the labels.

Furthermore, compared to the attribute model of [12] we
observe that co-occurrences are notably more accurate, im-
proving up to 7% when using co-occurrences with regres-
sion. We explain it by the powerful co-occurrence encoding
of visual concepts, compared to binary relevance.

4.3. Web statistics

In this section we consider using the Yahoo search en-
gine and Flickr website to estimate the co-occurrence statis-
tics. Because CUB-Att will not yield interesting results due
to the nature of its labels (e.g., yellow beak and white belly),
we perform this experiment on iCLEF10 and H-SUN. For
each label and for each pair of labels, we query web, image
and Flickr tag search engines to obtain the hit counts.

We have used the regression on the positive and nega-
tive Dice coefficients (denoted as Regr. P&N Dice). In Ta-
ble 4 we show the zero-shot classification results using the
hit count based co-occurrence similarities. We observe that
the performance of zero-shot recognition is heavily influ-
enced by the estimation of the co-occurrence statistics. In
general, using web-statistics decrease performance notably,
this result is inline with [21], where similar results are ob-
tained for attribute-based classification.

The web search engine does not result in usable co-
occurrence statistics for the natural images in our datasets.
The image search engine performs already better, but is still
worse than the ones obtained from the data set ground truth
annotation. The Flickr tags provide usable co-occurrence
statistics, without explicit manual labeling. On iCLEF’10
the Flickr Tag co-occurrences are 4% better than Yahoo im-
age search, and just 5% below the trainset co-occurrences
in the L1O setting. For H-SUN, similar observations hold,
Flickr Tags are 3% better than Yahoo image search, and just
2% below ground-truth co-occurrences.

We conclude that Flickr tags are a reliable source of co-
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iCLEF10 H-SUN CUB-Att
Setting SUB L1O ZS75 ZS50 SUB L1O ZS75 ZS50 SUB L1O ZS75 ZS50

Nr Train Labels 93 92 70 47 107 106 81 54 312 311 234 156

Baselines
Supervised Upper Bound 44.6 - - - 21.5 - - - 15.4 - - -
Attributes, following [12] - 34.3 35.1 33.2 - 12.8 13.0 12.3 - 12.6 12.4 12.3

COSTA
Co-Oc Dice - 36.1 35.2 35.3 - 14.5 14.5 12.9 - 13.4 12.6 12.7
P&N Dice - 38.8 38.6 37.7 - 13.7 13.8 10.8 - 14.6 14.4 14.0
Regr. P&N Norm. - 41.6 39.9 36.7 - 16.7 16.4 14.5 - 15.3 13.9 14.6
Regr. P&N Dice - 41.0 39.3 36.7 - 17.0 16.4 15.0 - 15.1 13.7 14.8

Table 3. Overview of zero-shot classification performance using co-occurrence statistics, all methods are evaluated on a subset of 25% of
the labels. We use various settings, supervised SVM upper bound (SUB), leave-one-out (L1O), and two zero-shot prediction models with
disjoint train and test labels (ZS75 and ZS50, using 75% and 50% of the available labels respectively).

Setting SUB L1O ZS75 ZS50

iC
L

E
F1

0

Label Annotations
SUB 44.6 - - -
Label Co-oc - 41.0 39.3 36.7

Internet search
Web hit counts - 29.0 20.2 24.2
Image hit counts - 33.0 24.9 27.4
Flickr hit counts - 36.8 30.7 31.4

H
-S

U
N

Label Annotations
SUB 21.5 - - -
Label Co-oc - 17.0 16.4 15.0

Internet search
Web hit counts - 9.9 9.8 9.8
Image hit counts - 12.7 9.1 9.3
Flickr hit counts - 15.1 13.4 10.1

Table 4. Performance when estimating the co-occurrences from
web search engines on the iCLEF10 and H-SUN dataset. We use
the zero-shot Regr. P&N Dice model.

occurrences in the wild, confirming we exploit natural co-
occurrences of visual concepts.

4.4. Few-shot learning

In this final experiment we illustrate that the zero-shot
model can serve as prior in a few-shot classification setting.
This could be beneficial particularly when there are just a
few (e.g., up to 8) positive instances per label. Using the
setting where we use 75% of the labels as known data, we
add a few positive instances for the remaining 25% of the
labels. The performance is evaluated over the test set of the
latter labels. We run this experiment on all three data sets,
using the Regr. P&N Dice model on the ground-truth co-
occurrences. For the iCLEF10 and H-SUN dataset we also
consider the Flick hit count co-occurrence model als prior.

In Figure 3 we show the results of the few-shot base-
line classifier wg and the results when including the prior
ŵl = wg + βwz , using either the ground-truth or web

co-occurrence statistics The value for C is set using 2-
fold cross-validation for the few-shot baseline, the extended
model uses the same value and we fix β = 1. This might not
be the most optimal setting, especially when training data is
plentiful, which could be observed in the results.

From the results we observe that including the prior in-
creases the performance significantly in the few-label range.

5. Conclusion

In this paper we have introduced COSTA for using co-
occurrence statistics for zero-shot multi-label image classi-
fication. To the best of our knowledge, we are the first to
present a model for multi-label zero-shot classification. We
believe that co-occurrence statistics are a natural way to de-
scribe new labels in many real-life scenarios. They describe
a new label within a context of related visual concepts.

On three data sets we have shown that co-occurrence
statics create powerful zero-shot recognition models. More-
over we have shown that co-occurrences can be obtained
from external sources, such as web search engines, confirm-
ing that we exploit natural co-occurrences of visual con-
cepts and not just the dataset bias. Finally we have illus-
trated that the zero-shot model can act as prior in a few-shot
classification setting.

We consider the findings in this paper as a starting point
for future research. We highlight two possible directions,
first the co-occurrence similarities could be defined using
higher order semantic relations, e.g., by hierarchical models
or Wordnet relations. Second, we could combine different
co-occurrence similarities to obtain better zero-shot predic-
tion models, and better priors for few-shot classification.

We conclude that co-occurrence statistics suffice for
zero-shot classification.
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Figure 3. Few-shot classification using regression based zero-shot prior from ground-truth or web hit-counts (except CUB-Att). Including
the prior significantly benefits performance, especially in the presence of very few positive images. Note the log-scale on the x-axis.
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