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Abstract

As compared to the conventional RGB or gray-scale im-
ages, multispectral images (MSI) can deliver more faith-
ful representation for real scenes, and enhance the perfor-
mance of many computer vision tasks. In practice, however,
an MSI is always corrupted by various noises. In this paper
we propose an effective MSI denoising approach by combi-
natorially considering two intrinsic characteristics under-
lying an MSI: the nonlocal similarity over space and the
global correlation across spectrum. In specific, by explic-
itly considering spatial self-similarity of an MSI we con-
struct a nonlocal tensor dictionary learning model with a
group-block-sparsity constraint, which makes similar full-
band patches (FBP) share the same atoms from the spa-
tial and spectral dictionaries. Furthermore, through ex-
ploiting spectral correlation of an MSI and assuming over-
redundancy of dictionaries, the constrained nonlocal MSI
dictionary learning model can be decomposed into a series
of unconstrained low-rank tensor approximation problem-
s, which can be readily solved by off-the-shelf higher order
statistics. Experimental results show that our method out-
performs all state-of-the-art MSI denoising methods under
comprehensive quantitative performance measures.

1. Introduction

The radiance of a real scene is distributed across a wide
range of spectral bands. A multispectral image (MSI) con-
sists of multiple intensities that represent the integralsof the
radiance captured by sensors over various discrete bands.
For example, conventional RGB images are achieved by in-
tegrating the product of the intensity at three typical band
intervals. As compared with the traditional image system,
MSI helps to deliver more faithful representation for real
scenes, and has been shown to greatly enhance the perfor-
mance of various computer vision tasks, such as inpainting
[8], superresolution [12] and tracking [21].

(b) Spectral Glocal Correlation(a) Spatial Nonlocal Similarity Multispectral Image

Figure 1. (a) A collection of similar local patches over the spatial
dimensions of the multispectral image (middle). (b) The highly
correlated images obtained across the entire spectral dimension of
this multispectral image.

In real cases, however, an MSI is always corrupted by
some noises that are generally conducted by equipment lim-
itations like sensor sensitivity, photon effects and calibra-
tion error [13, 2]. Besides, since the radiance energy is lim-
ited and sometimes the band width is fairly narrow, the en-
ergy captured by each sensor might be low. The shot noise
and thermal noise then happen inevitably. The denoising
problem for MSI is thus still of acute and growing impor-
tance [14, 23, 10].

In this paper, we propose a novel tensor dictionary learn-
ing model for the task of MSI denoising by combination-
ally considering two characteristics of MSI into a single
framework: nonlocal similarity in space and global corre-
lation in spectrum. On one hand, a typical natural scene
contains a collection of similar local patches all over the
space, composing of homologous aggregation of micro-
structures. By averaging among these nonlocally similar
patches, the spatial noise is expected to be prominently al-
leviated [22, 18, 15]. On the other hand, an MSI contains a
large amount of spectral redundancy [23]. That is, images
obtained over different bands are always highly correlated.
Through extracting the major components from these glob-
ally correlated spectrum information, the spectral MSI noise
(the minor components) is expected to be eliminated. Both
characteristics can be easily understood by seeing Fig. 1. In
our model, we employ a grouped sparsity regularizer to im-
pose similar MSI patches to share the same dictionary atoms
in their sparse decomposition to implicitly average out the
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noise among these patches. Furthermore, by assuming re-
dundant dictionaries over both the space and spectrum, the
proposed tensor dictionary learning model can be readily
decomposed into a series of low-rank tensor approximation
problems. Each of these problems corresponds to a spectral
dimensionality reduction model conducted by the spectral
correlation property of MSIs, and can be easily solved by
some off-the-shelf higher order statistics. The spectral re-
dundancy problem can thus be alleviated.

Throughout the paper, we denote scalars, vectors, ma-
trices and tensors by the non-bold letters, bold lower case
letters, bold upper case letters and calligraphic upper case
letters, respectively.

2. Notions and Preliminaries

We first introduce some necessary notions and prelimi-
naries as follows.

A tensor of orderN , which corresponds to anN -
dimensional data array, is denoted asA ∈ R

I1×···×In×···IN .
Elements ofA are denoted asai1···in···iN , where1 ≤ in ≤
In. The mode-n vectors of anN th order tensorA are
theIn dimensional vectors obtained fromA by varying in-
dex in while keeping the other indices fixed. The matrix
A(n) ∈ R

In×(I1···In−1In+1···IN ) is composed by taking the
mode-n vectors ofA as its columns. This matrix can also be
naturally seen as the mode-n flattening of the tensorA. The
n-rank ofA, denoted asrn, is the dimension of the vector
space spanned by the mode-n vectors ofA.

The product of two matrices can be generalized to the
product of a tensor and a matrix. The mode-n product of
a tensorA ∈ R

I1×···×In×···IN by a matrixB ∈ R
Jn×In ,

denoted byA ×n B, is also anN th order tensorC ∈
R

I1×···×Jn×···IN , whose entries are computed by

ci1···in−1jnin+1···iN =
∑

in
ai1···in−1inin+1···iN bjnin .

The mode-n product C = A ×n B can also be calcu-
lated by the matrix multiplicationC(n) = BA(n), fol-
lowed by a re-tensorization of undoing the mode-n flat-
tening. The Frobenius norm of a tensorA is defined as:

‖A‖F =
(∑

i1,··· ,iN
|ai1···iN |2

)1/2

. In the following, we

shortly write‖A‖F as‖A‖.

3. Related Work

There are mainly two approaches for MSI denoising, in-
cluding the2D extended approach and the tensor-based ap-
proach.

2D extended approach: As one of the classical prob-
lems in computer vision,2D image denoising has been
addressed for more than50 years and a large amount of
researches have been proposed on this problem, such as
NLM [4], K-SVD [20] and BM3D [9]. These methods can

be directly applied to MSI denoising by treating the im-
ages located at different bands separately. This extension,
however, neglects the intrinsic properties of MSIs and gen-
erally cannot attain good performance in real applications.
Another more reasonable extension is specifically designed
for the patch-based image denoising methods, which takes
the small local patches of the image into consideration. By
building small3D cubes of an MSI instead of2D patches of
a traditional image, the corresponding3D-cube-based MSI
denoising algorithm can then be constructed [22]. The state-
of-the-art of3D-cube-based approach is represented by the
BM4D method [15, 16], which exploits the3D non-local
similarity of MSI to remove noise in similar MSI3D cubes
collaborately. These methods, however, have not taken into
account the high correlation across MSI spectrum, and thus
still have much room for improvement.

Tensor-based approach: An MSI is composed by a s-
tack of 2D images, which can be naturally regarded as a3rd-
order tensor. The tensor-based approach implements the M-
SI denoising by applying the tensor factorization techniques
to the MSI tensor. As a special case of multiway filtering,
tensor factorization can be seen as an extension of the tra-
ditional singular value decomposition (SVD). The state-of-
the-art along this line of research is represented by two ap-
proaches. Renard et al. [23] presented a low-rank tensor ap-
proximation (LRTA) method by employing the Tucker fac-
torization [24] method to obtain the low-rank approxima-
tion of the input MSI. Very recently, Liu et al. [14] designed
the PARAFAC method by utilizing the parallel factor analy-
sis [7]. The advantage of both methods is that they took the
correlation between MSI images over different bands into
consideration, and tried to eliminate the spectral redundan-
cy of MSIs. However, they have not utilized the nonlocal
similarity property of MSI, and their performance may be
sensitive to noise extents and types.

4. Decomposable Nonlocal MSI Dictionary
Learning

In this section, we first introduce the tensor dictionary
learning (DL) model, and then present the main idea of our
decomposable nonlocal MSI DL model and the related al-
gorithm. The parameter setting problems are also discussed
thereafter.

4.1. From Image DL to MSI DL

We first briefly introduce the traditional DL model for
image restoration. For a set of image patches (ordered lex-
icographically as column vectors){xi}ni=1 ⊂ R

d, whered
is the dimensionality andn is the number of image patches,
DL aims to calculate the dictionaryD = [d1, · · · , dm] ∈
R

d×m, composed by a collection of atomsdi (m > d, im-
plying that the dictionary is redundant), and the coefficient



matrix Z = [z1, · · · , zn] ∈ R
m×n, composed by the repre-

sentation coefficientszi of xi, by the following optimization
model [1]:

min
D,z1,··· ,zn

∑n

i=1
‖xi − Dzi‖ s.t. P(zi) ≤ k, (1)

whereP(·) denotes certain sparsity controlling operator
such as thel0 or l1 norm.

The similar dictionary learning model can be easily ex-
tended to MSI cases. First we construct MSI patches like
the image case as follows. An MSI withdW × dH spa-
tial resolution (dW , dH denote the spatial width and height
of the MSI, respectively) anddS spectral bands can be ex-
pressed as a3rd order tensorH ∈ R

dW×dH×dS with two s-
patial modes and one spectral mode. By sweeping all across
the MSI with overlaps, we can build a group of3D full-
band patches (FBP){Pi,j}1≤i≤dW−dw+1,1≤j≤dH−dh+1 ⊂
R

dw×dh×dS (dw < dW , dh < dH ) from the MSI. For sim-
plicity, we reformulate all FBPs as a group of3D patches
{Xi}

n
i=1, wheren = (dW − dw +1)(dH − dh +1) denotes

the patch number. Each FBP so constructed contains local
spatial while global spectral dimensionality, which can eas-
ily help us to consider the two important properties underly-
ing an MSI: the nonlocal similarity between spatial patches
and the global correlation across all bands.

Based on this FBP set{Xi}
n
i=1, the MSI DL model

can then be constructed to calculate the spatial and spec-
tral dictionaries{DW ∈ R

dw×mW ,DH ∈ R
dh×mH ,DS ∈

R
dS×mS} with mW > dw, mH > dh andmS > dS , im-

plying the redundancy of these dictionaries, as follows:

min
DW ,DH ,DS,Zi

n∑
i=1

∥∥Xi −Zi ×1 D
W ×2 D

H ×3 D
S
∥∥

s.t., P(Zi) ≤ k , (2)

whereZi ∈ R
mW×mH×mS corresponds to the coefficient

tensor forXi which governs the affiliated interaction be-
tween the dictionaries, andP(·) denotes the sparsity regu-
larization term likel0 or l1 operator [31].

4.2. From Image Group-Sparsity to MSI Group-
Block-Sparsity

DL has been effectively applied to image denoising by
considering the nonlocal similarity property of images [17].
The basic idea is to firstly group the similar patches into
clustersX(k) = {xik

j
}nk

j=1, k = 1, 2, · · · ,K, whereK is the

cluster number,nk is the patch number in thekth cluster and
ikj denotes the index of thejth patch in thekth cluster, and
then to encourage each cluster share similar atoms in the
dictionary. Let’s denote the coefficient matrix correspond-
ing to thekth clusterX(k) asZ(k) = [zik1 , zik2 , · · · , ziknk

] ∈

R
m×nk , and this simultaneous-sparse-coding aim can then

be achieved by applying to (1) the following group-sparsity
regularizer on eachZ(k) [17]:

‖Z(k)‖p,q =
∑m

i=1
‖ẑki ‖

p
q , (3)

wherêzki denotes theith row vector ofZ(k). The pair(p, q)
is usually set as(1, 2) or (0,∞). Such group-sparsity reg-
ularizer helps to impose some all-zero rows ofZ(k), as de-
picted in Fig. 2.

This nonlocal method can be easily extended to MSI cas-
es as follows. First, we group the similar FBPs into clusters
denoted by{Xik

j
}nk

j=1 (k = 1, 2, · · · ,K), whereK is the

cluster number,nk is the FBP number in thekth cluster and
ikj denotes the index of thejth patch in thekth cluster. And
then we attempt to enforce each cluster share the similar
atoms in each of the spatial dictionariesDW , DH and spec-
tral dictionaryDS . For convenience we combine the FBP
samples in thekth cluster together to formulate a4th order
tensor:X (k) ∈ R

dw×dh×dS×nk , whose supplemental4th

mode corresponds to the FBPs located at different spatial
positions of the MSI. Analogously, we align all coefficien-
t tensors{Zik

j
}nk

j=1 corresponding to thekth FBP cluster

to form Z(k) ∈ R
mW×mH×mS×nk . Then the aim of the

nonlocal MSI tensor DL can be attained by the following
group-block-sparsity regularizer.

Definition 1 (Group-block-sparsity) For a coefficient ten-
sor Z ∈ R

mW×mH×mS×n, its group-block-sparsity with
respect to the spatial and spectral modes is‖Z‖B =
(rW , rH , rS) if and only if the smallest index subsets
IW , IH , IS satisfyingzi1i2i3i4 = 0 for all (i1, i2, i3) /∈
IW × IH × IS containrW , rH , rS elements, respectively.
Sub(Z) ∈ R

rW×rH×rS×n denotes the intrinsic sub-tensor
ofZ extracted from the entries of the three dimensions ofZ
specified by the index setsIW , IH , IS , respectively.

The above definition can be easily understood by seeing
Fig. 2. Note that the group-sparsity [17] can be seen as
the degenerated case of the group-block-sparsity in 2D im-
ages. Furthermore, when we setn = 1 (meaning only one
FBP in a cluster), the group-block-sparsity so defined ex-
actly corresponds to the concept of block sparsity proposed
in [6], which has been substantiated to be capable of en-
hancing better recovery of the original high order signals s-
ince it implicitly incorporates valuable prior information on
real signals and facilitates making full use of the dictionary
atoms of each mode in signal representation.

Then we can construct the following nonlocal MSI DL
model:

min
DW ,DH ,DS ,Z(k)

K
∑

k=1

∥

∥

∥
X (k) − Z(k) ×1 D

W ×2 D
H ×3 D

S
∥

∥

∥

s.t., ‖Z(k)‖B � (rWk , rHk , rSk ) , (4)
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Figure 2. Upper: The image group-sparsity model. In each group the coefficient vectorsZ(k) (k = 1, · · · ,K) share the same atoms of the
dictionaryD. Lower: The MSI group-block-sparsity model. In each group the coefficient tensorsZ(k) (k = 1, · · · ,K) share the same
atoms of the spatial dictionariesDW , DH and spectral dictionaryDS .

wherev1 � v2 denotes that each entry ofv1 is no more than
the corresponding entry ofv2. The group-block-sparsity of
Z(k) guarantees that each clusterX (k) sharesrWk , rHk , rSk
atoms of the dictionariesDW ,DH ,DS , respectively, and
thus the nonlocal similarity among these cluster samples
can then be implied.

There are two remaining problems in the construction
of the nonlocal MSI DL model (4): how to generate the
clusters for FBPs and how to set the group-block-sparsity
thresholdrWk , rHk , rSk . For the first problem, we just employ
the very efficientk-means++ [3] (with automatically and
carefully chosen initial seeds) to obtain clusters of all FBPs.
The second problem is to be discussed in the next section.

4.3. Decomposable Nonlocal MSI DL Model

The nonlocal MSI DL problem can be further simplified
by assuming that the dictionariesDW ,DH ,DS are redun-
dant enough such that the dictionary atoms utilized in dif-
ferent clusters have no overlap. That is, We assume that
the spatial and spectral dictionaries can be reformulated as
D

W = [DW
1 , · · · ,DW

K ],DH = [DH
1 , · · · ,DH

K ] andDS =

[DS
1 , · · · ,D

S
K ], whereDW

k ∈ R
dw×rWk , DH

k ∈ R
dh×rHk

andDS
k ∈ R

dS×rSk with
∑K

k=1 r
W
k = mW ,

∑K
k=1 r

H
k =

mH and
∑K

k=1 r
S
k = mS , respectively, such that each M-

SI clusterX (k) is only related to the sub-dictionaries:D
W
k ,

D
H
k andDS

k . The rationality of this assumption lies on the
redundancy setting of the spatial and spectral dictionaries,
and even when we suppose that two clusters share an atom
of a dictionary, this assumption still holds by easily dupli-
cating this atom in the dictionary. Under this assumption,
each element in the sum of Eq. (4) can be equivalently re-
formulated as:

∥

∥

∥
X (k) − Z(k) ×1 D

W ×2 D
H ×3 D

S
∥

∥

∥

=
∥

∥

∥
X (k) − Sub(Z(k))×1 D

W
k ×2 D

H
k ×3 D

S
k

∥

∥

∥
, (5)

whereSub(Z(k)) ∈ R
rWk ×rHk ×rSk×nk denotes the intrinsic

sub-tensor ofZ(k), and the original nonlocal MSI DL prob-

lem can then be decomposed into a series of problems im-
posed on all FBP clusters (k = 1, · · · ,K):

min
DW

k
,DH

k
,DS

k
,Y

∥∥∥X (k) − Y ×1 D
W
k ×2 D

H
k ×3 D

S
k

∥∥∥ . (6)

Note that after such transformation, the original problem (4)
with constraints is now reformulated into a series of small-
er problems without constraints. This makes the problem
much easier to solve.

Then the problems are how to solve Eq. (6) and how
to set the group-block-sparsity parametersrWk , rHk , rSk . It
should be noted that each MSI cluster tensorX (k) is of a
dimensionality redundancy in its3-rd spectral mode due to
one of its important intrinsic properties: global correlation
across spectrum. This implies thatX (k) can be approximat-
ed by a low-rank tensor obtained by:

min
U1,U2,U3,U4,G

‖X (k) − G ×1 U1 ×2 U2 ×3 U3 ×4 U4‖, (7)

whereU1 ∈ R
dW
k ×rWk , U2 ∈ R

dH
k ×rHk , U3 ∈ R

dS
k×rSk ,

U4 ∈ R
dN
k ×rNk correspond the basis vectors in the four

modes ofX (k) with dWk ≥ rWk , dHk ≥ rHk , dSk > rSk and

dNk ≥ rNk . HereG ∈ R
rWk ×rHk ×rSk×rNk is the so-called core

tensor [24] andrSk < dSk leads to the dimensionality reduc-
tion in the spectral mode ofX (k). Eq. (7) can be readi-
ly solved by the Tucker decomposition technique [24], and
the solution of Eq. (6) can then be easily obtained by letting
D

W
k = U1, DH

k = U2, DS
k = U3 andY = G ×4 U4.

As for the selection of the rank parameters (i.e., the
group-block-sparsity thresholds)rWk , rHk , rSk and rNk in
Eq. (7), we can easily adopt the well known AIC/MDL
method [27] on the mode-i (i = 1, 2, 3, 4) flatteningX(k)

(i)

of each cluster tensorX (k). Such a simple method is sub-
stantiated to be effective throughout all our experiments.

4.4. Decomposable Nonlocal MSI DL Algorithm

Based on the aforementioned process, the decomposable
nonlocal MSI DL algorithm can be summarized as Algo-



Figure 3. Simulated RGB images using Columbia Multispectral
Image Database.

rithm 1. We can then utilizeZ(k), DW , DH , DS outputted
from the proposed algorithm to recover all overlapping F-
BPs and average the results to obtain the denoised MSI. It
should be noted that all of the utilizedk-means++ [3] (step
2), AIC/DIC [27] (step 3) and Tucker factorization [24](step
4) techniques can be fastly implemented, which guarantees
the efficiency of our algorithm in practice.

Algorithm 1: Decomposable Nonlocal MSI DL

Input : Input MSIH ∈ R
dW×dH×dS

Output : Spatial dictionariesDW = [DW
1 , · · · ,DW

K ],
D

H = [DH
1 , · · · ,DH

K ], spectral dictionary
D

S = [DS
1 , · · · ,D

S
K ] and coefficient tensors

Z(k), k = 1, · · · ,K
1 Construct the entire FBP set ofH (Section 4.1).
2 Group all FBPs into cluster tensors
X (k) ∈ R

dw×dh×dS×nk , k = 1, · · · ,K by k-means++
(Section 4.2).

3 Calculate the rank parametersrWk , rHk , rSk andrNk by

applying the AIC/MDL method toX(k)
(1) ,X

(k)
(2) , X

(k)
(3)

andX(k)
(4) , respectively (Section 4.3).

4 Implement the Tensor factorization technique onX (k)

by Eq. (7) to obtainU1, U2, U3, U4 andG, and let
D

W
k = U1, DH

k = U2, DS
k = U3 and

Sub(Z(k)) = G ×4 U4. Reformulate the sub-tensor
Sub(Z(k)) to obtainZ(k).

5. Experimental Results

Columbia Datasets: We utilized the Columbia Multi-
spectral Image Database [28]1 to test the proposed method.
This dataset contains32 real-world scenes, each with spa-
tial resolution512 × 512 and spectral resolution31 which
includes full spectral resolution reflectance data collected
from 400nm to 700nm in 10nm steps. This MSI dataset
is of a wide variety of real-world materials and objects, see
Fig. 3. Each of these MSIs are scaled into the interval[0, 1]
in our experiments.

Noise models: In the experiments we used two types

1http://www1.cs.columbia.edu/CAVE/databases/multispectral

of noises commonly existed in real MSIs. One is the ad-
ditive white Gaussian noise (AWGN), which comes from
many natural sources, such as the spontaneous thermal gen-
eration of electrons. And the other is the Poisson noise
(also known as shot noise) which is originating from the
mechanism of quantized photons and uniform exposure [5].
We parameterized AWGN by its standard deviationσ and
Poisson noise by the varianceH/2κ whereH is the noise-
free signal. We designed two series of experiments. In the
first group, we perturbed each of the32 Columbia MSI with
Gaussian noises of differentσ (up to0.3) and Poisson noise
with fixedκ = 5 . In the second case, we usedκ from 2 to
6 and fixedσ = 0.1.

To remove the dependency of the noise variance on the
underlying signal before the denoising and compensate the
effects of the bias in the produced filtered estimate, in all
experiments, the noisy MSI was firstly reformulated by a
variance-stabilizing transformation (VST) [19] before im-
plementing a denoising method, and after denoising, a cor-
responding inverse transformation was used to obtain the
final MSI reconstruction.

Implementing details: Like most of the denoising
methods based on non-local similarity such as BM3D and
BM4D, we employ a preprocessing before the clustering
step of our algorithm (Step 2). Our experiments show that
a simple band-wise low-pass filtering is capable of greatly
improving the accuracy of matching and facilitating the ef-
fectiveness of the following steps of our proposed denoising
framework. It should be noted that the FBP widthdw and
heightdh are the only two parameters needed to be set in
our algorithm (all of the other parameters includingK, rWk ,
rHk , rSk andrNk can be automatically selected). In all our
experiments, we just simply set them asdw = dh = 8.

Comparison methods: The comparison methods in-
clude: band-wise K-SVD [1]2 and band-wise BM3D [9]3,
state-of-the-art for the 2D extended band-wise approach;
3D-cube K-SVD [1]2 , ANLM3D [18]4 and BM4D [16]3,
state-of-the-art for the 2D extended 3D-cube-based ap-
proach; LRTA [23] and PARAFAC [14], state-of-the-art for
the tensor-based approach5. All parameters involved in the
competing algorithms were optimally assigned or automat-
ically chosen as described in the reference papers.

Evaluation measures: To comprehensively assess the
performance of all competing algorithms, we employ
five quantitative picture quality indices (PQI) for per-
formance evaluation, including peak signal-to-noise ra-
tio (PSNR), structure similarity (SSIM [26]), feature sim-
ilarity (FSIM [30]), erreur relative globale adimension-
nelle de synth̀ese (ERGAS [25]) and spectral angle map-

2http://www.cs.technion.ac.il/˜elad/software
3http://www.cs.tut.fi/ foi/GCF-BM3D
4http://personales.upv.es/jmanjon/denoising/arnlm.html
5http://www.sandia.gov/ tgkolda/TensorToolbox/index-2.5.html



(a) Clean image (b) Noisy image (c) BwK-SVD [1] (d) BwBM3D [9] (e) 3DK-SVD [1]

(f) ANLM3D [18] (g) BM4D [16] (h) LRTA [23] (i) PARAFAC [14] (j) Ours

Figure 4. (a) The images at two bands (400nm and700nm) of chart and stuffed toy; (b) The corresponding images corrupted by the mixture
of σ = 0.2 Gaussian noise andκ = 5 Poisson noise; (c)-(j) The restored images obtained by the8 utilized MSI denoising methods. Two
demarcated areas in each image are amplified at a4 times larger scale for easy observation of details.

per (SAM [29]). PSNR and SSIM are two conventional
PQIs in image processing and computer vision. They evalu-
ate the similarity between the target image and the reference
image based on MSE and structural consistency, respective-
ly. FSIM emphasizes the perceptual consistency with the
reference image. The larger these three measures are, the
closer the target MSI is to the reference one. ERGAS and
SAM are usually appear corporately in the literature since
they extract complementary information from an MSI. ER-
GAS measures fidelity of the restored image based on the
weighted sum of MSE in each band and SAM calculates
the average angle between spectrum vectors of the target
MSI and the reference one across all spatial positions. D-
ifferent from the former three measures, the smaller these
two measures are, the better does the target MSI estimate
the reference one. Note that SAM fully reflects the fidelity
of the spectral reflectance of the target MSI.

Performance evaluation: For each noise setting, all
of the five PQI values for each competing MSI denoising
methods on all32 scenes have been calculated and recorded.
Table 1 lists the average performance (over different scenes
and noise settings) of all methods in Poisson/Gaussian mix-

ture noise case. More details are listed in our supplemen-
tary material. It can be easily observed that the proposed
method outperforms all other competing methods. As a
detailed comparison, our method performs unsubstantially
worse than BM4D with respect to only two PQI measures
(PSNR and ERGAS) at a part of noise levels (sayσ ≤ 0.2
with fixedκ andκ ≥ 5 with fixedσ. Please see supplemen-
tary material). And in average, our method performs best
with respect to all PQIs.

To further depict the denoising performance of our
method, we depict in Fig. 4 two bands inchart and stuffed
toy that centered at400nm (the darker one) and700nm (the
brighter one), respectively. Two demarcated areas in the
scene have been amplified in the figure at a4 times larger
scale for easy observation of details. It is easy to observe
that our method obtains a better recovery for both small-
scale textures and large-scale structures, especially when
the band energy is low (see the dark channel).

Based on the SAM measures in Table 1, our method
is substantiated to be able to best recover the spectral re-
flectance of the MSIs as compared to other competing meth-
ods. To further clarify this point, we demonstrate in Fig. 5



σ = 0.1, 0.15, 0.2, 0.25, 0.3, κ = 5

PSNR SSIM FSIM ERGAS SAM
Noisy image 14.52± 0.04 0.060± 0.032 0.469± 0.111 1156.9± 327.0 1.133± 0.194

BwK-SVD [1] 25.77± 1.12 0.370± 0.027 0.792± 0.038 296.5± 58.4 0.614± 0.163

BwBM3D [9] 33.45± 2.58 0.828± 0.048 0.910± 0.015 124.4± 34.0 0.340± 0.128

3DK-SVD [1] 28.07± 1.29 0.497± 0.024 0.859± 0.025 232.5± 42.5 0.581± 0.170

ANLM3D [18] 33.61± 2.24 0.836± 0.036 0.916± 0.020 121.1± 27.2 0.365± 0.142

BM4D [16] 36.25± 2.16 0.885± 0.027 0.938± 0.013 90.0 ± 19.0 0.314± 0.131

LRTA [23] 33.90± 2.74 0.850± 0.064 0.925± 0.017 118.4± 35.8 0.234± 0.082

PARAFAC [14] 27.66± 2.93 0.747± 0.100 0.862± 0.053 243.3± 70.3 0.388± 0.117

Ours 36.25± 2.56 0.914± 0.031 0.952± 0.008 88.9± 21.6 0.182± 0.070

σ = 0.1, κ = 2, 3, 4, 5, 6

PSNR SSIM FSIM ERGAS SAM
Noisy image 17.45± 1.02 0.088± 0.035 0.573± 0.094 756.3 ± 129.4 1.055± 0.194

BwK-SVD 27.81± 1.85 0.528± 0.051 0.849± 0.031 224.4± 32.9 0.514± 0.145

BwBM3D 34.14± 2.80 0.864± 0.046 0.926± 0.014 113.5± 32.4 0.267± 0.098

3DK-SVD 29.95± 1.94 0.662± 0.048 0.901± 0.021 180.3± 28.7 0.486± 0.151

ANLM3D 31.53± 1.53 0.686± 0.030 0.874± 0.035 155.8± 23.5 0.439± 0.145

BM4D 36.93± 2.36 0.910± 0.025 0.951± 0.011 81.7 ± 17.1 0.259± 0.108

LRTA 33.31± 3.20 0.812± 0.075 0.916± 0.022 140.7± 49.6 0.271± 0.100

PARAFAC 30.27± 3.13 0.802± 0.084 0.896± 0.038 177.9± 60.9 0.323± 0.113

Ours 36.94± 2.75 0.930± 0.029 0.963± 0.007 81.5± 20.5 0.150± 0.052

Table 1. Average performance comparison of8 competing methods with respect to5 PQIs mixture noise experiments. For both settings,
the results are obtained by averaging through the 32 scenes and the varied parameters.
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Figure 5. (a) Simulated RGB image ofsponges. (b)-(g) Spectral reflectance difference curves of8 competing methods at6 locations of
sponges. The noise-free image is corrupted by the mixture ofσ = 0.2 Gaussian noise andκ = 5 Poisson noise.

the spectral reflectance difference curves of all competing
methods at6 locations insponges. A spectral reflectance d-
ifference curve of a MSI denoising method at a spatial loca-
tion is attained by sequentially interpolating the31 elements
of the deviation between the restored and the clean MSI a-
long their spectral mode. It is easy to see that our method
obtains the best approximation of the intrinsic spectral pat-
terns of the original MSI, which fully complies with our
quantitative evaluation.

MSI Denoising performance on natural scenes:We
also used some MSIs from real-world scenes [11]6 to test
our denoising method. This dataset comprises15 rural
scenes (containing rocks, trees, leaves, grass, earth,etc.)
and 15 urban scenes (containing walls, roofs, windows,
plants, indoor,etc.). All of them are illuminated by the di-
rect sunlight between mid-morning to mid-afternoon. As
the images are taken from a fairly far distance and the en-

6http://personalpages.manchester.ac.uk/staff/david.foster/Hyperspectral
imagesof naturalscenes02

ergy is spread over all bands, these MSIs contain certain
degree of noises. We employed the similar implementation
strategies and parameter settings for our method and com-
pared the similar competing methods as the first series of
experiments.

Our experimental results show that our method can gen-
erally ameliorate the image quality contained in these MSIs.
For easy observation we illustrates an example image locat-
ed at a band of a rural MSI in Fig. 6. An area of interest is
amplified in the restored image obtained by all competing
methods. It can be easily observed that the image restored
by our method properly removes the noise while finely pre-
serves the structure underlying the image, while the results
obtained by most of other competing methods contain evi-
dent significant blurry area as compared to the original im-
age. Among these methods, ANLM3D and LRTA perform
comparatively better in structure preserving. However, the
images recovered by them remain more unexpected sharp
noises than that obtained by our method.



(a) Natural image (b) BwK-SVD [1] (c) BwBM3D [9] (d) 3DK-SVD [1]

(e) ANLM3D [18] (f) BM4D [16] (g) LRTA [23] (h) PARAFAC [14] (i) Ours

Figure 6. (a) The image located at the12th band in scene2 of the natural scene dataset. (b)-(i) The restored images obtained by the 8
utilized MSI denoising methods. The demarcated area in eachimage is amplified for easy observation of details. The figureis better seen
by zooming on a computer screen.
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