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As compared to the conventional RGB or gray-scale ir
ages, multispectral images (MSI) can deliver more faitl|:
ful representation for real scenes, and enhance the perft
mance of many computer vision tasks. In practice, howey|: -*
an MSl is always corrupted by various noises. In this papei——————
we propose an effective MSI denoising approach by combi-
natorially considering two intrinsic characteristics ued
lying an MSI: the nonlocal similarity over space and the
global correlation across spectrum. In specific, by explic-
itly considering spatial self-similarity of an MSI we con- In real cases, however, an MSI is always corrupted by
struct a nonlocal tensor dictionary learning model with a some noises that are generally conducted by equipment lim-
group-block-sparsity constraint, which makes similai-ful  itations like sensor sensitivity, photon effects and calib
band patches (FBP) share the same atoms from the spadtion error [13[2]. Besides, since the radiance energy is lim
tial and spectral dictionaries. Furthermore, through ex- ited and sometimes the band width is fairly narrow, the en-
ploiting spectral correlation of an MSI and assuming over- ergy captured by each sensor might be low. The shot noise
redundancy of dictionaries, the constrained nonlocal MSI and thermal noise then happen inevitably. The denoising
dictionary learning model can be decomposed into a seriesproblem for MSI is thus still of acute and growing impor-
of unconstrained low-rank tensor approximation problem- tance([14/ 2R, 10].

s, which can be readily solved by off-the-shelf higher order  In this paper, we propose a novel tensor dictionary learn-
statistics. Experimental results show that our method out- ing model for the task of MSI denoising by combination-
performs all state-of-the-art MSI denoising methods under ally considering two characteristics of MSI into a single
comprehensive quantitative performance measures. framework: nonlocal similarity in space and global corre-
lation in spectrum. On one hand, a typical natural scene
contains a collection of similar local patches all over the
1. Introduction space, composing of homologous aggregation of micro-
structures. By averaging among these nonlocally similar

The radiance of a real scene is distributed across a widepatches, the spatial noise is expected to be prominently al-
range of spectral bands. A multispectral image (MSI) con- leviated [22[ 18, 15]. On the other hand, an MSI contains a
sists of multiple intensities that represent the integoathe large amount of spectral redundaniy![23]. That is, images
radiance captured by sensors over various discrete bandobtained over different bands are always highly correlated
For example, conventional RGB images are achieved by in-Through extracting the major components from these glob-
tegrating the product of the intensity at three typical band ally correlated spectrum information, the spectral MSkroi
intervals. As compared with the traditional image system, (the minor components) is expected to be eliminated. Both
MSI helps to deliver more faithful representation for real characteristics can be easily understood by seeindFig. 1. |
scenes, and has been shown to greatly enhance the perfoour model, we employ a grouped sparsity regularizer to im-
mance of various computer vision tasks, such as inpaintingpose similar MSI patches to share the same dictionary atoms
O ] [ in their sparse decomposition to implici it the

J

Figure 1. (a) A collection of similar local patches over tipatal
dimensions of the multispectral image (middle). (b) Thehhig
correlated images obtained across the entire spectrahdioreof
this multispectral image.



noise among these patches. Furthermore, by assuming rebe directly applied to MSI denoising by treating the im-
dundant dictionaries over both the space and spectrum, thexges located at different bands separately. This extension
proposed tensor dictionary learning model can be readily however, neglects the intrinsic properties of MSls and gen-
decomposed into a series of low-rank tensor approximationerally cannot attain good performance in real applications
problems. Each of these problems corresponds to a spectrahnother more reasonable extension is specifically designed
dimensionality reduction model conducted by the spectral for the patch-based image denoising methods, which takes
correlation property of MSIs, and can be easily solved by the small local patches of the image into consideration. By
some off-the-shelf higher order statistics. The spectal r building small3D cubes of an MSI instead @D patches of
dundancy problem can thus be alleviated. a traditional image, the correspondisig-cube-based MSI
Throughout the paper, we denote scalars, vectors, ma-denoising algorithm can then be constructed [22]. Thestate
trices and tensors by the non-bold letters, bold lower caseof-the-art of3D-cube-based approach is represented by the
letters, bold upper case letters and calligraphic uppes cas BM4D method [15/°16], which exploits th&D non-local

letters, respectively. similarity of MSI to remove noise in similar MSID cubes
_ o collaborately. These methods, however, have not taken into
2. Notions and Preliminaries account the high correlation across MSI spectrum, and thus

o . .. still have much room for improvement.
We first introduce some necessary notions and prelimi- :
. Tensor-based approach An MSI is composed by a s-
naries as follows. tack of 2D images, which can be naturally regarded3ig-a
A tensor of orderl, which corresponds to am- order tensor. '?he ,tensor—baseda roac)r/nmg lements the M-
dimensional data array, is denotedas Rf iy, Sl denoisin .b applyin thetensgffactorizagonteche' u
Elements otd are denoted 8, . i, .., Wherel < i, < to the MSI ?en)éorppﬁ?/s a?s ecial case of multiwa filte‘r?n
I.. The modes vectors of anV*™ order tensotd are tensor factorizatidn can bg seen as an extensiox of the%a—
theI,, dimensional vectors obtained fraghby varying in- ditional sinqular value decomposition (SVD). The state-of
dex i, while keeping the other indices fixed. The matrix I sihgufar vaid P sitl ( )- S
I X (It T Ing1In) i . the-art along this line of research is represented by two ap-
Am € R ; 's composed by taking the roaches. Renard et &l. [23] presented a low-rank tensor ap-
moden vectors ofA as its columns. This matrix can also be P'02cnes: P : P
. proximation (LRTA) method by employing the Tucker fac-
naturally seen as the modeflattening of the tensad. The torization [24] method to obtain the low-rank approxima-
n-rank of A, denoted as,,, is the dimension of the vector . - ] . PP .
tion of the input MSI. Very recently, Liu et al. [14] designed

space spanned by the moderectors ofA. .
The product of two matrices can be generalized to the the PARAFAC method by utilizing the parallel factor analy-

product of a tensor and a matrix. The mad@roduct of sis [1]. '!'he advantage of poth methods i.S that they tOOk. the
atensord ¢ RI<->xInxIx by a matrixB € R¥»*/n, corre_latlon_ between _MSI images over different bands into
denoted byA x,, B, is also anN*h order tensorC ¢ consideration, and tried to eliminate the_ _spectral redonda
RIx-xJokIn whose entries are computed by cy qf MSIS. However, they have n_ot utilized the nonlocal

' similarity property of MSI, and their performance may be
Ciremitydninsrin = Z ir oo vininsroin D sensitive to noise extents and types.

in

The moder productC = A x, B can also be calcu- 4. Decomposable Nonlocal MSI Dictionary

lated by the matrix multiplicatiorC,,) = BA(,), fol- Learning
lowed by a re-tensorization of undoing the maddlat- ) ) o o
tening. The Frobenius norm of a tensdris defined as: In this section, we first introduce the tensor dictionary

)\ 1/2 ) learning (DL) model, and then present the main idea of our
[Allr = (Zn,m,m |aiy iy ) - In the following, we  gecomposable nonlocal MSI DL model and the related al-
shortly write|| A|| » as||.A]|. gorithm. The parameter setting problems are also discussed

thereatfter.
3. Related Work

There are mainly two approaches for MSI denoising, in-
cluding the2D extended approach and the tensor-based ap- We first briefly introduce the traditional DL model for
proach. image restoration. For a set of image patches (ordered lex-

2D extended approach As one of the classical prob- icographically as column vectorgx;}” , C R?, whered
lems in computer vision2D image denoising has been is the dimensionality and is the number of image patches,
addressed for more th&as0 years and a large amount of DL aims to calculate the dictiona = [dy,---,d,,] €
researches have been proposed on this problem, such aR?*™, composed by a collection of atords (m > d, im-
NLM [4], K-SVD [20] and BM3D [9]. These methods can plying that the dictionary is redundant), and the coeffitien

4.1. From Image DL to MSI DL



matrixZ = [z, - ,z,] € R™*™, composed by the repre-
sentation coefficients of x;, by the following optimization
model [1]:

n
i i — D4 2 i) < K,
o uin Zizl i — Dzl s.t. P(z) <k, (1)
where P(-) denotes certain sparsity controlling operator
such as thé, or {; norm.

The similar dictionary learning model can be easily ex-

tended to MSI cases. First we construct MSI patches like

the image case as follows. An MSI withy x dy spa-
tial resolution @y, dg denote the spatial width and height
of the MSI, respectively) ands spectral bands can be ex-
pressed as & order tensof{ € R4w *dnxds with two s-

be achieved by applying tbl(1) the following group-sparsity
regularizer on eaci®) [17]:

mo ok
p,q — Zi:l sz' ”Z’

1z)]

3)

wherez" denotes theth row vector ofZ*). The pair(p, q)

is usually set a1, 2) or (0,00). Such group-sparsity reg-
ularizer helps to impose some all-zero rowsZéf), as de-
picted in Fig[2.

This nonlocal method can be easily extended to MSI cas-
es as follows. First, we group the similar FBPs into clusters
denoted by{/’\iijk_ Fiky (k= 1,2, K), whereK is the
cluster numbenm;, is the FBP number in thet® cluster and
i% denotes the index of th&" patch in thek'" cluster. And

patial modes and one spectral mode. By sweeping all acrosshen we attempt to enforce each cluster share the similar

the MSI with overlaps, we can build a group 8D full-
band patches (FBR)P; ; }1<i<dw —d,+1,1<j<dnu—dn+1 C
Réwxdnxds (4, < dy . dy < dg) from the MSI. For sim-
plicity, we reformulate all FBPs as a group 8D patches
{X:}7,, wheren = (dw — d, + 1)(dg — dp, + 1) denotes

atoms in each of the spatial dictionaried”, D¥ and spec-

tral dictionaryD®. For convenience we combine the FBP
samples in thé&*" cluster together to formulatei" order
tensor: X(%) ¢ Rdwxdnxdsxni \whose supplementat®
mode corresponds to the FBPs located at different spatial

the patch number. Each FBP so constructed contains locapositions of the MSI. Analogously, we align all coefficien-

spatial while global spectral dimensionality, which cas-ea
ily help us to consider the two important properties underly

ing an MSI: the nonlocal similarity between spatial patches

and the global correlation across all bands.
Based on this FBP sefX;}” ,, the MSI DL model

can then be constructed to calculate the spatial and spec

tral dictionaries{ DV € Rdw>xmw DH ¢ Rdnxmu DS ¢
Rdsxms} with my > d.,, myg > dn, andmg > dg, im-
plying the redundancy of these dictionaries, as follows:

i HXZ — Z’i X1 DW X9 DH X3 DSH

min
DW DH DS,z; ;5
st., P(Z)<k (@

whereZ; € Rmwxmuxms corresponds to the coefficient
tensor forX; which governs the affiliated interaction be-
tween the dictionaries, aré(-) denotes the sparsity regu-
larization term likely or I; operator[[31].

4.2. From Image Group-Sparsity to MSI Group-
Block-Sparsity

DL has been effectively applied to image denoising by
considering the nonlocal similarity property of images|[17
The basic idea is to firstly group the similar patches into
clustersx *) = {X )ity k= 1,2,--- K, whereK is the
cluster numbery, is the patch number in thg" cluster and
i% denotes the index of thg" patch in the:™ cluster, and

t tensors{ Z; }, corresponding to thé'" FBP cluster
J

to form Z2(k) ¢ Rmwxmuxmsxns - Then the aim of the
nonlocal MSI tensor DL can be attained by the following
group-block-sparsity regularizer.

Definition 1 (Group-block-sparsity) For a coefficient ten-
sor Z € Rmwxmuxmsxn jtg group-block-sparsity with
respect to the spatial and spectral modes|i§||z =
(", r9) if and only if the smallest index subsets
IW 1S satisfying i, 4,15, = 0 for all (iy,iz,i3) ¢
I x 17 % 1° containrV, rH S elements, respectively.
Sub(Z) € R xr"xr®xn denotes the intrinsic sub-tensor
of Z extracted from the entries of the three dimensiong of
specified by the index sdt¥’, 1 7, 19, respectively.

The above definition can be easily understood by seeing
Fig. [2. Note that the group-sparsify [17] can be seen as
the degenerated case of the group-block-sparsity in 2D im-
ages. Furthermore, when we set= 1 (meaning only one
FBP in a cluster), the group-block-sparsity so defined ex-
actly corresponds to the concept of block sparsity proposed
in [6], which has been substantiated to be capable of en-
hancing better recovery of the original high order signals s
ince it implicitly incorporates valuable prior informati@n
real signals and facilitates making full use of the dictigna
atoms of each mode in signal representation.

Then we can construct the following nonlocal MSI DL
model:

then to encourage each cluster share similar atoms in the

dictionary. Let’s denote the coefficient matrix correspond
ing to thek™ clusterX ™ asz™ = [z;x, 2,4, .25 | €
"k

K3

R™*™k and this simultaneous-sparse-coding aim can then

K
min S HX““LZUC) %1 DV x, D ><3DSH
DW DH DS z(k) =

st IZPs =2 (el ) :

(4)



Figure 2. Upper: The image group-sparsity model. In eachmtbe coefficient vectorg™®) (k = 1,--- , K) share the same atoms of the
dictionaryD. Lower: The MSI group-block-sparsity model. In each groug ¢oefficient tensor&® (k = 1,--- , K) share the same
atoms of the spatial dictionari@"’, D and spectral dictionarp*.

wherev; < vy denotes that each entrywfis no morethan  lem can then be decomposed into a series of problems im-
the corresponding entry @f. The group-block-sparsity of posedon all FBP clusters & 1, - - , K):
Z() guarantees that each clustef®) shares )V, rf r?

.. . . : k w H S
atoms of the dictionarieD'', D¥, D¥, respectively, and ~ ,, I8 . HX( ) =Y x1 DY x; Dff x3 D} H . (6)
thus the nonlocal similarity among these cluster samples  “ =" *’ . o
can then be implied. Note that after such transformation, the original probléjn (

There are two remaining problems in the construction With constraints is now reformulated into a series of small-
of the nonlocal MSI DL model[{4): how to generate the €r problems without constraints. This makes the problem
clusters for FBPs and how to set the group-block-sparsitymuch easier to solve.
threshold-!V, 5. For the first problem, we justemploy ~ Then the problems are how to solve EdJ (6) and how
the very efficientk-means++[[3] (with automatically and 0 Set the group-block-sparsity parametefs, ', 7. It
carefully chosen initial seeds) to obtain clusters of alPgB  should be noted that each MSI cluster tend6f) is of a

The second problem is to be discussed in the next section. dimensionality redundancy in itsrd spectral mode due to
one of its important intrinsic properties: global corredat

4.3. Decomposable Nonlocal MSI DL Model across spectrum. This implies th&t*) can be approximat-
The nonlocal MSI DL problem can be further simplified €d by & low-rank tensor obtained by:
by assuming that the dictionari&" , D, D* are redun- in IX9) — G x, Uy x2 Us x3 Us xa Ua, (7)

dant enough such that the dictionary atoms utilized in dif- U1,U2,U3,U4,¢
ferent clusters have no overlap. That is, We assume that IV W g e pH dS S
the spatial and spectral dictionaries can be reformulaged a WhereU, € R% 7, Uy € R% X7, U € ROk,

DV = [DY,... , DY, D = D! ... D¥]andD® = U, € R <% correspond the basis vectors in the four
[DS,... DY), whereD¥ e Réwxrl’ DH ¢ Réuxri’ modes oft (*) with dkwwz Z,ZV,SdkHNZ ri, d7 > ry and

N N T & e XTe -
andD? ¢ Rds <78 with ZkK:1 o= mw, Zkkzl il = dy >, . HereG € R™ *"% X" X7 is the so-called core

tensor([24] and < d; leads to the dimensionality reduc-
tion in the spectral mode ot *). Eq. [7) can be readi-
ly solved by the Tucker decomposition techniquel [24], and
the solution of Eq.[{6) can then be easily obtained by letting

mpg andY 1, ¥ = mg, respectively, such that each M-
Sl clusterX®) s only related to the sub-dictionarie®}V
DH andD¢. The rationality of this assumption lies on the
redundancy setting of the spatial and spectral dictiosarie
and even valhen W(gsupposepthat two clupsters share ar?ato ¢ =U, DY = Uz, D} = Uz andy = G x4 Us. .

of a dictionary, this assumption still holds by easily dupli ~ AS for the selection of the rank parameters (i.e., the
cating this atom in the dictionary. Under this assumption, 9roup-block-sparsity thresholds}”, r’, r and 7} in
each element in the sum of EdJ (4) can be equivalently re-Eq. (@), we can easily adopt the well known AIC/MDL

formulated as: method [27] on the modé{i = 1,2,3,4) ﬂatteningXEf))
HX(k) _ 20 . DY x, D x4 DSH gz‘aie:g:e((:jllgts(rats#:g:ifé:ihfouuch a simple method is sub-
ghout all our experiments.
- Hx(k) ~ 5ub(Z®) x1 DY 2 DYl xs DfH + ® 4.4 Decomposable Nonlocal MSI DL Algorithm
whereSub(Z(’“)k) € R7 Xri xmixni denotes the intrinsic Based on the aforementioned process, the decomposable

sub-tensor o2 (%), and the original nonlocal MSI DL prob-  nonlocal MSI DL algorithm can be summarized as Algo-
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Figure 3. Simulated RGB images using Columbia Multispéctra
Image Database.

rithm[. We can then utiliz€*), DV, D, D outputted
from the proposed algorithm to recover all overlapping F-

of noises commonly existed in real MSIs. One is the ad-
ditive white Gaussian noise (AWGN), which comes from
many natural sources, such as the spontaneous thermal gen-
eration of electrons. And the other is the Poisson noise
(also known as shot noise) which is originating from the
mechanism of quantized photons and uniform exposure [5].
We parameterized AWGN by its standard deviatioand
Poisson noise by the variangg/2" where# is the noise-
free signal. We designed two series of experiments. In the
first group, we perturbed each of the Columbia MSI with
Gaussian noises of differeat(up to0.3) and Poisson noise
with fixed x = 5 . In the second case, we usedrom 2 to
6 and fixedo = 0.1.

To remove the dependency of the noise variance on the

BPs and average the results to obtain the denoised MSI. [inderlying signal before the denoising and compensate the

should be noted that all of the utilizédmeans++[B] (step
2), AIC/DIC [27] (step 3) and Tucker factorizatidn [24](pte

effects of the bias in the produced filtered estimate, in all
experiments, the noisy MSI was firstly reformulated by a

4) techniques can be fastly implemented, which guaranteeg/@riance-stabilizing transformation (VST) 19] before-im

the efficiency of our algorithm in practice.

Algorithm 1: Decomposable Nonlocal MSI DL

Input: Input MSIH € Réw xduxds
Output: Spatial dictionarie®" = DIV, ... . D¥],
D = [D# ... D], spectral dictionary
D“ = [DY,---, D% and coefficient tensors
Z28) k=1 K
1 Construct the entire FBP set &f (Section 4.1).
2 Group all FBPs into cluster tensors
X#) g Rdwxdnxdsxny | — 1 ... K byk-means++
(Section 4.2).
3 Calculate the rank parametet¥ , v, 7 andr} by

applying the AIC/MDL method X 8 x ™ x(*)

(1)) 773)
andXE'Z?, respectively (Section 4.3).

4 Implement the Tensor factorization techniquetft)
by Eq. [@) to obtairlU;, Us, U3, Uy andg, and let
D}V =U,,Df = U,,D; = Usand
Sub(Z*)) = G x, U,. Reformulate the sub-tensor
Sub(Z*) to obtainZ*).

5. Experimental Results

Columbia Datasets: We utilized the Columbia Multi-
spectral Image Databa&]a test the proposed method.
This dataset contair2 real-world scenes, each with spa-
tial resolution512 x 512 and spectral resolutiodil which
includes full spectral resolution reflectance data cadléct
from 400nm to 700nm in 10nm steps. This MSI dataset

plementing a denoising method, and after denoising, a cor-
responding inverse transformation was used to obtain the
final MSI reconstruction.

Implementing details: Like most of the denoising
methods based on non-local similarity such as BM3D and
BM4D, we employ a preprocessing before the clustering
step of our algorithm (Step 2). Our experiments show that
a simple band-wise low-pass filtering is capable of greatly
improving the accuracy of matching and facilitating the ef-
fectiveness of the following steps of our proposed dengisin
framework. It should be noted that the FBP width and
heightd;, are the only two parameters needed to be set in
our algorithm (all of the other parameters includifigr}",
rif, r? andr) can be automatically selected). In all our
experiments, we just simply set themdas = d;, = 8.

Comparison methods: The comparison methods in-
clude: band-wise K-SVD[]fand band-wise BM3D([§]
state-of-the-art for the 2D extended band-wise approach;
3D-cube K-SVD [1F , ANLM3D [18]f and BM4D [16f,
state-of-the-art for the 2D extended 3D-cube-based ap-
proach; LRTA [23] and PARAFACJ[14], state-of-the-art for
the tensor-based approch\ll parameters involved in the
competing algorithms were optimally assigned or automat-
ically chosen as described in the reference papers.

Evaluation measures: To comprehensively assess the
performance of all competing algorithms, we employ
five quantitative picture quality indices (PQI) for per-
formance evaluation, including peak signal-to-noise ra-
tio (PSNR), structure similarity (SSIM_[26]), feature sim-
ilarity (FSIM [30]), erreur relative globale adimension-

is of a wide variety of real-world materials and objects, see ,gjie de synthse (ERGAS[[25]) and spectral angle map-

Fig.[3. Each of these MSis are scaled into the intejtval]
in our experiments.
Noise models: In the experiments we used two types

Ihttp://www1.cs.columbia.edu/CAVE/databases/multisgz

2http://www.cs.technion.ac.il elad/software
Shttp://www.cs.tut.fi/ foilGCF-BM3D
“4http://personales.upv.es/jmanjon/denoising/arnimlht
Shitp://www.sandia.gov/ tgkolda/TensorToolbox/indes-atml



(a) Clean image (b) Noisy image (c) BWK-SVD [1] (d) BWBM3D [9] (e) 3DK-SVD [1]

(f) ANLM3D [L8] (g) BM4D [16] (h) LRTA [23] (i) PARAFAC [14] (i) Ours

Figure 4. (a) The images at two band8{nm and700nm) of chart and stuffed tgyb) The corresponding images corrupted by the mixture
of o = 0.2 Gaussian noise and= 5 Poisson noise; (c)-(j) The restored images obtained by tdized MSI denoising methods. Two
demarcated areas in each image are amplifiedtairaes larger scale for easy observation of details.

per (SAM [29]). PSNR and SSIM are two conventional ture noise case. More details are listed in our supplemen-
PQIs in image processing and computer vision. They evalu-tary material. It can be easily observed that the proposed
ate the similarity between the targetimage and the referenc method outperforms all other competing methods. As a
image based on MSE and structural consistency, respectivedetailed comparison, our method performs unsubstantially
ly. FSIM emphasizes the perceptual consistency with theworse than BM4D with respect to only two PQI measures
reference image. The larger these three measures are, thESNR and ERGAS) at a part of noise levels (say 0.2
closer the target MSI is to the reference one. ERGAS andwith fixed x andx > 5 with fixed o. Please see supplemen-
SAM are usually appear corporately in the literature since tary material). And in average, our method performs best
they extract complementary information from an MSI. ER- with respect to all PQlIs.
GAS measures fidelity of the restored image based on the To further depict the denoising performance of our
weighted sum of MSE in each band and SAM calculates method, we depict in Fig.] 4 two bandsdhart and stuffed
the average angle between spectrum vectors of the targefoythat centered atoOnm (the darker one) antOnm (the
MSI and the reference one across all spatial positions. D-prighter one), respectively. Two demarcated areas in the
ifferent from the former three measures, the smaller thesescene have been amplified in the figure attimes larger
two measures are, the better does the target MSI estimatgcale for easy observation of details. It is easy to observe
the reference one. Note that SAM fully reflects the fidelity that our method obtains a better recovery for both small-
of the spectral reflectance of the target MSI. scale textures and large-scale structures, especially whe
Performance evaluation: For each noise setting, all the band energy is low (see the dark channel).
of the five PQI values for each competing MSI denoising  Based on the SAM measures in Table 1, our method
methods on alb2 scenes have been calculated and recorded.is substantiated to be able to best recover the spectral re-
Table[1 lists the average performance (over different scene flectance of the MSls as compared to other competing meth-
and noise settings) of all methods in Poisson/Gaussian mix-ods. To further clarify this point, we demonstrate in Hiyj. 5



0 =0.1,0.15,0.2,0.25,0.3, k = 5
PSNR SSIM FSIM ERGAS SAM
Noisy image 14.52 4+ 0.04 0.060 + 0.032 0.469 £ 0.111 1156.9 + 327.0 1.133 +£0.194
BwK-SVD [1] 25.77 + 1.12 0.370 + 0.027 0.792 £ 0.038 296.5 + 58.4 0.614 +0.163
BwBM3D [9] 33.45 + 2.58 0.828 4 0.048 0.910 + 0.015 124.4 £+ 34.0 0.340 4+ 0.128
3DK-SVD 28.07 £ 1.29 0.497 + 0.024 0.859 + 0.025 232.5 +42.5 0.581 + 0.170
ANLM3D [L8] 33.61 +2.24 0.836 4+ 0.036 0.916 + 0.020 121.1 £27.2 0.365 4= 0.142
BM4D [16] 36.25 +2.16 | 0.885 4 0.027 0.938 +£0.013 90.0 £ 19.0 0.314 +0.131
LRTA [23] 33.90 £2.74 0.850 + 0.064 0.925 £ 0.017 118.4 + 35.8 0.234 + 0.082
PARAFAC [14] | 27.66 +2.93 0.747 £+ 0.100 0.862 £ 0.053 243.3 £ 70.3 0.388 +£0.117
Ours 36.25+2.56 | 0.914+0.031 | 0.952 + 0.008 88.9+21.6 0.182 +0.070
oc=0.1,k=2,3,4,5,6
PSNR SSIM FSIM ERGAS SAM
Noisy image 17.45+ 1.02 0.088 + 0.035 0.573 £ 0.094 756.3 £129.4 1.055 £+ 0.194
BwK-SVD 27.81 +1.85 0.528 + 0.051 0.849 + 0.031 224.4 + 32.9 0.514 + 0.145
BwBM3D 34.14 + 2.80 0.864 + 0.046 0.926 + 0.014 113.5 + 32.4 0.267 £ 0.098
3DK-SVD 29.95 +1.94 0.662 + 0.048 0.901 £ 0.021 180.3 4+ 28.7 0.486 + 0.151
ANLM3D 31.53 + 1.53 0.686 £ 0.030 0.874 £ 0.035 155.8 +23.5 0.439 + 0.145
BM4D 36.93 + 2.36 0.910 + 0.025 0.951 £ 0.011 81.7+17.1 0.259 + 0.108
LRTA 33.31 +3.20 0.812 + 0.075 0.916 £ 0.022 140.7 4+ 49.6 0.271 £+ 0.100
PARAFAC 30.27 + 3.13 0.802 + 0.084 0.896 £ 0.038 177.9 + 60.9 0.323 £0.113
Ours 36.94 +2.75 | 0.930+0.029 | 0.963 + 0.007 81.5 +20.5 0.150 + 0.052

Table 1. Average performance comparisor8@ompeting methods with respect3d®Qls mixture noise experiments. For both settings,
the results are obtained by averaging through the 32 scewtha varied parameters.

BwK-SVD
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Figure 5. (a) Simulated RGB image sponges (b)-(g) Spectral reflectance difference curves @ompeting methods ak locations of
spongesThe noise-free image is corrupted by the mixture-ef 0.2 Gaussian noise and= 5 Poisson noise.

the spectral reflectance difference curves of all competingergy is spread over all bands, these MSls contain certain
methods a6 locations inspongesA spectral reflectance d-  degree of noises. We employed the similar implementation
ifference curve of a MSI denoising method at a spatial loca- strategies and parameter settings for our method and com-
tion is attained by sequentially interpolating thieelements ~ pared the similar competing methods as the first series of
of the deviation between the restored and the clean MSI a-experiments.
long their spectral mode. It is easy to see that our method o, experimental results show that our method can gen-
obtains the best approximation of the intrinsic spectréd pa o511y ameliorate the image quality contained in these MSs
terns of the original MSI, which fully complies with our £ 655y observation we illustrates an example image locat-
quantitative evaluation. ed at a band of a rural MSI in Fi@] 6. An area of interest is
MSI Denoising performance on natural scenesWe g ified in the restored image obtained by all competing
also used some MSiIs from real-world scer@ﬁm]test methods. It can be easily observed that the image restored
our denoising method. This dataset comprisgsrural . o+ method properly removes the noise while finely pre-
scenes (containing rocks, trees, leaves, grass, @),  gsoryes the structure underlying the image, while the result
and 15 urban scenes (containing walls, roofs, windows, ,pained by most of other competing methods contain evi-
plants, indooretc). All of them are illuminated by the di-  en¢ significant blurry area as compared to the original im-
rect sunlight between mid-morning to mid-afternoon. As age. Among these methods, ANLM3D and LRTA perform
the images are taken from a fairly far distance and the e”'comparatively better in structure preserving. Howevee, th
images recovered by them remain more unexpected sharp
noises than that obtained by our method.

Shttp://personalpages.manchester.ac.uk/staff/d@sgt:f/Hyperspectral
_imagesof_naturalscenes2



(a) Natural image (b) BWK-SVD [1]] (c) BWBM3D [9] (d) 3DK-SVD [1]]

(e) ANLM3D [18] (f) BM4D [16] (g) LRTA [23]

(h) PARAFAC [12] (i) Ours

Figure 6. (a) The image located at th2'" band in scen& of the natural scene dataset. (b)-(i) The restored imagesnetl by the 8
utilized MSI denoising methods. The demarcated area in imaabe is amplified for easy observation of details. The figsitetter seen

by zooming on a computer screen.
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