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Abstract

In this paper we study the problem of blind deconvolu-
tion. Our analysis is based on the algorithm of Chan and
Wong [2] which popularized the use of sparse gradient pri-
ors via total variation. We use this algorithm because many
methods in the literature are essentially adaptations of this
framework. Such algorithm is an iterative alternating en-
ergy minimization where at each step either the sharp image
or the blur function are reconstructed. Recent work of Levin
et al. [14] showed that any algorithm that tries to minimize
that same energy would fail, as the desired solution has a
higher energy than the no-blur solution, where the sharp
image is the blurry input and the blur is a Dirac delta. How-
ever, experimentally one can observe that Chan and Wong’s
algorithm converges to the desired solution even when ini-
tialized with the no-blur one. We provide both analysis and
experiments to resolve this paradoxical conundrum. We find
that both claims are right. The key to understanding how
this is possible lies in the details of Chan and Wong’s im-
plementation and in how seemingly harmless choices result
in dramatic effects. Our analysis reveals that the delayed
scaling (normalization) in the iterative step of the blur ker-
nel is fundamental to the convergence of the algorithm. This
then results in a procedure that eludes the no-blur solution,
despite it being a global minimum of the original energy. We
introduce an adaptation of this algorithm and show that, in
spite of its extreme simplicity, it is very robust and achieves
a performance comparable to the state of the art.

Blind deconvolution is the problem of recovering a sig-
nal and a degradation kernel from their noisy convolution.
This problem is found in diverse fields such as astronom-
ical imaging, medical imaging, (audio) signal processing,
and image processing. Yet, despite over three decades of
research in the field (see [11] and references therein), the
design of a principled, stable and robust algorithm that can
handle real images remains a challenge. However, present-
day progress has shown that recent models for sharp images
and blur kernels, such as total variation [18], can yield re-

markable results [7, 19, 4, 23, 13].
Many of these recent approaches are evolutions of the

variational formulation [26]. A common element in these
methods is the explicit use of priors for both blur and sharp
image to encourage smoothness in the solution. Among
these recent methods, total variation emerged as one of the
most popular priors [2, 25]. Such popularity is probably due
to its ability to encourage gradient sparsity, a property that
can describe many signals of interest well [10].

However, recent work by Levin et al. [14] has shown
that the joint optimization of both image and blur kernel can
have the no-blur solution as its global minimum. That is to
say, a wide selection of prior work in blind image decon-
volution either is a local minimizer and, hence, requires a
lucky initial guess, or it cannot depart too much from the no-
blur solution. Nonetheless, several algorithms based on the
joint optimization of blur and sharp image show good con-
vergence behavior even when initialized with the no-blur
solution [2, 19, 4, 23].

This incongruence called for an in-depth analysis of to-
tal variation blind deconvolution (TVBD). We find both ex-
perimentally and analytically that the analysis of Levin et
al. [14] correctly points out that between the no-blur and
the desired solution, the energy minimization favors the no-
blur solution. However, we also find that the algorithm of
Chan and Wong [2] converges to the desired solution, even
when starting at the no-blur solution. We illustrate that the
specific implementation of [2] does not minimize the orig-
inally defined energy. This algorithm separates some con-
straints from the gradient descent step and then applies them
sequentially. When the cost functional is convex this alter-
ation does not have a major impact. However, in blind de-
convolution, where the cost functional is not convex, this
completely changes the convergence behavior. Indeed, we
show that if one imposed all the constraints simultaneously,
as required, then the algorithm would never leave the no-
blur solution independently of regularization. This analysis
suggests that the scaling mechanism induces a novel type of
image prior.
Our main contributions are: 1) We illustrate the behav-
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ior of TVBD [2] both with carefully designed experiments
and with a detailed analysis of the reconstruction of funda-
mental signals; 2) For a family of image priors we present
a novel concise proof of the main result of [14], which
showed how (a variant of) TVBD converges to the no-blur
solution; 3) We strip TVBD of all recent improvements
(such as filtering [19, 4, 14], blur kernel prior [2, 25], edge
enhancement via shock filter [4, 23]) and clearly show the
core elements that make it work; 4) We show how the use
of proper boundary conditions can improve the results, and
also apply the algorithm on current datasets and compare to
the state of the art methods. Notwithstanding the simplicity
of the algorithm, we obtain a comparable performance to
the top performers.

1. Blur Model and Priors
Suppose that a blurry image f can be modeled by

f = k0 ∗ u0 + n (1)

where k0 is a blur kernel, u0 a sharp image, n noise and
k0 ∗u0 denotes convolution between k0 and u0. Given only
the blurry image, one might want to recover both the sharp
image and the blur kernel. This task is called blind decon-
volution. A classic approach to this problem is to solve the
following regularized minimization

min
u,k
‖k ∗ u− f‖22 + λJ(u) + γG(k) (2)

where the first term enforces the convolutional blur model
(data fitting), the functionals J(u) andG(k) are the smooth-
ness priors for u and k (for example, Tikhonov regularizers
[21] on the gradients), and λ and γ two nonnegative param-
eters that weigh their contribution. Furthermore, additional
constraints on k, such as positivity of its entries and integra-
tion to 1, can be included. For any λ > 0 and γ > 0 the cost
functional will not have as global solution neither the true
solution (k0, u0) nor the no-blur solution (k = δ, u = f),
where δ denotes the Dirac delta. Indeed, eq. (2) will find an
optimal tradeoff between the data fitting term and the regu-
larization term. Nonetheless, one important aspect that we
will discuss later on is that both the true solution (k0, u0)
and the no-blur solution make the data fitting term in eq. (2)
equal to zero. Hence, we can compare their cost in the func-
tional simply by evaluating the regularization terms. Notice
also that the minimization objective in eq. (2) is non-convex,
and, as shown in Fig. 2, has several local minima.

2. Prior work
A choice for the regularization terms proposed by You

and Kaveh [26] is J(u) = ||∇u||2 and G(k) = ||k||2. Un-
fortunately, the ||.||2 norm is not able to model the sparse
nature of common image and blur gradients and results in
sharp images that are either oversmoothed or have ringing

artifacts. Cho and Lee [4] and Xu and Jia [23] have reduced
the generation of artifacts by using heuristics to select sharp
edges.

An alternative to ||.||2 is the use of total variation (TV)
[2, 25, 3, 9]. TV regularization was firstly introduced for
image denoising in the seminal work of Rudin, Osher and
Fatemi [18], and since then it has been applied successfully
in many image processing applications.

You and Kaveh [25] and Chan and Wong [2] have pro-
posed the use of TV regularization in blind deconvolution
on both u and k. They also consider the following ad-
ditional convex constraints to enhance the convergence of
their algorithms

‖k‖1
.
=

∫
|k(x)|dx = 1, k(x) ≥ 0, u(x) ≥ 0 (3)

where with x we denote either 1D or 2D coordinates. He
et al. [9] have incorporated the above constraints in a varia-
tional model, claiming that this enhances the stability of the
algorithm. However, despite these additional constraints,
the cost function (2) still suffers from local minima.

A different approach is a strategy proposed by Wang et
al. [22] that seeks for the desired local minimum by using
downsampled reconstructed images as priors during the op-
timization in a multi-scale framework. Other methods use
some variants of total variation that nonetheless share simi-
lar properties. Among these, the method of Xu and Jia [23]
uses a Gaussian prior together with edge selection heuris-
tics, and, recently, Xu et al. [24] have proposed an approx-
imation of the L0-norm as a sparsity prior. However, all
above adaptations of TVBD work with a non-convex mini-
mization problem.

Blind deconvolution has also been analyzed through a
Bayesian framework, where one aims at maximizing the
posterior distribution (MAP)

argmax
u,k

p(u, k|f) = argmax
u,k

p(f |u, k)p(u)p(k). (4)

p(f |u, k) models the noise affecting the blurry image; a typ-
ical choice is the Gaussian distribution [7, 13] or an expo-
nential distribution [23]. p(u) models the distribution of
typical sharp images, and it is typically a heavy-tail distri-
bution of the image gradients. p(k) is the prior knowledge
about the blur function, and that is typically a Gaussian dis-
tribution [23, 4], a sparsity-inducing distribution [7, 19] or
a uniform distribution [13]. Under these assumptions on the
conditional probability density functions p(f |u, k), p(u),
and p(k) and by computing the negative log-likelihood of
the above cost, one can find the correspondence between
eq. (2) and eq. (4).

Since under these assumptions the MAPu,k problem (4)
is equivalent to problem (2), also the Bayesian approach
suffers from local minima. Levin et al. [13] and Fergus et
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al. [7] propose to address the problem by marginalizing over
all possible sharp images u and thus solve the following
MAPk problem

argmax
k

p(k|f) = argmax
k

∫
p(f |u, k)p(u)p(k)du. (5)

Then they estimate u by solving a convex problem where k
is given from the previous step. Since the right hand side of
problem (5) is difficult to compute, in practice an approxi-
mation is used.

Levin et al. [14] recently argued that one should use the
formulation (5) (MAPk) rather than (4) (MAPu,k). They
have shown that, using a sparse-inducing prior for the im-
age gradients and a uniform distribution for the blur, the
MAPu,k approach favors the no-blur solution (u = f, k =
δ), for images blurred with a large blur. In addition, they
have shown that, for sufficiently large images, the MAPk
approach converges to the true solution.

A recent work from Rameshan et al. [17] shows that the
above conclusions are valid only when one uses a uniform
prior for the blur kernel, and that with the use of a sparse
prior the MAPu,k does not attain the no-blur solution.

3. Problem Formulation
By combining problem (2) with the constraints in eq. (3)

and by setting γ = 0, we study the following minimization

minu,k ||k ∗ u− f ||22 + λJ(u)
subject to k < 0, ‖k‖1 = 1

(6)

where J(u) = ||u||BV
.
=
∫
||∇u(x)||2dx or J(u) =

||ux||1 + ||uy||1, with∇u .
= [ux uy]

T the gradient of u and
x
.
= [x y]T , and ‖k‖1 corresponds to the L1 norm in eq. (3).

To keep the analysis simple we have stripped the formula-
tion of all unnecessary improvements such as using a basis
of filters in J(u) [19, 4, 14], or performing some selection
of regions by reweighing the data fitting term [23], or en-
hancing the edges of the blurry image f [23, 4]. Compared
to previous methods, we also do not use any regularization
on the blur kernel (γ = 0).

The formulation in eq. (6) involves the minimization of a
constrained non-convex optimization problem. Also, notice
that if (u, k) is a solution, then (u(x+ c), k(x+ c)) are so-
lutions as well for any c ∈ R2. If the additional constraints
on k were not used, then the ambiguities would also include
(α1u,

1
α1
k) for non zero α1.

3.1. Analysis of Relevant Local Minima

Levin et al. [13] have shown that eq. (6) favors the
no-blur solution (f, δ), when J(u) =

∫
|ux(x)|α +

|uy(x)|αdx, for any α > 0 and either the true blur k0 has a
large support or ||k0||22 � 1. In the following theorem we
show that the above result is also true for any kind of blur
kernels and for an image prior with α ≥ 1.

Theorem 3.1 Let J(u) = ‖∇u‖p
.
=
(∫
‖∇u(x)‖ppdx

) 1
p ,

with p ∈ [1,∞], f be the noise-free input blurry image (n =
0) and u0 the sharp image. Then,

J(f) ≤ J(u0). (7)

Proof. Because f is noise-free, f = k0 ∗ u0; since the
convolution and the gradient are linear operators, we have

J(f) = ‖∇(k0 ∗ u0)‖p = ‖k0 ∗ ∇u0‖p (8)

By applying Young’s inequality [1] (see Theorem 3.9.4,
pages 205-206) we have

J(f) = ‖k0∗∇u0‖p ≤ ‖k0‖1‖∇u0‖p = ‖∇u0‖p
.
= J(u0)

(9)
since ‖k0‖1 = 1.

Since the first term (the data fitting term) in problem (6)
is zero for both the no-blur solution (f, δ) and the true so-
lution (u0, k0), Theorem 3.1 states that the no-blur solu-
tion has always a smaller, or at most equivalent, cost than
the true solution. Notice that Theorem 3.1 is also valid
for any J(u) = ‖∇u‖rp for any r > 0. Thus, it includes
as special cases the Gaussian prior J(u) = ||u||H1 , when
p = 2, r = 2, and the anisotropic total variation prior
J(u) = ‖ux‖1 + ‖uy‖1, when p = 1, r = 1.

Theorem 3.1 highlights a strong limitation of the formu-
lation (6): The exact solution can not be retrieved when an
iterative minimizer is initialized at the no-blur solution.

3.2. Exact Alternating Minimization

A solution to problem (6) can be readily found by an it-
erative algorithm that alternates between the estimation of
the sharp image given the kernel and the estimation of the
kernel given the sharp image. This approach, called alter-
nating minimization (AM), requires the solution of an un-
constrained convex problem in u

ut+1 ← min
u
||kt ∗ u− f ||22 + λJ(u) (10)

and a constrained convex problem in k

kt+1 ← mink ||k ∗ ut − f ||22
subject to k < 0, ‖k‖1 = 1.

(11)

Unfortunately, as we show next, this algorithm suffers from
the limitations brought out by Theorem 3.1, and without a
careful initialization could get stuck on the no-blur solution.

3.3. Projected Alternating Minimization

To minimize problem (6) (with the additional kernel reg-
ularization term) Chan and Wong [2] suggest a variant of the
AM algorithm that employs a gradient descent algorithm for
each step and enforces the constraints on the blur kernel in
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a subsequent step. The gradient descent results in the fol-
lowing update for the sharp image u at the t-th iteration

ut ← ut−ε
(
kt− ∗ (kt ∗ ut − f)− λ∇ ·

∇ut

‖∇ut‖2

)
(12)

for some step ε > 0 and where k−(x) = k(−x). The
above iteration is repeated until the difference between the
updated and the previous estimate of u are below a certain
threshold. The iteration on the blur kernel k is instead given
by

kt ← kt − ε
(
ut− ∗ (kt ∗ ut − f)

)
(13)

where, similarly to the previous step, the above iteration is
repeated until a convergence criterion, similar to the one on
u, is satisfied. The last updated kt is used to set kt+1/3 ←
kt.

Then, one applies the constraints on the blur k via a se-
quential projection, i.e.,

kt+2/3 ← max{kt+1/3, 0}, kt+1 ← kt+2/3

‖kt+2/3‖1
. (14)

We call this iterative algorithm the projected alternating
minimization (PAM). The choice of imposing the con-
straints sequentially rather than during the gradient descent
on k seems a rather innocent and acceptable approximation
of the correct procedure (AM). However, this is not the case
and we will see that without this arrangement one would not
achieve the desired solution.

3.4. Analysis of PAM

Our first claim is that this procedure does not minimize
the original problem (6). To support this claim we start by
showing some experimental evidence in Fig. 2. In this test
we work on a 1D version of the problem. We blur a hat
function with one blur of size 3 pixels, and we show the
minimum of eq. (6) for all possible feasible blurs. Since the
blur has only 3 nonnegative components and must add up
to 1, we only have 2 free parameters bound between 0 and
1. Thus, we can produce a 2D plot of the minimum of the
energy with respect to u as a function of these two parame-
ters. The blue color denotes a small cost, while the red color
denotes a large cost. The figures reveal three local minima
at the corners, due to the 3 different shifted versions of the
no-blur solution, and the local minimum at the true solution
(k0 = [0.4, 0.3, 0.3]) marked with a yellow triangle. We
also show with white dots the path followed by k estimated
via the PAM algorithm by starting from one of the no-blur
solutions (upper-right corner). Clearly one can see that the
PAM algorithm does not follow a minimizing path in the
space of solutions of problem (6), and therefore does not
minimize the same energy.

To further stress this point, we present two theoretical
results for a class of 1D signals that highlight the crucial
difference between the PAM algorithm and the AM algo-
rithm. We look at the 1D case because analysis of the total
variation solution of problem (6) is still fairly limited and
a closed-form solution even for a restricted family of 2D
signals is not available. Still, analysis in 1D can provide
practical insights. The proof exploits recent work of Con-
dat [5], Strong and Chan [20] and the taut string algorithm
of Davies and Kovacs [6].

Theorem 3.2 Let f be a 1D discrete noise-free signal, such
that f = k0 ∗ u0, where u0 and k0 are two unknown func-
tions and ∗ is the circular convolution operator. Let us also
constrain k0 to be a blur of support equal to 3 pixels, and
u0 to be a step function

u0[x] =

{
−U x ∈ [−L,−1]
U x ∈ [0, L− 1]

(15)

for some parameters U and L. We impose that L ≥ 2 and
U > 0. Then f will have the following form

f [x] =



δ1 − U x = −L
−U x ∈ [−L+ 1,−1]

δ0 − U x = −1
−δ1 + U x = 0

U x ∈ [1, L− 2]
−δ0 + U x = L− 1

(16)

for some positive constants δ0 and δ1 that depend on the
blur parameters. Then, there exists λ ≥ max((L − 1)δ0 −
δ1, (L− 1)δ1 − δ0) such that the PAM algorithm estimates
the true blur k = k0 in two steps, when starting from the
no-blur solution (f, δ).

Proof. See [16].

3.5. Analysis of Exact Alternating Minimization

Theorem 3.2 shows how, for a restricted class of 1D blurs
and sharp signals, the PAM algorithm converges to the de-
sired solution in two steps. In the next theorem we show
how, for the same class of signals, the exact AM algorithm
(see sec. 3.2) can not leave the no-blur solution (f, δ).

Theorem 3.3 Let f , u0 and k0 be the same as in Theo-
rem 3.2. Then, for any max((L−1)δ0−δ1, (L−1)δ1−δ0) <
λ < UL − δ0 − δ1 the AM algorithm converges to the so-
lution k = δ. For λ ≥ UL − δ0 − δ1 the AM algorithm is
unstable.

Proof. See [16].
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Figure 1. Illustration of Theorem 3.2 and Theorem 3.3 (it is recommended that images are viewed in color). The original step function is denoted by a
solid-blue line. The TV signal (green-solid) is obtained by solving argminu ‖u− f‖22 + λJ(u). In (a) we show how the first step of the PAM algorithm
reduces the contrast of a blurred step function (red-dotted). In (b) we illustrate Theorem 3.2: In the second step of the PAM algorithm, estimating a blur
kernel without a normalization constraint is equivalent to scaling the TV signal. In (c) we illustrate Theorem 3.3: If the constraints on the blur are enforced,
any blur different from the Dirac delta increases the distance between the input blurry signal and the blurry TV signal (black-solid).

3.6. Discussion

Theorems (3.2) and (3.3) show that with 1D zero-mean
step signals and no-blur initialization, for some values of
λ PAM converges to the correct blur (and only in 2 steps)
while AM does not. The step signal is fundamental to il-
lustrate the behavior of both algorithms at edges in a 2D
image. Extensions of the above results to blurs with a larger
support and beyond step functions are possible and will be
subject of future work.

In Fig. 3 we illustrate two further aspects of Theorem 3.2
(it is recommended that images are viewed in color): 1) the
advantage of a non unitary normalization of k during the
optimization step (which is a key feature of PAM) and 2)
the need for a sufficiently large regularization parameter λ.
In the top row images we set λ = 0.1. Then, we show
the cost ‖k ∗ u1 − f‖22, with u1 = argminu ‖u − f‖22 +
λJ(u), for all possible 1D blurs k with a 3-pixel support
under the constraints ‖k‖1 = 1, 1.5, 2.5 respectively. This
is the cost that PAM minimizes at the second step when
initialized with k = δ. Because k has three components and
we fix its normalization, then we can illustrate the cost as a
2D function of k[1] and k[2] as in Fig. 2. However, as the
normalization of k grows, the triangular domain of k[1] and
k[2] increases as well. Since the optimization of the blur
k is unconstrained, the optimal solution will be searched
both within the domain and across normalization factors.
Thanks to the color coding scheme, one can immediately
see that the case of ‖k‖ = 1 achieves the global minimum,
and hence the solution is the Dirac delta. However, as we
set λ = 1.5 in the second row or λ = 2.5 in the bottom
row, we can see a shift of the optimal value for non unitary
blur normalization values and also for a shift of the global
minimum to the desired solution (bottom-right plot).

4. Implementation

In Algorithm 1 we show the pseudo-code of our adapta-
tion of TVBD. At each iteration we perform just one gradi-
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Figure 2. Illustration of Theorem 3.1 (it is recommended that images are
viewed in color). In this example we show a 1D experiment where we blur
a step function with k0 = [0.4; 0.3; 0.3]. We visualize the cost function
of eq. (6) for three different values of the parameter λ. Since the blur
integrates to 1, only two of the three components are free to take values on
a triangular domain (the upper-left triangle in each image). We denote with
a yellow triangle the true blur k0 and with white dots the intermediate blurs
estimated during the minimization via the PAM algorithm. Blue pixels
have lower values than the red pixels. Dirac delta blurs are located at the
three corners of each triangle. At these locations, as well as at the true blur,
there are local minima. Notice how the path of the estimated blur on the
rightmost image ascends and then descends a hill in the cost functional.

ent descent step on u and on k because we experimentally
noticed that this speeds up the convergence of the algorithm.
If the blur is given as input, the algorithm can be adapted to
a non-blind deconvolution algorithm by simply removing
the update on the blur. We use the notation ◦ to denote the
discrete convolution operator where the output is computed
only on the valid region, i.e., if f = u ◦ k, with k ∈ Rh×w,
u ∈ Rm×n, then we have f ∈ R(m−h+1)×(n−w+1). No-
tice that k ◦ u 6= u ◦ k in general. Also, u ◦ k is not defined
if the support of k is too large (h > m + 1 and w > n + 1
). We use the notation • to denote the discrete convolution
operator where the result is the full convolution region, i.e.,
if f = u • k, with k ∈ Rh×w, u ∈ Rm×n, then we have
f ∈ R(m+h−1)×(n+w−1) with zero padding as boundary
condition. As shown in Fig. 5 the proper use of • and ◦
as well as the correct choice of the domain of u and k im-
proves the performance of the algorithm. In our algorithm
we consider the domain of the sharp image u to be larger
than the domain of the blurry image f . If u ∈ Rm×n, and
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Figure 3. Illustration of Theorem 3.2 (it is recommended that images are
viewed in color). Each row represents the visualization of the cost function
for a particular value of the parameter λ. Each column shows the cost
function for three different blur normalizations: ||k||1 = 1, 1.5, and 2.5.
We denote the scaled true blur k0 = [0.2, 0.5, 0.3] (with ||k||1 = 1)
with a red triangle and with a red dot the cost function minimum. The
color coding is such that: blue < yellow < red; each row shares the same
color coding for cross comparison.

Data: f , size of blur, initial large λ, final λmin

Result: u,k
1 u0 ← pad(f);
2 k0 ← uniform;
3 while not converged do
4 ut+1←ut − εu

(
kt− • (kt ◦ ut − f)− λ∇ · ∇ut

|∇ut|

)
;

5 kt+1/3 ← kt − εk
(
ut+1
− ◦ (kt ◦ ut+1 − f)

)
;

6 kt+2/3 ← max{kt+1/3, 0};
7 kt+1 ← kt+2/3

‖kt+2/3‖1
;

8 λ← max{0.99λ, λmin};
9 t← t+ 1;

10 end
11 u← ut+1;
12 k ← kt+1;

Algorithm 1: Blind Deconvolution Algorithm

k ∈ Rh×w, then we have f ∈ R(m−h+1)×(n−w+1). This
choice introduces more variables to restore, but it does not
need to make assumptions beyond the boundary of f . This
results in a better reconstruction of u without ringing arti-
facts. From Theorem (3.2) we know that a big value for
the parameter λ helps avoiding the no-blur solution, but in
practice it also makes the estimated sharp image u too “car-
tooned”. We found that iteratively reducing the value of λ

as specified in Algorithm 1 helps getting closer to the true
solution.

In the following paragraphs we highlight some other
important features of Algorithm 1.
Boundary conditions. Typically, deblurring algorithms
assume that the sharp image is smaller or equal in size to
the blurry one. In this case, one has to make assumptions
at the boundary in order to compute the convolution. For
testing purposes we adapted our algorithm to support
different boundary conditions by substituting the different
discrete convolution operators described in the previous
section with a convolution operator that gives in output an
image with the same size of the input image. Commonly
used boundary conditions in the literature are: symmetric,
where the boundary of the image is mirrored to fill the
additional frame around the image; periodic, where the
image is padded with a periodic repetition of the boundary;
replicate, where the borders continue with a constant value.
We also used the periodic boundary condition after using
the method proposed by Liu and Jia [15], that extends the
size of the blurry image to make it periodic. In Fig. 5
we show a comparison on the dataset of [14] between
our original approach and the adaptations with different
boundary conditions. For each boundary condition we
compute the cumulative histogram of the deconvolution
error ratio across test examples, where the i-th bin counts
the percentage of images for which the error ratio is smaller
than i. The deconvolution error ratio, as defined in [14],
measures the ratio between the SSD deconvolution error
with the estimated and correct kernels. The implemen-
tations with the different boundary conditions perform
worse than our free-boundary implementation, even if
pre-processing the blurry image with the method of Liu
and Jia [15] considerably improves the performance of the
periodic boundary condition.
Filtered data fitting term. Recent algorithms estimate
the blur by using filtered versions of u and f in the data
fitting term (typically the gradients or the Laplacian). This
choice might improve the estimation of the blur because
it reduces the error at the boundary when using any of
the previous approximations, but it might result also in
a larger sensitivity to noise. In Fig. 6 we show how
with the use of the filtered images for the blur estimation
the performance of the periodic and replicate boundary
conditions improves, while the others get slightly worse.
Notice that our implementation still achieves better results
than other boundary assumptions.
Pyramid scheme. While all the theory holds at the original
input image size, to speed up the algorithm we also make
use of a pyramid scheme, where we scale down the blurry
image and the blur size until the latter is 3 × 3 pixels. We
then launch our deblurring algorithm from the lowest scale,
then upsample the results and use them as initialization for
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the following scale. This procedure provides a significant
speed up of the algorithm. On the smallest scale, we
initialize our optimization from a uniform blur.

5. Experiments
We evaluated the performance of our algorithm on sev-

eral images and compared with state-of-the-art algorithms.
We provide our unoptimized Matlab implementation on our
website1. Our blind deconvolution implementation pro-
cesses images of 255×225 pixels with blurs of about 20×20
pixels in around 2-5 minutes, while our non-blind deconvo-
lution algorithm takes about 10− 30 seconds.

In our experiments we used the dataset from [14] in the
same manner illustrated by the authors. For the whole test
we used λmin = 0.0006. We used the non-blind deconvo-
lution algorithm from [12] with λ = 0.0068 and evaluated
the ratios between the SSD deconvolution errors of the esti-
mated and correct kernels. In Fig. 4 we show the cumulative
histogram of the error ratio for Algorithm 1, the algorithm
of Levin et al. [12], the algorithm of Fergus et al. [7] and
the one of Cho and Lee [4]. Algorithm 1 performs on par
with the one from Levin et al. [12], with a slightly higher
number of restored images with small error ratio. In Fig. 7
we show some examples from dataset [14] and the relative
errors.

In Fig. 8 we show a comparison between our method
and the one proposed by Xu and Jia [23]. Their algorithm
is able to restore sharp images even when the blur size is
large by using an edge selection scheme that selects only
large edges. This behavior is automatically minimicked by
Algorithm 1 thanks to the TV prior. Also, in the presence
of noise, Algorithm 1 performs visually on a par with the
state-of-the-art algorithms as shown in Fig. 9.

6. Conclusions
In this paper we shed light on approaches to solve blind

deconvolution. First, we confirmed that the problem formu-
lation of total variation blind deconvolution as a maximum
a priori in both sharp image and blur (MAPu,k) is prone
to local minima and, more importantly, does not favor the
correct solution. Second, we also confirmed that the orig-
inal implementation [2] of total variation blind deconvolu-
tion (PAM) can successfully achieve the desired solution.
This discordance was clarified by dissecting PAM in its sim-
plest steps. The analysis revealed that such algorithm does
not minimize the original MAPu,k formulation. This anal-
ysis applies to a large number of methods solving MAPu,k
as they might exploit the properties of PAM; moreover, it
shows that there might be principled solutions to MAPu,k.
We believe that by further studying the behavior of the PAM
algorithm one could arrive at novel useful formulations for
blind deconvolution. Finally, we have showed that the PAM

1http://www.cvg.unibe.ch/dperrone/tvdb/

Blurry Input. Restored image with
Cho and Lee [4].

Restored image with
Levin et al. [13].

Restored image with
Goldstein and

Fattal [8].

Restored image with
Zhong et al. [27].

Restored image with
Algorithm 1.

Figure 9. Examples of blind-deconvolution restoration.

algorithm is neither worse nor better than the state of the art
algorithms despite its simplicity.
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