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Abstract

This paper presents a novel and general method for the

detection, rectification and segmentation of imaged copla-

nar repeated patterns. The only assumption made of the

scene geometry is that repeated scene elements are mapped

to each other by planar Euclidean transformations. The

class of patterns covered is broad and includes nearly all

commonly seen, planar, man-made repeated patterns. In

addition, novel linear constraints are used to reduce geo-

metric ambiguity between the rectified imaged pattern and

the scene pattern. Rectification to within a similarity of the

scene plane is achieved from one rotated repeat, or to within

a similarity with a scale ambiguity along the axis of symme-

try from one reflected repeat. A stratum of constraints is de-

rived that gives the necessary configuration of repeats for

each successive level of rectification. A generative model

for the imaged pattern is inferred and used to segment the

pattern with pixel accuracy. Qualitative results are shown

on a broad range of image types on which state-of-the-art

methods fail.

1. Introduction

This paper presents a method for the detection, segmen-

tation and rectification of a broad class of coplanar repeated

patterns. A pattern is defined to be a coplanar arrangement

of a motif (see Fig. 3). This definition is very general:

no restrictive constraints are imposed on motif placement,

e.g., constrained to a lattice, a circle, or a row. The method

does not require the presence of parallel scene lines to work.

The proposed detection and rectification method applies to

nearly all man-made structures with repetitions or symme-

tries, which include building facades, mosaics, decorative

prints and text.

The problem of rectification is closely coupled with the

detection of a pattern and its motif in a chicken-and-egg
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Figure 1. Two different repeated patterns (left column) detected

and used to rectify the images (right column) by the proposed

algorithm. Top: similarity rectification with scale ambiguity in

the vertical axis from a pattern with reflected elements; bottom:

similarity rectification from an irregular pattern with rotated ele-

ments—note the right angle of the corner in the rectified image.

fashion: rectification is easier if the motif is known, and es-

timation of the motif is easier from a rectified image. The

proposed approach begins by establishing tentative intra-

image correspondences of local affine frames (LAFs) [15]

that could belong to a pattern. Rectification is estimated ex-

clusively from the ratio of scales and lengths of extents of

the imaged repeated scene structure.

Three types of repeated patterns are considered with

the goal being to bring each imaged pattern type as geo-

metrically close as possible to its scene counterpart to im-

prove scene understanding. The three pattern types differ by

the class of transformations between motif instances in the

scene plane. Each type provides different geometric con-

straints and allows for different levels of rectification. A

set of linear single-view geometric constraints are used that,

depending on the pattern arrangement, enable estimation of

rectification to within a similarity of the scene pattern. A

generative model for the imaging process of the repeated

pattern and its corresponding non-linear estimator is given.

An explicit model of the pattern is constructed and projected
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Figure 2. Comparison with other rectification approaches. Publicly available implementation by authors were used for [22] and [1].
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Figure 3. Examples of different configurations of a repetitive pat-

tern: (a) pure translation, (b) composition of an axial symmetry

and translation, (c) general rigid transform.

into the image. Reprojection error is minimized by refining

estimates of scene and camera geometry and localization of

extracted features, and a pixel-accurate segmentation is es-

timated using the re-projected pattern.

In general, methods for the detection and analysis of

coplanar repeated patterns benefit or require rectification

of the input image to detect and model repeated patterns.

However, prior approaches make restrictive assumptions on

scene content, e.g., requiring parallel scene lines, specific

symmetries, or that repeated pattern elements form a lat-

tice [1, 8, 11, 17, 19, 20, 21]. Some methods need the re-

gion of interest to be manually annotated if there is back-

ground clutter, one commonly used example is TILT [22],

and a nearly universal requirement is that radial distortion

is (manually) removed from the inputted image prior to any

processing. The proposed method does not need manual

annotation or camera calibration, and works for low-texture

patterns with significant perspective warping acquired by

lens-distorted cameras. Pattern construction and lens dis-

tortion estimation is an integral part of the rectification pro-

cess.

1.1. Related work

Leung and Malik [10] proposed an early solution that

grows a 2-D lattice from initial patches of high texture in a

manner analogous to SSD tracking. Schaffalitzky and Zis-

serman [17] also used local patches to grow a grid, and pa-

rameterized imaged planar repetitions as conjugate transla-

tions and rotations of local patches. Tuytelaars et al. [19]

grouped fixed points and lines from symmetries consistent

with homologies estimated by Hough transform. Liu et al.

[12] modeled the lattice structure of textures using a mini-

mal set of tiles. Park et al. [16] modeled lattice topology

with a Markov random field and allowed for some non-

planar deformation. Doubek et al. [4] developed a shift-

invariant descriptor to detect patterns with translated motifs.

Hong et al. [8] developed constraints based on several

classes of symmetries to estimate camera pose and pattern

structure, but assumed that the symmetry type is given. Wu

et al. [20, 21] introduced a repetition constraint and a corre-

sponding optimization method to densely reconstruct repet-

itive structures, but they assumed the presence of parallel

scene lines and that repeats occur on a grid. Rectification

of repeated structures by rank minimization of the inten-

sity matrix was proposed in [22]. The method is sensitive to

background clutter and occlusions, and the region of interest

must be manually annotated in problem cases. Liebowitz

and Zisserman [11] estimated affine rectification from van-

ishing lines, then, similar to our approach, upgraded the

rectification to within a similarity by enforcing the congru-

ence of the length extents of repeated scene elements. But

only rotated repetitions were considered. Recently, Aiger et

al. [1] also proposed estimating rectification by maximizing

congruence of the length extents of repeats. However, op-

timization was performed jointly for affine and metric rec-

tification, which has no convergence guarantee since con-

gruence is not preserved by either projective or affine trans-

forms.

Köser et al. [9] proposed the estimation of conjugate

rotation from a planar image correspondence, which they

use as a local first-order Taylor approximation to the inter-

image homography. Using the same linearization, an alge-

braic constraint on the scale change of a planar scene fea-

ture transformed by a homography was introduced by Chum

et al. in [3]. The method attempts to find a rectifying ho-

mography H∞ so that the matching patches of the repeated

structure cover identical areas. The proposed method ex-

tends the method in [3] by further reducing the ambiguity

between imaged pattern and scene pattern for certain types

of repeated patterns and significantly increases the precision

of rectification by a non-linear optimization that explicitly

reconstruct the pattern and accounts for radial lens distor-

tion.

2. Problem formulation

The method searches the input image for a coplanar re-

peated pattern that can be generated by the assumed model

illustrated in Fig. 4. The motif is repeatedly stamped on the

scene plane (a priori unknown) at locations specified by Eu-



(a) (b) (c) (d)
Figure 4. Generative model of the image of a repetitive pattern: (a) a motif is ’stamped’ by transformations Tj onto (b) a plane in 3D. The

image of the plane (c) is captured by a projective camera with lens distortion (d). Only the final image (d) is the input of the method; the

previous stages are inferred from intra-image correspondences. The only assumptions are made on the type of transformations Tj .

clidean transformations Tj , which constructs the pattern in

a rectified space. The construction is imaged by a radially

distorted projective camera. Since the construction lies on a

scene plane, the imaging process is modeled with a homog-

raphy. The projective part of the homography is captured by

the image of the line at infinity. Finally, radial lens distor-

tion is applied to the image plane creating the input image.

Note that the image is the sole input to the algorithm, and

all parameters of the generative model are estimated. An

assumption of the generative model is that the positioning

transformations Tj are one of three types typically encoun-

tered: pure translation, composition of an axial symmetry

with translation, or a general Euclidean (rigid) transforma-

tion (Fig. 3). It is of little interest to assume that Tj is as gen-

eral as a homography because (i) such repeated elements

rarely appear on real-world scene planes, and (ii) it is im-

possible to decouple the projective placement of the scene

element from the projective effect of the camera . There are

no other assumptions about the positioning transformations:

repeated elements do not have to create a lattice or assume

any other form.

The motif is a spatially localized collection of features

that form the repeated element. Due to noise or occlusions,

we assume that each instance of the motif in the pattern

consists of a subset of spatially consistent motif features;

i.e., not all motif features have to appear in all instances. To

contribute to a solution, an instance of a motif must contain

at least two features. For a solution to be found, at least two

motif instances must be detected.

3. The Method

This section describes the step-by-step estimation of the

parameters of the generative model from a single image of

a repeated pattern. An overview of the approach is given in

Alg. 1.

Feature appearance matching. To obtain sets of features

potentially arising from different instances of the repeated

motif, an intra-image matching procedure is performed.

Affine invariant local features are first extracted in the im-

Algorithm 1 Overview of the method

in: an image

out: motif, positioning transforms Tj , line at infinity,

radial distortion

1. Feature appearance matching

2. Projective distortion removal

3. Motif construction

4. Affine distortion correction

5. Non-linear optimization

age. We use MSER features [14] with the local affine frame

(LAF) extension [15] since it provides a local coordinate

system for each feature in the form of a triple of points.

SIFT descriptors [13] are extracted from the distinguished

regions defined by the LAFs. Features used for construction

of the reflected instances are detected in a reflected image.

Spectral descriptor matching is employed to robustly extract

clusters of features with similar appearance. Examples of

matching LAFs can be found in Figs. 5 and 6.

Projective distortion removal. The line at infinity is esti-

mated from the change of scale of matching local features

following [3]. In a projective image, patches that are farther

from the camera appear smaller. A rectifying homography

is estimated so that all matching features detected in differ-

ent instances of the motif have equal area after rectification.

The constraints on the homography are derived from the

scale change at a point, or, equivalently, at an infinitesimally

small patch around the point. This scale change is given by

the determinant of an affine transformation locally approxi-

mating (first order Taylor expansion) the homography at the

point. The infinitesimal scale changes are estimated from

the areas of local, affine covariant features. This approach

gives a set of linear equations

xih7 + yih8 − s
1/3
i αj = −1, (1)

where (xi, yi) are the coordinates of i-th feature point, si is

the local scale of that feature, (h7, h8, 1) are the coordinates



(a) (b) (c)

Figure 5. Tennis courts - rectification from instances of a reflected motif: (a) LAFs from the non-reflected motif instances, (b) LAFs from

the reflected instances, matching LAFs color-coded, (c) the rectified image.

(a) (b) (c) (d)

Figure 6. Rectification from rotated instances of the motif. Top row: (a) the original image, (b) the image with the plane of the pattern

rectified (cropped for visualization), (c) LAFs from eight motif instances superimposed over the original image, different instances color-

coded, (d) repeated pattern segmented; bottom row: a sample of different sets of corresponding LAFs.

of the line at infinity, and αj is related to the relative scale

of different feature sets (indexed by j, if more than one set

of matching features are used to estimate the line at infinity)

after rectification. Three corresponding features in general

position or three sets of two matching features are sufficient

to estimate the line at infinity. For more details see [3].

Motif construction. Each SIFT cluster represents a set of

intra-pattern tentative correspondences between motif el-

ements that were detected as MSERs and represented as

local affine frames (LAFs). The clustering implicitly as-

sumes that local neighborhoods covered by LAFs have a

large overlap with the motif and contain large subsets of

the pattern. SIFTs of the largest clusters are used to de-

fine sets of overlapping neighborhoods in the pattern. Using

the SIFTs’ corresponding LAFs, which define local coordi-

nate systems at the SIFT’s origin, SIFT neighborhoods are

transformed to the standard orthonormal basis, where sur-

rounding features are aggregated in a common space. In

the standard basis frame, spatially overlapping features are

identified as repeated elements and added to the motif rep-

resentation. This process is repeated for a fixed number of

the top SIFT clusters. Mismatches are discarded by spatial

verification in the canonical frame. Instances of a motif are

shown in Fig. 6(c).

Affine distortion correction. The method of [3] provides

planar rectification up to an unknown affine transformation.

If the motif instances are reflected or rotated (which is eas-

ily detected even under an affine ambiguity), then it is pos-

sible to further reduce the ambiguity. The methods use con-

straints from the lengths of corresponding line segments and

lead to systems of linear equations. The contribution is de-

tailed in 3.1.

Non-linear optimization. The parameters of the generative

model for the imaged pattern (Fig. 4) are initialized from the

linear estimates of rectification and from the motif construc-

tion in rectified space. Subsequently, re-projection error in

the image is minimized by a non-linear least squares opti-

mizer (Levenberg–Marquardt). This step is detailed in 3.2.

Robustness. Since the intra-image matching is prone to

false matches, estimation of rectification needs to be robust

to outliers. RANSAC [6] is used to estimate the line at in-

finity and to estimate an further affine distortion reduction

if reflected or rotated repeats are detected. The motif con-

struction stage filters out sets of features that do not have

sufficient support in their neighborhood, which is similar to

the approach of [18].



(a) (b) (c) (d)

Figure 7. (a) repeated element is rotated and translated, (b) corresponding (color coded) vectors form circles, (c) repeated element trans-

formed by an affine transformation, (d) corresponding vectors form ellipses that differ only by a diameter.

Segmentation of the pattern. Methods from image co-

segmentation [5, 2] are used to estimate the pixel-accurate

spatial mask of the repeated pattern. The constructed pat-

tern is reprojected to determine intra-image mappings from

corresponding locations of the motif instances. A small

correlation window is moved over one instance of the pat-

tern. The intensity function inside the window is corre-

lated with the intensity in the window transformed into oth-

ers instances of the motif. Locations with high correlation

are considered repeated and thus belonging to the repeated

structure. Regions without texture are not considered for

correlation. For examples of repeated pattern localization,

see Figs. 6 (d), 8(c) – (d), 9(c) and 13 (c).

3.1. Length constraints

The following paragraphs describe the process of up-

grading an affine-rectified pattern obtained from the method

of [3]. Unlike the area ratios of repeated elements, their

length ratios are not invariant to an affine transformation;

the length of vectors in different directions are affected dif-

ferently by an affine transformation. The constraints pro-

vided by the length of corresponding line segments will be

examined to estimate an affine transformation A that reduces

the remaining affine ambiguity. Depending on the type of

the repeated pattern construction, the ambiguity is reduced

to a similarity, which corresponds to an arbitrary choice of

an orthogonal isotropic coordinate system.

Since transforming a line segment by a translation has

no effect on its length, lengths of free vectors will be stud-

ied. These vectors are obtained from the line segment AB

by translating A to the origin as x = (x, y)⊤ = B − A.

This means that the translation part of the unknown affine

transformation A need not be considered; let Ā be the 2× 2
upper left sub-matrix of an affine transformation A. Let the

relation between the undistorted vectors x̂ and the observed

vectors x be

x̂ = Āx. (2)

The derived constraints are linear, so they are simple to im-

plement and efficient to use in a RANSAC-like [6] robust

estimator. Fast estimation can be achieved from minimal

sampling, or a more accurate least-squares solution can be

obtained from many correspondences.

Symmetry. This paragraph examines the configuration of

repeated elements that is reflected about a line of symme-

try. Such a configuration frequently occurs on man-made

objects, especially on building facades [20]. Let the two

corresponding vectors from the reflected instances of the

motif be denoted x and x′ respectively. We will assume,

without loss of generality, that the line of symmetry is a

vertical line on the scene plane. Thus, we are looking for an

affine transformation Ā with rows a1
⊤ and a2

⊤, so that

diag(−1, 1)Āx = Āx
′. (3)

This leads to a set of two homogeneous equations

a1
⊤(x+ x

′) = 0, and (4)

a2
⊤(x− x

′) = 0. (5)

A single reflected vector correspondence is enough to com-

pute a1 and a2 up to a scalar factor. Any matrix with rows

λ1a1
⊤ and λ2a2

⊤ for non-zero scalars λ1,2 will rectify the

vectors to a reflected position. Therefore, the rectification

has an ambiguity of an anisotropic scaling along the direc-

tion of the axis of symmetry, the overall scale, and the rota-

tion, which was fixed by aligning the axis of symmetry with

a vertical line. This is equivalent to detecting two perpen-

dicular vanishing points, one in the direction of the axis of

symmetry.

Rotation. We will assume that on the scene plane, there are

sets (indexed by j) of corresponding rotated line segments

of length rj , each set having at least two elements (indexed

by i). The length constraint can be written as

x̂
⊤

ij x̂ij = r̂2j . (6)

The situation is depicted in Fig. 7(b). Corresponding vec-

tors are color coded and Equation (6) is depicted as circles

with diameter rj . The length constraint (6) in the image

transformed by Ā
−1 according to (2) changes to

x
⊤

ijΣxij = r̂2j , where Σ = Ā
⊤
Ā. (7)

In equation 7, Σ represents an ellipse (visualized in Fig. 7c),

where

Σ =

(

a b

b c

)

. (8)



Equation (7) can be rewritten as

(x2

ij 2xijyij y2ij − 1)(a b c r2j )
⊤ = 0, (9)

which gives a system of homogeneous linear equations.

There are three unknowns for Σ, and each set of match-

ing line segments adds one unknown rj . Each partic-

ipating line segment in general position (rotation) adds

one constraint. For two pairs of line segments, there are

3 + 2 = 5 unknowns and four linear equations, yielding

a one-dimensional linear space of solutions. An alternative

minimal solution is given by one triplet of reflected line seg-

ments, having 3 + 1 = 4 unknowns and 3 linear equations.

The affine transformation can be derived from the solu-

tion of the system of linear equations (9) up to a scale factor

and a rotation. The unknown scale comes from the homo-

geneous nature of the system–both Σ and r2i s can be multi-

plied by a positive scalar. The rotational ambiguity comes

from the ambiguity of the decomposition Σ = Ā
⊤
Ā.

A rotation by 180 degrees (or an integer multiple) creates

a special case: if the pattern is only rotated by integer mul-

tiplications of 180 degrees, then the matching vectors lie on

parallel lines. Since affine transformations affect the lengths

of vectors on parallel lines equally, the situation is similar

to the pure translation case with full affine ambiguity.

3.2. Non­linear estimation

The parameters of the generative model depicted in

(Fig. 4) are estimated by a non-linear minimization of pat-

tern re-projection error. Scene plane rectification, posi-

tion transformations and localization of detected features

are jointly refined, and the camera model is extended to in-

clude radial distortion. Radial distortion is modeled by the

division model [7]. The minimization is accomplished by

Levenberg–Marquardt. The parameters of the optimization

include the position of the feature points in the motif v̂i, the

parameters of the rectifying homography Ĥ, which is a com-

position of the non-projective upgrade (if there is one) and

Ĥ∞, the parameters of the positioning transformations T̂j

for each motif instance, and the radial distortion parameter

λ̂. A geometric re-projection error of the reconstructed pat-

tern with the measured feature points in the original image

counterpart is given by the following cost function

min
λ̂,Ĥ,T̂j ,v̂i

N
∑

i=1

∑

j:∃uij

d(Lλ̂(Ĥ
−1

T̂j(v̂i)),uij). (10)

The outer sum is over all N points of the motif, the inner

sum is over instances j where the i-th motif point was ob-

served, d(x,y) is the Euclidean distance between the im-

ages of x and y, and Lλ̂ implements the radial distortion.

The rectifying homography Ĥ is minimally parameterized

based on the geometric constraints available from the pat-

tern arrangement (see 3.1).

(a) (b)

(c) (d)
Figure 8. Poster wall: (a) original image. Two different (c) and

(d) coplanar translated repeated pattern are detected. The plane is

rectified (b) up to an affine transformation.

4. Experiments

In this section, we present experimental results that val-

idate the broad applicability of the proposed method. The

ambiguity of image registration is resolved by registering

the rectified image to the original image using a transfor-

mation that corresponds to the rectification type: affine for

an affine ambiguity, similarity for similarity ambiguity, etc..

This is done solely for the visualization purposes so that the

rectified images are not significantly distorted.

4.1. Pure Translation

The case where the motif is only translated in the scene

plane offers rectification only up to an arbitrary affine trans-

formation of the scene plane; thus, it is the least interest-

ing. Examples of repeated patterns with translated motifs

are shown in Figs. 8 and 9.

4.2. Reflection

The presence of a reflected motif(s) allows for the detec-

tion of two perpendicular vanishing points, one of which is

aligned with the axis of symmetry. Fig. 10 shows an exam-

ple of a symmetric repeated pattern: the windows. The fig-

ure also provides a comparison to an affine rectification got-

ten by the method given in [3]. More examples are shown

in Figs. 5, 1-top, Figs. 11. The motif in the FEET example

in Fig. 11 is not self-symmetric.

4.3. Rotation

Fig. 2 compares the rectification results of different

methods on the target image from [3], which contains a

rotated repeated pattern. A rectification of an image of

the famous Escher painting “Tessellation 85” is shown in

Fig. 12. This experiment demonstrates the robustness of the

proposed algorithm to noise. Since the painting is hand-

drawn, each of the lizards, bats and fish are, in fact, unique.



(a) (b) (c)
Figure 9. Translated pattern: (a) original image, (b) rectified up to an affine transformation, (c) repeated pattern extent.

(a) (b) (c)
Figure 10. Reflected pattern: (a) original image of a schoolhouse, (b) affine rectification by [3], (c) similarity rectification by the proposed

method. Images (a) and (b) courtesy of authors [3].

Figure 11. Footprints - rectification of a reflected pattern up to un-

known scale of the x-axis.

Figure 12. Tessellation 85: Similarity rectification from a rotated

pattern. The rectified image was cropped for visualization to han-

dle the extreme elongation.

Still, a perfect similarity rectification is achieved. Further

examples of similarity rectification from rotated motifs are

given in Figs. 1 bottom and 6.

An example of rotated pattern with no geometric struc-

ture is shown in Fig. 13. The PAMI issue that is on the same

plane as the pattern was rectified to have 88.4 degree angle

between its sides and an aspect ratio of 2:2.77, while in re-

ality it is 2:2.73 (the corners of the journal were manually

clicked).

4.4. Improving the descriptor accuracy

The non-linear minimization not only improves the es-

timate of the rectification transformation, but, more impor-

tantly, it estimates the noise free feature points. In order

to quantify the gain, the following statistics were computed

both before the rectification (i.e. over the detected features),

and after the rectification (over the geometrically corrected

features). For each feature in the motif, an average SIFT

descriptor was computed from its instances. The average

distance of feature SIFT descriptors to the corresponding

average SIFT descriptor was computed. The rectification

reduces the intra-cluster SIFT distance by 35.2% on average

for the images in Figs.2, 8 ,9. This is an important result for

applications such as image retrieval.

4.5. Multiple coplanar patterns

It is natural to consider multiple motifs for modeling im-

ages that contain multiple patterns. Fig. 8 shows two dif-

ferent groups of posters cosegmented from multiple motif

detections. In this case, the instances are on the same plane,

and the constraints on the line at infinity and the radial dis-

tortion are shared. If the instances of the motifs live on a

different planes, then new parameters for the line at infin-

ity for each plane are introduced, but the radial distortion

parameter is the same for all the planes.

5. Conclusions

A novel and fully automated method for the detection,

rectification and pixel accurate segmentation of coplanar re-

peated patterns is introduced. Besides coplanarity, the al-

gorithm makes virtually no assumptions about the arrange-



(a) (b) (c)
Figure 13. Rotated pattern randomly repeated: (a) original image, (b) rectified up to similarity, (c) repeated pattern segmentation.

ment of the motif. A set of linear single-view geometry

constraints are introduced to estimate rectification up to a

similarity of the scene plane from a minimal set of intra-

image correspondences—affine distortion can be removed

from just one rotated or reflected repeated scene element.

These constraints are used in a fast RANSAC framework

to provide robust intra-pattern feature matching and pattern

rectification.

The imaged pattern is modeled generatively. Model op-

timization concurrently refines rectification, pattern geome-

try and lens distortion. The model-based approach enables

the reprojection of the constructed pattern, which is used to

segment the pattern with pixel-level accuracy.

Experiments verify that the method works when the pat-

tern is a small part of the image, of low texture, with an

arbitrarily arranged motif and with a significant perspec-

tive warp. Thus the proposed method is applicable to a

broad class of patterns, including man-made, planar struc-

tures with repetition or symmetry, such as building facades,

mosaics, decorative prints and text.
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[15] Š. Obdržálek and J. Matas. Object recognition using local

affine frames on distinguished regions. In BMVC, 2002. 1, 3

[16] M. Park, R. Collins, and L. Y. Deformed lattice discovery

via efficient mean-shift belief propagation. In ECCV, 2008.

2

[17] F. Schaffalitzky and A. Zisserman. Geometric grouping of

repeated elements within images. In BMVC, 1998. 2

[18] C. Schmid and R. Mohr. Combining greyvalue invariants

with local constraints for object recognition. In CVPR, 1996.

4

[19] T. Tuytelaars, A. Turina, and L. Van Gool. Noncombinato-

rial detection of regular repetitions under perspective skew.

PAMI, 25(4):418–432, April 2003. 2

[20] C. Wu, J.-M. Frahm, and M. Pollefeys. Detecting large repet-

itive structures with salient boundaries. In ECCV, 2010. 2,

5

[21] C. Wu, J. M. Frahm, and M. Pollefeys. Repetition-based

dense single-view reconstruction. In CVPR, 2011. 2

[22] Z. Zhang, A. Ganesh, X. Liang, and Y. Ma. TILT: transform

invariant low-rank textures. IJCV, 99(1):1–24, 2012. 2


