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Abstract—A method for identifying shape features of local
nature on the shapes boundary, in a way that is facilitated by
the presence of noise is presented. The boundary is seen as a
real function. A study of a certain distance function reveals,
almost counter-intuitively, that vertices can be defined and
localized better in the presence of noise, thus the concept of
noising, as opposed to smoothing, is conceived and presented.
The method works on both smooth and noisy shapes, the pres-
ence of noise having an effect of improving on the results of the
smoothed version. Experiments with noise and a comparison
to state of the art validate the method.
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I. INTRODUCTION

Curvature is a local descriptor. For planar curves it is
defined as the rate of change of the tangent to the curve
per infinitesimal arc length. A vertex is a point on the curve
where curvature attains local maximum or local minimum.
In a noisy curve, the local nature of curvature restricts it
in describing the high frequency Fourier components (hfFc)
themselves rather than the underlying shape. The presence
of hfFc is considered a problematic situation because, for
one reason, there is no easy way to evaluate whether these
represent noise or not. That would require solving the harder
problem of recognizing the object. The hfFc might be
defining for certain shapes, but might be just noise in others.
For another reason, the calculation of critical local features
on the boundary e.g. curvature, is dominated by the hfFc but
again, it is unknown whether hfFc describes noise or not.

As a consequence, it seems inevitable to eliminate the
hfFc from the boundary of all shapes, as a blind prepos-
sessing step, at the expense of losing useful discriminating
information, in cases where hfFc are not noise but represent
actual shape features. Even worse, smoothing distorts the
shape’s metrics in an unpredictable manner, a highly unde-
sirable effect whenever certain morphometric measurements
are defining for classification. The inevitability of smoothing
for local feature extraction is challenged in this paper.

Il. RELATED WORK

Even though an enormous amount of work related to
shape analysis has been performed in the last few decades,

the presented herein method relates closer to approaches of
describing shapes by real functions [1] and more specifically
to attempts of estimating local shape features e.g. curvature
in the presence of noise.The presented work is based on the
VAR descriptor [2], that can be used to define curvature in
a global sense. In [3], a framework for integral invariants
is introduced and a resulting localized Local Area Integral
Invariant (LAII) descriptor is defined. LAIl is one of the
few state of the art, low level methods, with complexity
similar to the proposed hereinafter, thus we use it for
comparison in estimating curvature/vertices in noise affected
curves without smoothing. Other methods of calculating
local features while resisting noise can be found in [4], [5],
EG]B.] [71, [8], [9], [10], [11], [12], [13], [14], [15], [16], [17],
18].

I1l. CONTRIBUTION

The main contribution lies in proposing a new method for
vertex localization that is inspired by ([2]) but is simpler,
faster and doesn’t need curvature calculations. Bypassing
curvature, the new method makes noise an enabling factor. A
fundamental belief, according to which the negative effects
of noise increase with the order of differentiation, is thus
unexpectedly confronted in the manuscript while a new way
of thinking emerges, that of noise enabled global vertex
localizers.

To the best of our knowledge, there is no attempt in the
past and current literature, to use noise as a means for ex-
tracting local shape features or higher order differentials. The
method presented herein is in that respect, orthogonal to the
popular differential approaches. The new concept of noising,
as opposed to smoothing is conceived and presented. Under
this new concept, a boundary can be preprocessed by adding
noise in the form of hfFc and then analyzed according to
the proposed hereinafter analysis for curvature calculation
and vertex identification. Noising, is considered here as the
process of adding hfFc to the existing boundary (noisy or
not) in an additive manner that does not affect the initial
boundary points. Vertices are then identified by treating the
additional points as neighborhood for facilitating the global
descriptors. In comparison to smoothing, a lossy operation



that leaves no original boundary point untouched, noising
emerges as a strong alternative for automatic local feature
extraction in unknown curves. As was also mentioned in
the Related Work section, the proposed method is based on
theoretical findings established in [2] but the concern there
is for shape matching. The concept of noising and its ability
to improve local feature extraction, the method for localizing
vertices and estimating curvature, the relevant experiments
with smooth and noisy shapes and the such comparison to
LAII in these tasks, is presented here for the first time.
Since the presented method is valid in both smooth and
noisy boundaries, it conveys a generality, appreciated espe-
cially in comparison to the methods that rely on smoothing.
Indeed the latter are valid only after a smooth boundary is
guaranteed and they carry no credibility in the presence of
noise. The presented method therefore, not only challenges,
in an almost counterintuitive manner, the inevitability of
smoothing for local boundary feature extraction, but also
serves a unification purpose: that of of extracting local
features from all shapes regardless of noise without jeop-
ardizing useful shape information. A comparison to LAII[3]
in curvature calculation/vertex identification in the presence
of noise, reveals the advantages of the proposed approach.

IV. THE PROPOSED METHOD

The method is based on the relationship between the rela-
tive location of the points on a closed curve and the curvature
at those points. By relative location, we mean location with
respect to the rest of the curve. This relationship is important
because location, as opposed to curvature, is not affected by
noise. For completeness, we briefly introduce here the VAR
descriptor and its relation to location and curvature [2]:

A. The VAR descriptor

Let (0,\] CR and « : (0,] — R? a continuous one to
onel, at least C3, planar curve of non zero length X in R2,
parametrized with respect to the arc length s. Throughout
this paper we consider the following additional regularity
assumptions regarding «:

1) a :S' — R? aclosed curve in R? thus equivalent
to a continuous mapping of the unit circle S into the
real plane R2.

2) a(s) € C3(St,R?), the closed curve « is at least
three times differentiable at every point in the unit
circle ensuring that the curve is sufficiently smooth at
all the points.

For every point on the curve we consider the sum of its
distances to all the other points. In the discrete case it is a
summation but in the continuous case it is an integral. We
proceed with the continuous case since the discrete is just a
simplification.

LEquivalent to non self intersecting.

Figure 2. Local bindings of the view functions. Two portions of the same
boundary, the osculating circle and the Frenet frame at o (s).

Definition 1: Let « be a closed curve of length A\ as
above and ¢, be a distance function defined on [0, A\] and
taking values in R as follows:
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®a(s) is called the VAR descriptor and can be interpreted as
modeling a notion of total distance between the curve point
a (s) and the rest of the curve.

Now let s, € (0, A] such that the normal to the curve at
a (s,) is considered explicitly and ¢ € (0, A] with £ # s,
signifying a random point «a (£) on the curve. As shown in
Fig. (2), we denote with 7 (s.,&) = = the vector a (s.) —
a (&) and w(s«, &) = w the angle from the normal to the
curve at s, to — 7 (s, &) measured counter-clockwise. In
the form of a Theorem, we gather results from [2]. Dots
represent derivatives always with respect to s.

Theorem 1: Let o € C3((0,A],R?) a closed planar
curve of nonzero length A, at least 3 times differentiable as a
function defined on the unit circle. If ¢ (s) the total distance
function (VAR descriptor), x(s) the curvature function and
s«,&, r and w as above, then:

1)

)

S=S8x

A
bots) = = [ sinfu)ae

2) .
Pa(s:) = K(s:) A(s4) + B(sx) ®)

where A(s,) = fOAcos(w)df
f)\ cosz(w)df

o 7l
at a (s«).
3) Ifinaddition, ¢, (s.) a local extremum of ¢, (s). Then

k(ss) # 0 and A(sx) #0 and

Pa(ss) — B(sx)
A(sy) )

s=s, and B(s.) =

s—s, global shape descriptors measured

K(ss) =
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Figure 1. The integral descriptors A, B and ¢, in noisy and smoothed versions of Kimia silhouettes. Each shape is sampled by 100 equal spaced points
marked in steps of 10 in the Figure and depicted in the x-axis of the corresponding plots. Notice there is no significant distortion due to noise. Curvature

can be defined through these descriptors in a global manner.

As we can see from the Theorem, the integral descriptor
A has a similar interpretation with ¢. They both quantify
a notion of displacement of the whole curve with respect
to the normal at s,. Indeed, if we consider a point « ()
that traverses the curve, angle w measures the angular
displacement of this point with respect to the normal at s...
Thus the integral A (and ¢) can be thought of measuring the
total angular displacement of the whole curve with respect
to the normal at s, and it is important to notice that they
are related to the tangent at their point of calculation. The
integral descriptor B has a similar interpretation.

B. Identifying Vertices and the Concept of Noising

In this section we proceed with observations regarding
equation(4) and a new method for vertex localization.We
observe that equation (4) defines curvature through global
descriptors. All quantities on the right hand side of equation
(4) are integrals defined on the whole of the shape and
as such they don’t change significantly with noise. The
above observations lead to the conclusion that this definition
of curvature is stronger than the differential one. In fact,
noise not only is not affecting significantly this definition
of curvature but, as we will later show, it also improves
the identification of vertices, giving rise to the concept of
noising as opposed to smoothing.

This result is counterintuitive since vertices are of a higher
differential order than curvature, thus even more sensitive
to noise with traditional methods. An explanation of this

paradox emerges if we look closer into the interrelation
of A with ¢. From the Theorem (item 1) we get that the
zero crossings of ¢, (non trivial local extrema of ¢) are
related to the local extrema of A. According to equation
(4), this is an indication that at high curvatures, the local
extrema of « are collocated with the local exrema of ¢
and ¢, the later through A by means of equation (2).
A thorough mathematical analysis of this exact relation
involves examining the location of zero crossings of linear
combinations of analytical functions, a non trivial task that
would dominate the current manuscript, we thus confine
ourselves here to the supporting experiments. In fact, the
experiments indicate that at certain points (where the curve
is not equally displaced around the normal), the induction of
further noise around these points has the effect of correcting
the curve’s displacement, thus facilitating extrema curvature
measurements by means of the distance function ¢.

As an illustration of this phenomenon, one can imagine
traveling along a closed boundary being restricted to look
only in the direction normal to the boundary at the current
position. In such a scenario, a noisy journey would mean
traveling along a noisy boundary and would provide richer
views, since the fixed direction of one’s gaze would be
compensated by the diversity in the directions of movement.
That would increase the ability to understand the whole
shape compared to a smooth journey traveled along a smooth
boundary.
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Figure 3. The method of noising as opposed to smoothing is illustrated
here. New points are added to the contour with the purpose to enrich
the tangent directions around the original points. This will facilitate the
proposed method in identifying vertices.

In Fig. (1) we show the integral descriptors A, B and ¢
involved in equation (4) for smoothed and noisy versions
of Kimia silhouettes [19]. We notice there is no significant
distortion due to noise. After the above observations one can
conclude at this point that Theorem (1) actually describes
a method for localizing vertices of significant curvature.
Indeed, at the points of local maxima of ¢, both x and
A are non zero, thus the curvature there can be calculated
by equation (4). The local maxima of ¢ can be easily
identified in the zero crossings of ¢ but also the extreme
points of the second derivative ¢ are easily identifiable as
well, in the zero crossings of ¢ (this is the reason we
require differentiability of at least third order for ¢). Now we
recall that an extreme point of ¢ declares extreme location
on the boundary, whereas an extreme point of ¢ declares
extreme curvature on the boundary, as equation (4) suggests
thus a method of identifying points of extreme location and
curvature in the collocation of ¢ and ¢ zero crossings, is in
place. Under this method noise would have no effect since
it doesn’t affect location significantly.

The new concept of noising, as opposed to smoothing
is now described. Under this concept a boundary can be
preprocessed by adding noise in the form of hfFc.

Noising can be performed in an additive manner to the ex-
isting boundary, therefore not affecting the initial boundary
points. In the discrete case of a digital curve, for each pair
of consecutive points on the initial boundary a new point
will be added at the intersection of the circles centered at
the original points and having equal radii drawn from a
normal distribution with zero mean and variance equal to
the distance between the two original points (Fig.3).

The curvature and other calculations can then be estimated
by treating the additional points as neighborhood as this fa-
cilitates the global descriptors. For some points that are close
of being extreme on the boundary, increasing noise may
affect the location of their neighborhood points, not much
but enough to make the initial points appear as extreme. In
that case the initial points will also be correctly considered

Vertex Localization-SmoothShape Vertex Localization-NoisyShape

Zero crossings of d¢/ds and datp/ds3 Zero crossings of do/ds and daqylds3

0.3 03
0.2 0.2
0.1 0.1
0 0
-0.1 -0.1
-0.2 -0.2

03 — dq;/ds .| 03 [ di)/ds .

— d/ds — d®p/ds

-0.4 -0.4

o

20 40 60 80 100 0 20 40 60 80 100

Differential Curvature () and ¢ Plots
1 0.6

0.4
o5 ’ W

0.2

Figure 4. Vertex localization for smooth and noise versions of the same
Kimia Silhouette using co- localization of ¢ and ¢ extreme points. Stars
and diamonds are curvature’s local maxima and minima respectively. Points
are marked on the shapes for every 10th point in a total of 100 points per
shape and are also assumed as the x axis in all plots. The co-localization
of zero crossings that appear in the second row of plots are validated
against ¢ and curvature plots appearing in the last row. We notice that
more points are correctly identified in the noisy version. We also notice that
the proposed method produces correct results even though the differential
curvature descriptor has collapsed in the noisy case.

as vertices, if they so qualify as extreme curvature points as
well. At the same time points can appear as extremes, due to
the induced noise around them, but they will not be selected
as vertices unless the rate of change of their total distance
to the rest of the curve is also achieving an extreme.

In comparison to smoothing, a lossy operation that leaves
no original boundary point untouched, noising emerges as
a strong alternative for automatic local feature extraction in
unknown curves. It is important to notice that according to
this method vertices are detected directly, by the collocation
of the zero crossings as above, without having to calculate
the actual curvature. In other words, the method does not
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Figure 5.  Curvature estimation and vertex localization according to the
proposed method (based on equation (4)). At the top row of plots, solid
circles and squares are curvature local minima and maxima respectively,
identified by the proposed method for smooth and noisy versions of the
same KIMIA silhouette. At the middle row of plots, the global descriptors
involved in the localization of vertices according to the proposed method,
namely ¢ and ¢, are shown for the same silhouettes. At the bottom row
of plots we see the differential curvature (x) and the curvature estimator
according to the proposed method (x4), valid only at points where A # 0,
for both noisy and smooth shapes. Notice that more vertices are correctly
identified in the noisy case and the robustness of the proposed curvature
estimator where the differential curvature has collapsed. In comparison to
LAIl method in Fig.(6), the proposed globally defined vertices are more
intuitive and less affected by local formations.

rely on a smooth estimation of curvature around vertices but
it is a native method for calculating vertices directly, albeit
them being of a higher differential order than curvature.
Another issue worth noticing, is that the above procedure
of noising can be applied recursively to form neighbor-
hoods of increasing differential order around the initial
curve points, resulting in an analogous concept to that of
incremental smoothing. According to the previous analysis,
further noising will only improve the results of identifying

more vertices, given that the variance of the normal dis-
tribution from which the radii are drawn is not increasing
with the degree of noising. In the experimental section that
follows, the above method for curvature calculation and
vertex localization is validated. A comparison to LAII in
these tasks, for smooth and noisy versions of shapes is also
presented.

V. EXPERIMENTAL VALIDATION

In this section we validate the above observations with
experiments. We show that in the proposed method, vertex
localization is indeed improved by adding noise. A com-
parison to LAII in both vertex localization and curvature
estimation in smooth and noisy shapes is another experiment
revealing the advantages of the proposed approach.

A. Vertex Localization and the Effect of Noise

In Fig.(4) a noisy silhouette is compared to its smoothed
version. There, we see that the noise is actually improving
vertex identification by introducing new vertices, not being
identified in the smooth version. The reason this happens
as we explained before, is due to the nature of the integral
descriptors involved in the proposed method of localizing
vertices. In a smoothed curve, a point of maximum curvature
may or may not appear as extreme point on the boundary,
depending on the location of the point with respect to the
rest of the curve. Point No. 63 e.g. is not identified in the
smoothed version since ¢, even though it is close, it does
not actually achieve zero crossing at a neighborhood of 63.
Applying noise in the neighborhood of 63 leads to greater
diversity in the tangent directions around 63 and in the noisy
version we see ¢ finally achieving a zero crossing there and
63 correctly being identified as a vertex. This effect of noise
is valid only for points that are close of being extremes
on the boundary and is therefore location dependent and
has no effect for points that are not well located globally,
e.g. point 15 where we see that, due to its specific location
on the shape, no matter how much noise we apply to its
neighborhood, it will never be identified as a vertex.

B. Comparison to LAII for Vertex Localization and Curva-
ture Estimation

A comparison to LAII [3] for estimating curvature but
also for localizing vertices in noisy shapes is presented in
this experiment. LAII is a low level descriptor of similar
complexity to the proposed method, that generalizes the
concept of curvature over the noisy segments of curves. LAII
was chosen as the most robust out of the local methods,
to demonstrate inherent disadvantages local methods have
in vertex identification under noise. Under LAII a circle
of certain radius is used, centered at each point, and the
curvature is calculated as the ratio of the area of this circle
that lies in the interior of the closed contour. In the case of
zero curvature, e.g. a noisy straight line, half of the disk will
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Figure 6. Curvature estimation and vertex localization by means of the
LAII method[3]. At the top row plots, stars and diamonds are curvature
local minima and maxima respectively, identified by the LAIl method for
smooth and noisy versions of the same KIMIA silhouette. Compare this
with the circles and squares identified by the proposed method in Fig. (5).
At the bottom row of plots we see the differential curvature (k) and the
curvature estimator according to LAll(xg, a77). LAII shows high resistance
to noise but the results in both curvature estimation and vertex localization
are misled by local formations on the boundary.

lie in the interior of the shape, whereas in the case of infinite
curvature this portion will tend to zero or to one depending
on the sign of the curvature at this point. LAII therefore uses
an integral (area of the circle) to estimate curvature but it is
essentially a local descriptor.

Our implementation of LAII is as follows: Starting from
a binary image of the shape to be encoded, first we extract
the boundary. The boundary is then discretized by sampling
100 equally spaced points on it. Then using a circular kernel
(constructed as a binary image of a circle of radius 15, as is
suggested in [3]) we convolve the filter with the shape image
only at the boundary points. The values of the convolution
at each of the boundary points are the values of the LAII
estimated curvature at these points. For vertex localization
we pick the LAII points of local minima and maxima,
marked with stars and diamonds accordingly in Fig. (6) .

We compare this implementation of LAII to the proposed
method of calculating curvature from equation (4), whereas
vertex identification is performed as in the previous section
by examining the co-localization of the local extrema of the
total distance function ¢ with those of its second derivative
6. For both methods the same extracted contours were used.
Many advantages of the proposed method are apparent in
this experiment. A comparison of the curvature estimators
ke and krayr in Fig.(5) and Fig.(6) respectively, reveals

better accuracy for the proposed method « 4. The comparison
is performed against the differential curvature which, as
we see in the figures, collapses in the presence of noise.
Also the localization of vertices, marked in the top row of
plots as filled squares and circles for the proposed method
in Fig.(5), is context dependent and thus more meaningful
than the respective stars and diamonds marked as such by
the LAIl method in Fig.(6). While the LAII localization of
vertices improves by smoothing (as is expected from all local
methods), it follows blindly the local boundary formations
without considering context. The amount of smoothing in
relation to shapes alterations and the effects on the location
of the identified vertices are thus still unsolved problems for
the LAII method(and all local methods in that respect). The
middle row plots in Fig.(5) reveal the behavior of the zero
crossing components in the proposed localization of vertices.

V1. DISCUSSION

One could argue that the problem of identifying mean-
ingful vertices, (as opposed to rely solely on the formal
mathematical definition) can be resolved only after having
recognized the object. Indeed, especially in the presence of
noise, the identification of meaningful vertices seems the
result of an implicit comparison: The given noisy shape
is registered against an ideal smooth shape, representative
of the recognized class. However, the such ideal shape
cannot be the result either of smoothing or of any other low
level method that performs on an unrecognized object. In
this context, the proposed method is attempting to bring in
perceptual characteristics to this low level task by combining
a robust vertex estimator ¢ and a global position estimator ¢.
The non trivial? local extrema of the former are identified
in the zero crossings of ¢ and is already a robust vertex
estimator, since it is based on the distance to the rest of
the curve and not on local to the curve differentials. In
the experiments and also according to the theory in the
manuscript, one could follow that ¢ can be used as a vertex
estimator by itself and vertices could be defined directly
on its local extrema (zero crossings of ¢) accordingly.
However, although robust in comparison to the differential
alternatives, vertices identified this way would be according
to the formal mathematical definition, lacking any attempt
of differentiation with respect to their importance. This is
where ¢ plays an important role.

The introduction of ¢ in the process of identifying ver-
tices, provides an additional capability, that of acquiring a
global view of the locations of the vertex points, introducing
the concept of the remote points, as undisputed points of
curvature, points of extreme curvature that due to their
location also at the extremes of the shape (zero crossings

20f non constant curvature.



of $) should be characterized as perceptually important 3. It
could be noticed here that extreme location implies extreme
curvature in a way that ¢ can be seen as a Global allocator of
meaningful vertices. One could conclude by contemplating
the important implications in simplicity, implementation
diversity and performance of the proposed method, given
that it relies on the derivatives of a single distance function
¢ that is robust to noise, natively RSTM (RST + Mirroring)
invariant and of low complexity in its calculation.

VIlI. CONCLUSION

A global definition of curvature, through integrals of
global descriptors, instead of differentials, is used to describe
a method of vertex localization and curvature estimation
in planar shapes. The method conveys generality by giving
valid results on both smooth and noisy shapes. Furthermore,
the results of the method are improved in the presence
of noise, thus the concept of noising emerges as a strong
alternative to smoothing. This counterintuitive result was
indicated by the theoretical findings and was validated here
by experiments. A comparison to LAII, a state of the art
noise-resistant method of estimating curvature, reveals the
advantages of the proposed approach.
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