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Abstract

Recently, multi-atlas segmentation (MAS) has achieved
a great success in the medical imaging area. The key as-
sumption of MAS is that multiple atlases encompass richer
anatomical variability than a single atlas. Therefore, we
can label the target image more accurately by mapping the
label information from the appropriate atlas images that
have the most similar structures. The problem of atlas se-
lection, however, still remains unexplored. Current state-
of-the-art MAS methods rely on image similarity to select a
set of atlases. Unfortunately, this heuristic criterion is not
necessarily related to segmentation performance and, thus
may undermine segmentation results. To solve this simple
but critical problem, we propose a learning-based atlas se-
lection method to pick up the best atlases that would even-
tually lead to more accurate image segmentation. Our idea
is to learn the relationship between the pairwise appear-
ance of observed instances (a pair of atlas and target im-
ages) and their final labeling performance (in terms of Dice
ratio). In this way, we can select the best atlases accord-
ing to their expected labeling accuracy. It is worth noting
that our atlas selection method is general enough to be in-
tegrated with existing MAS methods. As is shown in the
experiments, we achieve significant improvement after we
integrate our method with 3 widely used MAS methods on
ADNI and LONI LPBA40 datasets.

1. Introduction
Multiple-atlas segmentation (MAS) has recently gained

popularity for labeling the anatomical structures of a target
image [1, 2, 10, 11, 13]. It segments an unknown target im-
age by transferring the labels from a population of annotated
exemplars (i.e., atlases) to the target image domain, where
the transformation is usually derived from image registra-
tion. In atlas-based segmentation, we assume that if two
anatomical structures have similar shape and location, they
should bear the same label (or tissue type). Since a popu-
lation of atlases encompasses large anatomical variability,
MAS has a greater chance of finding appropriate atlases to

Figure 1. Overview of our method. Training: TR1) computation
of Dice ratio (DR) between segmented atlases, TR2) computation
of pairwise features from key regions between each pair of atlases,
and TR3) learning of relationships between pairwise features and
ground truth DR. Testing: TS1) linear alignment of target image
to the common space, TS2) computation of pairwise features be-
tween target image and all the atlases, TS3) prediction of the seg-
mentation performance using the learned model and, TS4) selec-
tion of atlases with the highest scores to be used for multi-atlas
segmentation.

label an underlying target image than single atlas-based seg-
mentation. To this end, selection of the best atlases that con-
tribute to achieve high segmentation performance is critical
before applying any state-of-the-art MAS method.

Most common approaches for atlas selection are based
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on image similarity measurements such as sum of squared
differences (SSD) or normalized mutual information (NMI)
[1]. More advanced methods use the distance in the mani-
fold, instead of in the Euclidean space [13, 5]. The draw-
back of these methods is that they are driven by image simi-
larity which is not necessarily correlated with final segmen-
tation accuracy. More critically, many of them require the
images to be non-rigidly registered in order to compute their
distance, which is computationally demanding.

In order to overcome these limitations, we propose a su-
pervised learning approach to model the relationships be-
tween a pair of images (i.e. atlas and target images) and the
relevance of their contribution to segmentation. Figure 1
shows an overview of the approach. As input, our method
receives a set of atlases linearly aligned to a common space,
e.g., a template image. In the training stage, we first com-
pute the relevance score between each pair of atlases, using
one of the atlas as the target image and the other as the at-
las. We define the relevance score as the Dice ratio (DR)
obtained by using the atlas image to segment the target im-
age (TR1 in Figure 1). Next, we identify a number of key re-
gions in the entire image domain, in order to obtain efficient
representations (TR2.a). Then, we extract HOG features [4]
to describe the anatomical characteristics in these key re-
gions and compute their squared differences in order to get
the pairwise features between each pair of images (TR2.b).
After that, we employ SVM-Rank [8] to learn the latent re-
lationship between the pairwise HOG features and the rel-
evance segmentation score (TR3). In the testing stage, we
first linearly align the to-be-segmented target image to the
atlas domain (TS1). Next, we extract selected HOG features
from the key regions and compute the pairwise feature vec-
tors between the target image and each atlas (TS2). Finally,
we evaluate their eventual segmentation performance using
the learned SVM-Rank model (TS3) and select the best at-
lases to be used for MAS according to the predicted scores
(TS4).

As opposed to heuristics such as image similarity, se-
lection by our method is directly related to the segmen-
tation performance. Our learning-based atlas selection
method can boost the performance of current state-of-the-
art MAS methods. As we show in the experiments, signifi-
cant improvement is achieved on ANDI and LONI LPBA40
datasets, after we equip the majority voting [10], local
weighted voting [2], and non-local patch-based MAS [11]
methods with our atlas selection approach.

The overview of the paper is as follows: in Section 2 we
describe the proposed method, in Section 3 we detail exper-
imental evaluation and present the results, and in Section 4
we give some concluding remarks.

2. Method
Consider a set of atlases composed of intensity images

A = {Ai, i ∈ I} with I = {1, . . . , N} as index set, and
their corresponding label images L = {Li, i ∈ I} obtained
by expert annotation. We assume that all atlases have been
linearly aligned to a common space, e.g., a template image.
For each voxel in the atlas domain x ∈ Ωi, Ai (x) indicates
the intensity value at location x, and label Li (x) ∈ {0, 1}
indicates whether the structure of interest is present at lo-
cation x or not. As we will explain later, our method is
straightforward to apply to the case of multiple labels.

Given a target image T , multiple-atlas segmentation
aims to locate the anatomical structure in the target image
by transferring the label information from the atlases to the
target image domain. It consists of two steps: First, spa-
tial correspondence between atlases and target image is ob-
tained by non-rigid registration. In this way, we obtain a
set of registered atlases Ã =

{
Ãi, i ∈ I

}
and their label

images L̃ =
{
L̃i, i ∈ I

}
. Next, a label fusion procedure is

often used to determine the label on each target image point
based on the label information from the registered atlases
L̃. Many label fusion strategies have been developed. To
name a few, majority voting (MV) [10] assigns to each tar-
get voxel the label that most frequently appears among the
corresponding atlas voxels. Local weighted voting (LWV)
[2] weights the contribution of each atlas according to the
image patch similarity. Non-local weighted voting (NLWV)
[11] introduces the idea of non-local average by performing
neighborhood search for similar patches, which gives some
extra robustness to possible mis-alignments.

Atlas-selection is an important step affecting the accu-
racy of MAS. On one hand, using small subsets of atlases
may produce less accurate segmentations since some rele-
vant information from other atlases may be left out. On the
other hand, using large subsets of atlases may undermine
the segmentation performance because of the high amount
of irrelevant information introduced. Given a target image
T , the most common strategies are to select the K most
similar atlases to T , according to image similarity mea-
surements such as normalized mutual information (NMI)
[1]. Even though similarity-based selection performs sig-
nificantly better than random selection, it is still loosely re-
lated to the final score which is the relevance of an atlas Ai

for segmenting the target image T . Given the target image
T and a set of atlases A and L, the process of MAS can be
represented as

L̂T = MAS (T ;AS ,LS) (1)

where L̂T is the estimated segmentation for target image T ,
and AS , LS , with S ⊆ I , is the subset of selected atlases.

Dice ratio (DR) is widely used to measure the degree of
overlap between the target structure and the deformed atlas



structure. It is defined as

DR
(
LT , L̃i

)
=

2× vol
(
LT ∩ L̃i

)
vol (LT ) + vol

(
L̃i

) (2)

where vol (·) denotes volume. Supposing that we know the
labels for the target image, this scoring function induces a
selection of the best K atlases for target image T , denoted
as S?

T , so that,

DR
(
LT , L̃i

)
> DR

(
LT , L̃j

)
, ∀ i ∈ S?

T , j /∈ S?
T (3)

where the cardinality of the set is equal to K, denoted as
|S?

T | = K. This scoring function presents two problems
to be used for atlas selection in our method: (1) the target
labels LT are unknown, and (2) the deformed atlas labels
to the target space L̃i are also unknown since one of our
goals is to avoid computationally expensive non-rigid regis-
tration before the atlas selection step. Figure 2 demonstrates
the superiority of using DR, rather than NMI, to select the
best atlases for MAS, where black and blue curves show
segmentation performances (assessed by the Dice ratio) by
increasing the number of the best atlases selected by equa-
tion (2) and NMI, respectively. This shows the potentially
large room for improvement of the atlas selection strategy
targeted at equation (2) with respect to the widely used cri-
terion based on simple image similarity.
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Figure 2. Average segmentation accuracy of 66 images using an in-
creasing number of atlases selected by NMI and the ground-truth
DR (equation (2)), respectively. Here we show the results of ap-
plying LWV to segment the left hippocampus in the ADNI dataset.

Our aim is to learn a scoring function f that correlates
pairwise appearance information of a target image and each
unregistered atlas image with segmentation performance in
terms of DR. To make our learning approach tractable, we
use a linear model for mapping the pairwise representation
obtained by the feature extraction process to our final score
f , in the following way

f (T,Ai) = ~w> Φ (T,Ai) (4)

where Φ (·, ·) is the feature vector derived from a pair of
images and ~w is the weighting vector where each element

measures the contribution of a particular pairwise feature in
predicting the segmentation score.

In the next two sections, we describe the process of
learning the weights ~w and compute the pairwise features
Φ(·, ·), respectively.

2.1. Learning the Relationships between Pairwise
Appearance and Segmentation Score

In this section we focus on the computation of the
weights ~w while assuming that we have the pairwise fea-
tures between images (which we will explain in section 2.2).

Consider an atlas in the training set as the target At,
t ∈ I , and the rest as the atlases Ai, i 6= t. According
to equation (3), we focus on the separation between the set
of the best K atlases S?

t and the rest {I \ {S?
t , t}}. That

is, we want to find the weights ~w that fulfill the following
relationships

~w> Φ (At, Ai) > ~w> Φ (At, Aj) , ∀ i ∈ S?
t , j /∈ {S?

t , t}
(5)

It is worth noting that Φ(At, Aj) denotes the features ex-
tracted from a pair of linearly aligned intensity images with-
out applying any non-rigid registration between them. This
type of problem, in which we seek to fulfill certain order
relationships between pairs of elements Ai, Aj with respect
to a given reference At, is known as learning to rank and
there exist several algorithms in the literature aimed at solv-
ing it. We use SVM-Rank1 [8] because it has superior per-
formance than other methods [3]. To this end, we com-
pute a set of constraints for each target At, constraining
the pairs of atlases Ai, Aj so that the i-th atlas should be
ranked higher than the j-th atlas according to ground-truth
DR. Consider S?

t as the ground-truth selection of the bestK
atlases for target At, as defined in equation (3). The set of
constraints for targetAt according to ground-truth selection
is now defined as follows,

r?t =
{

(i, j) | ∀i ∈ S?
t , ∀j /∈ {S?

t , t}
}

(6)

where (i, j) ∈ r?t means that the i-th atlas should be ranked
higher than the j-th atlas for the segmentation of target At.
Using SVM-Rank, we pose this problem as a constrained
optimization problem in which we aim to find the weights ~w
that maximize the margin between the scores of the relevant
and non-relevant atlases. More specifically,

minimize :
1

2
‖~w‖2 + η

∑
ξt,i,j

subject to :

∀t ∀ (i, j) ∈ r?t :

~w> Φ (At, Ai) ≥ ~w> Φ (At, Aj) + 1− ξt,i,j
∀t ∀i ∀j : ξt,i,j ≥ 0 (7)

1we use http://olivier.chapelle.cc/primal/



where the objective function represents a trade-off between
a regularization term and margin size, controlled by the pa-
rameter η; and the margin is dynamically set to 1 − ξt,i,j
where ξt,i,j is the slack variable controlling the amount of
margin violation regarding each triplet At, Ai, Aj .

As part of the training process, we need to perform
(N − 1)

2 pairwise non-rigid registrations between the at-
lases in order to compute the constraints of equation (6).

2.2. Pairwise Feature Computation

As mentioned in equation 4, our relevance score f is
a function of the pairwise representation features between
a target T and an atlas Ai. In order to find the compact
and accurate representation to describe the connection be-
tween T and Ai, the calculation of Φ (T,Ai) consists of
three steps, namely, (1) key region detection, (2) pairwise
HOG computation, and (3) feature selection, as detailed be-
low. It is worth noting that we compute the pairwise features
only after linear registration, both in the training and testing
stages. However, the Dice ratio in the training stage (sec
2.1) is computed based on the non-rigid registration results,
which essentially reflect the goal of our approach which is
to predict the segmentation score based only on the rigid
registration results.

Key Region Detection: In MAS, the segmentation la-
bel at each target point is decided based on the labels of
the aligned atlases at that point. Regions with high label
variability, such as label boundaries, are the source of most
variability in segmentation results. Therefore, we use the
appearance in these regions as cues to predict segmentation
performance. Since we already know the label information
in the training set, we can obtain the set of boundary lo-
cations B (Li) ⊂ Ωi, from label image Li. We define the
set of sensible locations as the union of boundary locations
in all the training set, B =

⋃
iB (Li). Figure 3 shows an

example structure, its boundary and the union of the bound-
aries from all pre-registered atlases.

Pairwise HOG Computation: We use HOG features
to obtain the appearance descriptors of the key regions, al-
though other features can also be applied here. HOG com-
putes a bi-dimensional histogram of gradient occurrences
along spatial and orientation bins. Spatial bins constitute a
division of the image into a grid of 3D cells (since we use
3D images) whereas orientation bins constitute a division of
the orientation range (1 . . . 360) into intervals. Discretiza-
tion into bins provides robustness to both displacement and
orientation errors after linear alignment. We construct a fea-
ture vector ~θ summarizing the HOG values at bins within a
distance ρ of the nearest boundary point in B. We use the
locations of the bin centers in order to compute the distance
to the boundary region. Overlaid on the intensity image,
Figure 3.(d) shows centers of the selected bins.

After this process, for each individual image, we ob-

(a) Structure of one atlas (b) Boundary of one atlas

(c) Union of boundaries across
all atlases

(d) Location for computing
HOG features within the
boundary region

Figure 3. (a) Frontal gyrus from one exemplar, (b) its boundary,
(c) the union of the boundaries from the linearly aligned atlases,
and (d) centers of the selected HOG spatial bins in the boundary
region.

tain a vector ~θ containing a number M of selected HOG
features in the boundary region. We use the squared dif-
ference between the features from the individual images
in order to compute the pool of pairwise features between
each atlas and a target image, as follows: Θt,i (j) =(
~θt (j)− ~θi (j)

)2
, where j denotes the j-th feature and t, i

denote the indices of the target and atlas images, At, Ai, re-
spectively. In the following, we describe how to select the
final set of compact features Φ (At, Ai) that will be used
both for training and testing.

Feature Selection: In order to select a compact set
of features, we sort the pool of features Θ according
to the maximum-relevance minimum-redundancy criterion
(MRmR) [9]. This criterion encourages the selection of fea-
tures that are highly correlated with the target score while
maintaining a low redundancy. After sorting, we obtain a
sequence F1 ⊂ F2 ⊂ . . . Fm . . . ⊂ FM−1 ⊂ FM , such that
Fm contains the indexes of the best m features according
to MRmR. Suppose we already know Fm−1. The m-th fea-
ture to be added to Fm−1 in order to create Fm is decided



according to the following formula:

max
j /∈Fm−1

(
Rel (Θ (j) ,Ψ)−

1

m− 1

∑
k∈Fm−1

Red (Θ (j) ,Θ (k))

)
(8)

where Θ (j) = [Θt,i (j) ,∀t, i] is a vector composed of
the j-th pairwise feature from all target-atlas pairs, and
Ψ =

[
DR(Lt,L̃i),∀t,i

]
is a vector of ground-truth DR be-

tween all target-atlas pairs. As relevance function Rel (·),
we use the absolute value of the Spearman’s rank correla-
tion coefficient which measures the correlation between the
ranks induced by the features and the ground-truth score.
As redundancy function Red (·), we use the absolute value
of the Pearson correlation coefficient which measures the
correlation between pairs of features. This formula encour-
ages features correlated with the target score and penalizes
features correlated with already chosen features.

We finally select a compact set of m′ features with the
highest MRmR. We found that m′ = 1000 was enough in
our experiments.

3. Experiments and Results
We have conducted experiments in the ADNI2 and

LONI-LPBA403 datasets. ADNI dataset contains the seg-
mentations of the left (L) and right (R) hippocampi, which
have been obtained by a commercial brain mapping tool
[6]. LONI-LPBA40 dataset is provided by the Laboratory
of Neuro Imaging (LONI) at UCLA and contains 40 brain
images, each with 56 manually-labeled ROIs. We regard
these segmentations as the ground truth.

We use FLIRT [7] in order to linearly align all atlases to a
template image prior to feature extraction. We use non-rigid
registration by diffeomorphic demons [12] both for MAS
and ground-truth DR computation. We apply the following
label fusion methods: MV, LWV and NLWV.

We compare selection by our method (HOG+SVMRank)
to selection by NMI. As baseline method, we use the neg-
ative sum of squared differences of the raw HOG fea-
tures, Θ (HOG). This is represented by the scoring function

f (T,Ai) = −
∑

j

(
~θT (j)− ~θAi

(j)
)2

, where ~θT and ~θAi

are the pool of M HOG features within the boundary re-
gions obtained from target image T and atlas image Ai, re-
spectively. This corresponds to the similarity measurement
originally used between HOG descriptors. All the meth-
ods have been applied to each structure independently. For
NMI, we have used a rectangular image region containing
the structure of interest. We conduct 5-fold cross-validation
experiments in all the methods.

2http://www.adni-info.org/
3http://www.loni.ucla.edu/Atlases/LPBA40

3.1. Parameter Setting

HOG features have two parameters, namely, the num-
ber of orientation bins O and cell size C (in voxels) of the
spatial bins. We have found our method not to be very sen-
sitive to the values of these parameters. Due to different
sizes of the structures, setting these parameters to a fixed
value may cause larger structures to generate an unneces-
sarily high number of features. In order to trim the number
of features to a manageable size, we adaptively fix the HOG
parameters C,O in order to get a reasonable number of fea-
tures M = 104. Specifically, we start with initial values
C = 5, O = 9 and and iteratively augment the cell size C
and decrease number of orientation bins O until the number
of features is less thanM . We set ρ = 0, thus selecting only
features within the boundary region.

3.2. ADNI Results

For the ADNI dataset, we use 66 randomly selected
individuals containing the segmentations of the left and
right hippocampus in order to test the segmentation ac-
curacy of different atlas selection methods. The atlas se-
lection methods compared include: NMI-based method,
the baseline method (HOG), and our proposed method
(HOG+SVMRank). Segmentation accuracy is assessed by
the Dice ratio. Figures 4, 5 and 6 show the average seg-
mentation results in both hippocampi obtained by different
selection methods using the label fusion methods MV, LWV
and NLWV, respectively. Vertical axis shows the segmenta-
tion accuracy averaged over all queries in the 5 folds, and
horizontal axis shows the number of atlases used.
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Figure 4. Label fusion with majority voting

0 5 10 15 20 25 30 35 40 45 50
0.73

0.74

0.75

0.76

0.77

0.78

0.79

0.8

0.81

Number of atlases K

A
v
e
ra

g
e
 D

ic
e
 r

a
ti
o

Hippocampus − Local weighted voting

 

 

NMI

HOG

HOG+SVMRank

Figure 5. Label fusion with local weighted voting
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Figure 6. Label fusion with non-local weighted voting

Regarding the different atlas selection methods, best re-
sults by our method are ∼ 2% better than best results by
NMI for MV label fusion and ∼ 1% for both LWV and
NLWV label fusions. Best results for NMI selection in all
the label fusion modalities are achieved when usingK ' 25
best atlases. Comparable results by our method are obtained
using as few as K ' 7 best atlases, thus representing a con-
siderable save in computation time on deploying both non-
rigid image registration and label fusion.

Results of the baseline method (green curves in Figures
4-6) clearly demonstrate that: (1) HOG features are more
useful than image intensity in selecting the best atlases; and
(2) our learning procedure for atlas selection can substan-
tially improve the segmentation results by providing atlases
which are more correlated with segmentation performance.

It is worth mentioning the decrease in performance ex-
perienced by MV after selecting a few best atlases. This
is because, contrarily to other methods, in MV all atlases
have the same importance for predicting the final label.
This causes a negative impact as less significant atlases are
progressively added after a few best atlases. On the other
hand, weighted voting methods use patch similarity mea-
surements in order to filter out poor contributions. Their
behavior when using large number of atlases depends on
their internal parameters and the number of atlases used,
but their performance is more stable than MV.

In order to demonstrate that our scoring function targeted
at the ground-truth Dice ratio generalizes well to other per-
formance measurements, we compute the average surface
distance errors (in mm) by the different atlas selection meth-
ods when using K = 23 atlases to segment the left and
right hippocampi. The average surface distance errors ob-
tained by HOG+SVMRank vs NMI are 0.4084 vs. 0.4693
(MV) ; 0.3728 vs. 0.4036 (LWV) ; and 0.3608 vs. 0.3819
(NLWV), respectively.

3.3. LONI Results

The LONI dataset contains 40 subjects with 56 manu-
ally labeled structures. We use the subset of L and R struc-
tures located in the cortical area in order to test different
atlas selection methods. The structures used are: frontal
gyrus, pre-central gyrus, orbitofrontal gyrus, post-central

gyrus, parietal gyrus, occipital gyrus, temporal gyrus and
parahippocampal gyrus.

Figures 7, 8 and 9 show the average DR obtained when
selecting 25% of the best atlases, i.e.,K = 7, for MV, LWV
and NLWV label fusions, respectively. Each figure shows
the results for the left (L) and right (R) parts of the struc-
tures. The average improvement of the proposed method
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Figure 7. Label fusion with majority voting

L Frnt L Precntr L Orbfrnt L Postcntr L Pariet L Occip L Temp L Parahip
0.65

0.7

0.75

0.8

0.85

A
v
e

ra
g

e
 D

ic
e

 r
a

ti
o

Avg. improvement: 1.43%

 

 

NMI

HoG

HOG+SVMRank

R Frnt R Precntr R Orbfrnt R Postcntr R Pariet R Occip R Temp R Parahip

0.65

0.7

0.75

0.8

0.85

A
v
e

ra
g

e
 D

ic
e

 r
a

ti
o

Avg. improvement: 1.58%

 

 

NMI

HoG

HOG+SVMRank

Figure 8. Label fusion with local weighted voting

with respect to NMI for K = 7 are ∼ 1.1%, ∼ 1.5% and
∼ 1.2% for MV, LWV and NLWV label fusion, respec-
tively. A circle and a triangle on top of each method’s bar
represents significant improvement, according to a paired
t-test, with respect to NMI or the baseline method. Our
method obtained significant improvements with respect to
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Figure 9. Label fusion with non-local weighted voting

NMI in 9, 11 and 10 out of the 16 structures for MV, LWV
and NLWV label fusions, respectively. This compares fa-
vorably to the baseline method which only obtains signif-
icant improvement with respect to NMI in 2, 4 and 3 out
of the 16 structures for MV, LWV and NLWV label fu-
sions, respectively. The most significant improvement of
our method with respect to the others has been obtained in
the orbitofrontal, occipital and temporal gyri. In the pre-
central and postcentral gyri, the baseline method obtains
similar results to the proposed method, suggesting that the
learning part is not having any impact. In the parietal gyrus,
however, neither the baseline or the proposed method gets
any improvement with respect to NMI.

Confirming what we observed in ADNI, the baseline
method obtains intermediate results between NMI and the
proposed method. Regarding the computational saving, the
average proportion of atlases needed by our method in order
to meet the best results by NMI are 40%, 64% and 42% for
MV, LWV and NLWV label fusion, respectively.

4. Conclusion
We have presented a method aimed at selecting relevant

atlases for multiple atlas segmentation. Our relevance score
is related to the expected Dice ratio after non-rigid registra-
tion of an atlas and a target image. This measure is more
related to segmentation accuracy than simple image sim-
ilarity. We use a learning-based method in order to map
the image features before non-rigid registration to our rel-
evance score. In this way, we avoid the need for using the
costly non-rigid registration prior to the selection step. Our
method presents improvements with respect to NMI-based
selection of ∼ 2% for MV label fusion and ∼ 1% for LWV
and NLWV label fusions. Our method obtained significant

improvement with respect to the NMI-based method in 11
and 10 out of the 16 structures from LONI, for LWV and
NLWV label fusions, respectively. Selection by our method
requires a third part of the atlases required by the NMI-
based method in order to meet its best results. This con-
siderably reduces the computational time required.
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