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Abstract

We propose a unified framework DISCOVER to simul-
taneously discover important segments, classify high-level
events and generate recounting for large amounts of un-
constrained web videos. The motivation is our observation
that many video events are characterized by certain impor-
tant segments. Our goal is to find the important segments
and capture their information for event classification and
recounting. We introduce an evidence localization model
where evidence locations are modeled as latent variables.
We impose constraints on global video appearance, local
evidence appearance and the temporal structure of the ev-
idence. The model is learned via a max-margin framework
and allows efficient inference. Our method does not require
annotating sources of evidence, and is jointly optimized for
event classification and recounting. Experimental results
are shown on the challenging TRECVID 2013 MEDTest
dataset.

1. Introduction

We are in an era when shooting and sharing videos
has never been easier. There are large amounts of uncon-
strained amateur videos which contain rich information but
are poorly labeled. It is therefore important to build sys-
tems for video understanding and automatic video tagging.
This paper focuses on the problem of high-level event clas-
sification and recounting for web videos. Given a query
video, our framework provides not only a high level event
label (e.g. a wedding ceremony), but also video segments
which are important positive evidence and their textual de-
scriptions (e.g. people hugging). The task is challenging
for several reasons: Videos are shot by amateur users and
are rather unstructured; the possibility of unobserved irrele-
vant video segments is high for query videos, adding noises
for event classification. Due to the same reason, positive
evidence can appear anywhere in the video, it is difficult

Figure 1. (Top) Randomly selected snapshots from a making sand-
wich video. (Bottom) Snapshots selected from the middle of each
evidence clip identified by our framework from the same video.

to locate it by simple rules or a rigid temporal model. As
an example, in a flash mob video, dancing, marching and
people cheering can happen in different orders in an urban
scene.

Although there has been active research on event clas-
sification and recounting recently, the above challenges are
not fully addressed. Low-level frameworks [9, 25] represent
videos by spatio-temporally pooled feature vectors, requir-
ing well aligned videos as the structure of spatio-temporal
pyramids is rigid. [11, 20, 22] divide videos into clips uni-
formly to model the temporal structures within videos, they
assume implicitly that videos are well cropped so that re-
gions of interest are adjacent. [3] and [12] apply object and
action detectors to generate video-level recounting. These
methods do not explicitly identify regions of positive evi-
dence for a specific event. This motivates us to discover
important segments, classify high-level events and generate
recounting jointly in a unified framework DISCOVER.

The underlying observation of DISCOVER is that the
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presence of high level event in videos is determined by the
presence of positive evidence for that event. A positive evi-
dence is characterized by a template of primitive actions and
objects in a relatively short period of time. For example, hu-
mans can easily identify a making a sandwich video by the
presence of sandwich, pan and hand movement within tens
of frames, as shown in Figure 1.

The framework starts with primitive action based video
representation with timestamps. It is obtained by segment-
ing videos into short clips and applying pre-trained primi-
tive action classifiers to each clip. The presence of an event
is determined by: (1) Global video representation, gener-
ated by pooling visual features over the entire video, (2)
the presence of several pieces of different positive evidence
which are consistent over time. We introduce an evidence
localization model (ELM) which has a global template and
a set of local evidence templates. ELM uses a compact ac-
tion transition representation motivated by [20] to impose
temporal consistency for adjacent pieces of evidence. The
constraint is suitable for the usually diverse temporal struc-
tures of unconstrained web videos.

Inference in ELM is done by finding the best evidence
locations which match the evidence templates well, and are
consistent over time. It can be solved efficiently by dynamic
programming. Once the pieces of evidence are located, we
use the top weighted primitive actions as the descriptors for
each evidence. ELM’s parameters are learned via a max-
margin framework described in [26]. We treat the locations
of positive evidence as latent variables. The only supervised
information required is video level event labels. We use
the TRECVID 2013 MEDTest dataset [1] with 24,957 web
videos for evaluation.

In summary, the main contributions of this paper are two
fold: First, we propose a framework to jointly classify high
level events, locate positive evidence and generate descrip-
tions for unconstrained web videos; the method is efficient
for large datasets during training and inference. Second, we
show that our framework outperforms state-of-the-art meth-
ods on a challenging dataset, which confirms the validity
of discovering positive evidence for event classification and
recounting tasks.

2. Related Work
Most existing work on web video event classification ad-

dresses the problem without identification of important seg-
ments. In [15], the authors achieved good performance by
careful selection of low level features and coding methods.
It uses SIFT [13] and Dense Trajectories [25] low level vi-
sual features and Fisher Vector coding [16]. Video level
features are aggregated over the entire videos. One obvious
drawback is that each part of the video contributes equally
to the final representation, making it prone to noise. More-
over, although spatio-temporal pyramids [9] can be built

during feature aggregation, it requires the subcomponents
of an event to happen in the same order, and be well aligned
over time.

Several approaches try to introduce richer temporal mod-
els. [14] uses a tree structure with anchor positions to re-
ward the presence of motion segments near the correspond-
ing anchor positions. [22] uses variable-duration Hidden
Markov Model to model a video event as a sequence of
latent states with various durations. Video representations
in the above approaches consist of low level features. [6]
and [20] use actom or action concept as a mid-level rep-
resentation and encode their temporal constraints. These
approaches suffer from at least one of the following prob-
lems: (1) Temporal constraint is too rigid, (2) assumption
that all segments are informative, (3) hard to locate positive
evidence.

To find the discriminative parts of videos, [24] learns
kernelized latent SVMs with no temporal constraints. [17]
uses a simple algorithm to evaluate the quality of a possi-
ble cropping using other uncropped training data, the goal
is to filter irrelevant segments from training dataset. [10]
employs a dynamic pooling procedure by selecting infor-
mative regions for pooling low level features. These ap-
proaches ignore temporal structures which are important to
event understanding.

For video description and event recounting, [7] uses cap-
tions as weak labels to learn an AND-OR graph based sto-
ryline. However, captions are usually not available for un-
constrained web videos. [2] applies object tracks and body-
postures to sentence generation; compared with our dataset,
the dataset they use contains only a few objects and no cam-
era motion. [3] assumes event classification is done and
mines the co-occurrence of objects and bag of low level fea-
tures.

3. Model

Our model consists of a global template, a set of local
evidence templates and a temporal transition constraint
of evidence set. Given a video, we find the sequence of
video segments which achieve best overall score in match-
ing the evidence templates and meeting the temporal con-
straints. An event label is assigned based on the global fea-
ture of a video, as well as features from the selected pieces
of evidence. An illustration is given in Figure 2.

Our model is related to the Deformable Part-based
Model (DPM) [5] in the sense that they both try to find
discriminative components from query data. However, our
model is motivated by locating pieces of positive evidence
for event classification and recounting, thus the representa-
tion and constraints are different.



Figure 2. (Middle) A typical birthday party video from the dataset, some of the video clips are irrelevant to the event. (Bottom) Each clip
has a vector of primitive action classifier responses, where the highest scoring ones are listed. Primitive actions in red have high weights
in evidence templates. (Top) Two configurations of evidence locations. The green one scores higher than the red one, as transition from
eating cake to blowing candle is highly unlikely.

3.1. Video Representation

Videos are represented by a set of primitive action re-
sponses with timestamps.

Given an input video V , we first divide it into a sequence
of short clips [S1 S2 ... Sn]. This can be done by a sliding
window with uniform size, or by shot boundary detection.
We then apply a set of pre-trained action classifiers, where
each action classifier maps a video clip to a confidence score
on how likely the action appears in the clip, given by

cji = fi(Sj) (1)

This representation can be easily extended to objects,
which are image or patch based, by pooling classifier out-
puts sampled from Sj .

Once this step is finished, video V is represented by a
matrix C = [cj,i]. The j-th row of the matrix gives a com-
plete action based description for Sj .

It is reasonable to expect that to generate meaning-
ful video descriptions, certain action types are necessary.
Meanwhile, action classifiers can also be seen as nonlin-
ear projections of original feature space, which provide dis-
criminative information for classification [23, 20]. In this
paper, we use action annotations from training videos as
well as independent dataset. Some of the actions are not re-
lated to high level events. A wide range of object and scene
types can also be used, but not addressed in this paper.

3.2. Evidence Localization Model

ELM’s evidence templates are learned and used for evi-
dence localization from query videos. For example, vehicle
moving, people dancing and people marching are all related
to the parade event and may be expected to appear in differ-
ent videos. Meanwhile, if a video contains people dancing

and people marching, it is highly likely to be a parade event.
These two primitive actions should have high weights in
their corresponding evidence templates. However, in prac-
tice the locations of segments providing evidence are usu-
ally not available for training. We address this problem by
treating the locations as latent variables, and define the scor-
ing function

fw(C) = max
z∈Z

[fr(C) + fp(C, z) + ft(C, z)] (2)

where C is action response matrix of a video, each row of C
corresponds to a video segment, Z is the set of all possible
configurations of evidence locations. f(C) can be decom-
posed into the following terms

Global score fr(C) measures event similarity based on
global video features. This can be done by extracting statis-
tics information from all clips of a video. For example, one
can use average pooling technique

hr(C) =
1

N

N∑
i=1

Ci

where N is the number of rows in C and Ci is the i-th row
of C.

Global term can then be expanded to

fr(C) = wr
ᵀhr(C) (3)

parameterized by global template wr.
Local evidence score fp(C, z) measures how the located

pieces of evidence matches evidence templates. Denote zi
as the clip index of i-th evidence template, and T as the total
number of evidence templates in evidence set, we have

fp(C, z) =

T∑
i=1

wp,i
ᵀCzi (4)



The vector wp,i can be seen as an evidence template con-
taining the desired action responses. If action classifiers are
perfect, wp,i should be sparse as only a small subset of ac-
tions should appear in an evidence. However, since the cur-
rent state-of-the-art action classifiers are far from perfect,
we decide not to impose sparsity constraint on wp.

Temporal consistency score ft(C, z) evaluates the va-
lidity of the selected pieces of evidence over time. Consid-
ering an ideal scenario for getting vehicle unstuck event, it is
obvious that pushing vehicle should happen before vehicle
moving.

In this paper, we use the Hidden Markov Model Fisher
Vector (HMMFV) [20] to model temporal consistency. The
basic idea is to encode the action transitions with the Fisher
kernel technique. Given a trained HMM parameterized by
Θ, and a collection of action response data C from clips of
a video, each dimension ϕi,j(C) corresponds to the partial
derivative of the log-likelihood function logP (C|Θ) over
transition parameter θi,j , given by

ϕi,j(C) =

N∑
t=1

αt−1(j) [ct,iβt(i)− βt−1(j)] (5)

where N is the number of clips, ct,i is the emission prob-
ability of action i at clip t, i and j are action types. αt(i)
is the probability of observing first t clips and the t-th clip
belongs to i-th primitive action, and βt(i) is the probability
of observing clips from the (t + 1)-th to the end given the
t-th clip belongs to the i-th primitive action. αs and βs can
be computed efficiently via dynamic programming.

Assuming the positions of evidence z are sorted in tem-
poral order [zt1 ... ztT ], and a uniform prior distribution for
all actions, we have

ft(C, z) =

T−1∑
i=1

wt
ᵀϕ([Czti ; Czti+1

]) (6)

which measures the compatibility of all adjacent pairs of
evidence.

3.3. Compact Temporal Constraint

One potential problem of the above temporal constraint
is that the dimension ofϕ grows quadratically with the num-
ber of actions, which makes it computationally infeasible to
support a large vocabulary. We use the following guide-
line to select a subset of actions: considering evidence tem-
plates wp,i (i = 1, ..., T ), higher values in wp,i reflect the
dimensions that are important components for the evidence
template. We therefore select a subset of actions by taking
the average of wp,i (i = 1, ..., T ), and picking the actions
corresponding to D dimensions with highest values.

Our temporal constraint is flexible and data-driven: by
learning the parameter vector wt from training data, it can

be used for both evidence sets with more rigid structures as
well as those with no clear temporal orders.

4. Inference
Inference involves solving Equation 2 by finding the as-

signment of latent variables z which maximizes fw(C). We
rewrite Equation 2 into

fw(C) = ψ1(C) + max
z∈Z

gw(C, z) (7)

where

gw(C, z) =

T∑
i=1

ψ2(C, zi, ti) +

T−1∑
i=1

ψ3(C, zi, zi+1)

Here T is the number of evidence templates, zi is the loca-
tion of i-th evidence in temporal order, and ti is the evidence
template index.

The problem now becomes one of selecting T pieces of
evidence sequentially from a set of N video clips where the
choice of the i-th evidence is only affected by the (i− 1)-th
evidence. Let G(i, z, t) be the maximum score by selecting
the first i evidence locations given that the i-th location is z
and its template index is t. We have

G(i, z, t) = max
z′,t′

[G(i− 1, z′, t′) + ψ3(C, z′, z)]

+ ψ2(C, z, t)

The target score is maxz,tG(T, z, t), which can be
solved in O(T 3N2) by dynamic programming. Positive ev-
idence locations can be obtained by backtracking.

In practice, we find retaining top M = 10 candidate ev-
idence locations already provides good performance. This
reduces the time complexity to O(TM2).

5. Learning
Our model is parameterized by global template wr, ev-

idence templates wp, temporal constraint vector wt and
transition parameters of HMM. We first introduce the learn-
ing of the first three vectors w = [wr wp wt], and describe
the last one in Section 5.1.

Given labeled training set {Ci, yi}, yi ∈ {−1, 1}, i =
1, 2, ..., N , we learn the parameters w by max-margin cri-
teria similar to [5] and [26]

min
w,ξ

1

2
‖w‖2 + C

N∑
i=1

ξi (8)

s.t. yifw(C) ≥ 1− ξi, ξi ≥ 0,∀i
ξ is a vector of slack variables, it measures the degree of
misclassification. C is a cost variable which balances the
two terms in target function.

The optimization problem is semi-convex. We use the
quadratic programming based solver proposed in [26].



5.1. Initialization

Since Equation 8 poses a semi-convex problem, initial-
ization plays an important factor in getting a good local op-
timum solution. We determine the number of evidence tem-
plates and the evidence locations in positive training videos,
in the following steps:

1. Select all action response vectors from positive train-
ing data to form a set Dp, and randomly select action re-
sponse vectors from negative training data to form a setDn.

2. Do a K-Means clustering on Dp with a large K (e.g.
200).

3. For each cluster, use entries of Dp from that cluster
as positive set and Dn as negative set to train a linear SVM
classifier. Apply the classifier to all action response vectors
from training set. A video level score is produced by taking
the maximum score of its action response vectors. Compute
the average precision.

4. Pick a cluster with high average precision as an ev-
idence template, given certain criteria are met. Stop if the
maximum evidence template size is reached.

5. For each selected cluster, apply its classifier to each
positive video, select the clip with the highest response as
the evidence location.

We use two criteria for picking evidence templates: min-
imum average precision (minAP) and maximum percentage
of evidence overlap (maxEO). A cluster is picked if the av-
erage precision of its corresponding classifier is higher than
minAP, and the overlapping percentage of its selected ev-
idence locations with previous selected locations is lower
than maxEO.

The intuition behind this initialization method is that if a
classifier trained by positive action responses from a cluster
performs well over the whole dataset, then the correspond-
ing clips are likely to be representative for most of the pos-
itive videos.

After initialization, we use the evidence templates to se-
lect the top actions used for modeling temporal constraint.
A general HMM for selected actions is learned by sampling
training data.

6. Event Recounting
Generating video description for recounting is straight-

forward in our framework. After running the inference al-
gorithm, we have all the evidence locations in a video. A
summary of the video can then be generated by ordering the
evidence temporally. To generate textual descriptions for a
evidence clip, we use actions with top responses weighted
by evidence template. Suppose wp,i = [wi,1 ... wi,D] is the
i-th evidence template, and Cj = [cj,1 ... cj,D] is the action
response vector. We select the top action given by

arg max
k

wi,kcj,k (9)

Another possible strategy for video description is to
learn linear event classifiers from average pooled action re-
sponses. The classifiers can be used as pseudo evidence
templates, one for each event [19]. Compared with ELM,
this global strategy lacks the diversity of having multiple
evidence types per event. We compare these two strategies
in Section 7.3.

7. Experiments
This section describes the dataset we used for evaluation,

as well as evaluation results for classification and recount-
ing tasks.

7.1. Dataset

We used TRECVID 2013 Multimedia Event Detection
dataset [1] for evaluation. The dataset contains uncon-
strained web videos varying in length, quality and resolu-
tion. We chose to evaluate the ten events listed in Table 1.

We used three different partitions: Background, which
contains 4,992 background videos not belonging to any
of the target events; 100EX, which contains 100 positive
videos for each event; MEDTest, which contains 24,957
videos. To train a model for a specific event, we used all
background videos from Background, and positive videos
from 100EX of that event only. Videos in MEDTest were
used for testing.

We used two datasets UCF 101 [18] and MED action an-
notation set [8] to learn primitive action classifiers. UCF
101 has 13,320 videos from 101 categories, the videos are
of similar quality to TRECVID 2013 MED dataset, but
many of the action types are not related to the 10 events.
MED action annotation set has 60 action types annotated
directly on 100 EX videos, the actions are highly related to
events.

7.2. Classification Task

Classification task is to assign a single event label to
each query video. We report our results in average preci-
sion (AP).

To learn primitive action classifiers, we used Dense Tra-
jectories (DT) features [25], and obtained video level repre-
sentations by Fisher Vector coding [21]. LIBLINEAR[4]
was used for SVM classifier training. Action classifiers
were applied to video for every 100 frames, with a 50 frame
step size. We used a two-fold cross validation to select our
framework’s parameters, which includes the cost C and rel-
ative weight of positive and negative samples. For model
initialization, we set the size of candidate clusters to 200,
minAP to 0.1, and maxEO to 20%. We selected top 40
primitive actions for temporal constraints.

Comparison with Baselines. As the overall perfor-
mance is affected by the choice of the global video repre-
sentation, we first trained our evidence localization model



Event name ID Global ELM NT ELM
Birthday party 6 13.6 17.4 17.1

Changing a vehicle tire 7 8.7 13.1 17.7
Flash mob gathering 8 31.2 42.7 57.3

Getting a vehicle unstuck 9 21.9 28.3 25.2
Grooming an animal 10 7.9 11.4 14.9
Making a sandwich 11 5.1 11.4 13.2

Parade 12 26.2 33.8 33.7
Parkour 13 19.4 39.9 43.6

Repairing an appliance 14 4.2 17.0 20.6
Sewing project 15 6.8 17.0 24.2

mean Average Precision (mAP) 14.5 23.2 26.8

Table 1. Average precision comparison among global baseline,
ELM without temporal constraint and the full ELM on MEDTest

ID HMMFV ELM+HMMFV DTFV ELM+DTFV
6 24.2 22.7 19.4 22.0
7 14.7 19.4 17.1 25.2
8 52.9 59.7 55.7 61.5
9 29.6 34.0 35.6 38.1
10 8.9 11.4 12.7 15.3
11 17.1 18.2 15.4 17.1
12 32.6 37.3 33.3 37.8
13 53.5 54.9 55.4 57.1
14 25.7 28.1 37.1 36.2
15 15.0 25.0 19.1 27.9

mAP 27.4 31.1 30.1 33.8

Table 2. Performance gain by incorporating two state-of-the-art
global video representations into our framework

(ELM) without using the global term. We chose global av-
erage pooling of the action responses (Global) as the first
baseline, defined by

h(X) =
1

N

N∑
i=1

Xi

where X is aN byDmatrix,N is the number of total action
response vectors, D is the number of actions. Xi is the i-
th row of X. We used linear kernel SVM, and 5-fold cross
validation to select classifier parameters.

To validate the effectiveness of temporal constraint term,
we also provided results of ELM with no temporal con-
straint (ELM NT). The results are shown in Table 1.

From the table, it is easy to see that ELM has much
higher mean average precision compared with the global
baseline. One possible explanation is that, by locating pos-
itive evidence instead of treating all clips as being equally
important, ELM is more robust against various irrelevant
segments in testing videos. The results also indicate that
the temporal constraint is effective for most of the events.

Working with State-of-the-Art Global Methods. Any
global event classification approach that provides a fixed

length video level feature vector can be incorporated into
our framework as the global term. It is interesting to see
if our evidence based framework can improve these meth-
ods. Recently, [15] showed that using multiple types of low
level features can increase event classification performance.
It is then important to fix the low level features to compare
different frameworks.

We chose two different state-of-the-art approaches fol-
lowing this rule. The first one uses an action transition
based representation called HMMFV [20]. It accumulates
action transition statistics over the entire video. We used
the same set of pre-trained action classifiers as those used
in our approach. We refer to this method as HMMFV.

We also implemented a low-level based framework
based on Dense Trajectories. The features were extracted
at step size of 10. We used Fisher Vector with both first and
second order terms, and followed the suggestions in [21] to
apply power normalization and l2-normalization to the fea-
ture vectors. We used PCA to reduce the dimension of DT
features to 128, and used a codebook size of 64. We refer to
this method as DTFV.

Both methods used a linear SVM classifier, the parame-
ters were selected by 5-fold cross validation. The two global
approaches as well as our ELM method were all based on
DT features alone.

According to Table 2, by discovering evidence from
videos, ELM achieves significant and consistent improve-
ment over HMMFV and DTFV.

7.3. Recounting Task

In TRECVID Multimedia Event Recounting (MER)
task, a video description is defined as a video snippet with
a starting frame, an ending frame and a textual description.
We used the ELM framework to obtain such snippets, and
compared it with the global strategy described in Section
6. The number of snippets selected per video was fixed to
ELM’s evidence set size T = 2 for both strategies.

The evaluation of video recounting results is difficult, as
there is no groundtruth information for which snippets are
correct; to the best of our knowledge, there is also little pre-
vious work to compare with. We conducted an experiment
based on human evaluation. Eight volunteers were asked to
serve as evaluators. Before evaluation, each evaluator was
shown the event category descriptions in text, as well as one
or two positive examples in the training set. For each event,
10 positive videos were picked randomly from MEDTest.
However, we informed evaluators that negative videos may
also appear to avoid biased prior information. Evaluators
were first presented with snippets generated by ELM to as-
sign event labels, and then presented with snippets gener-
ated by the global strategy from the same video to compare
which snippets are more informative and whose descrip-
tions of the snippets are more accurate. Two criteria were



Average video length 172.9 seconds
Average snippet length 7.1 seconds

Ratio 4.1%
Average Accuracy 86.3%

Table 3. The ratio of our method’s average snippet length over av-
erage video length, and the average accuracy of labels from evalu-
ators

Event Better Similar Worse
Birthday party 4 4 2

Changing a vehicle tire 7 0 3
Flash mob gathering 5 1 4

Getting a vehicle unstuck 3 5 2
Grooming an animal 8 0 2
Making an sandwich 6 0 4

Parade 5 2 3
Parkour 4 0 6

Repairing an appliance 8 0 2
Sewing project 3 5 2

Total 53 33 14

Table 4. Evaluators’ comparison of ELM over global strategy. As-
signments of better, similar and worse were aggregated via aver-
age

used: average accuracy, which measures the percentage of
correctly labeled snippets; and relative performance, count-
ing evaluators’ preference of video-level recounting results
generated by the two approaches.

Table 3 shows the average length of videos and snippets,
as well as average accuracy. ELM achieves 86.3% aver-
age accuracy by selecting only 4% of frames in the original
videos. This shows that our approach provides reasonable
good snippets for users to rapidly and accurately grasp the
basic idea of video events.

Table 4 summarizes the evaluators’ preferences between
ELM and the global strategy for each event. It can be
seen that ELM is better for most of the events. Several
recounting results are shown in Figure 3, where snippets
generated by ELM are on the left. Among the three ex-
amples, our flash mob gathering snippets provide more di-
verse but also related information. Global strategy failed
to assign proper description to the repairing an appliance
video, where hands are not present in the selected snippets.
The bottom row is an example of making a sandwich video
where ELM’s output is worse.

Most of the selected actions for description came from
the MED action annotation set. This indicates the benefit of
using event related actions to build the vocabulary.

8. Conclusion
This paper proposes the DISCOVER framework for

video event classification and recounting. It classifies un-
constrained web videos by discovering important segments
characterized by primitive actions and their transitions.
DISCOVER allows efficient learning and inference, and is
generalizable to using objects and scenes. Experimental re-
sults show that it outperforms current state-of-the-art clas-
sification methods on a challenging large scale dataset. For
event recounting, DISCOVER locates important segments
which is seldom addressed in previous work. It also has the
potential of event detection, it is a topic to be explored in
future work.
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