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Abstract

In this paper, we propose an unsupervised framework
for action spotting in videos that does not depend on
any specific feature (e.g. HOG/HOF, STIP, silhouette,
bag-of-words, etc.). Furthermore, our solution requires no
human localization, segmentation, or framewise tracking.
This is achieved by treating the problem holistically as
that of extracting the internal dynamics of video cuboids
by modeling them in their natural form as multilinear
tensors. To extract their internal dynamics, we devised
a novel Two-Phase Decomposition (TP-Decomp) of a
tensor that generates very compact and discriminative
representations that are robust to even heavily perturbed
data. Technically, a Rank-based Tensor Core Pyramid
(Rank-TCP) descriptor is generated by combining multiple
tensor cores under multiple ranks, allowing to represent
video cuboids in a hierarchical tensor pyramid. The
problem then reduces to a template matching problem,
which is solved efficiently by using two boosting strategies:
(1) to reduce search space, we filter the dense trajectory
cloud extracted from the target video; (2) to boost the
matching speed, we perform matching in an iterative
coarse-to-fine manner. Experiments on 5 benchmarks
show that our method outperforms current state-of-the-art
under various challenging conditions. We also created a
challenging dataset called Heavily Perturbed Video Array
(HPVA) to validate the robustness of our framework under
heavily perturbed situations.

1. Introduction
The aim of action spotting is to spatiotemporally detect

and localize a given query action within a larger search

video. The intra-class variance and scene clutter make

action spotting difficult. Some previous works combine

tracking and classification for action localization, or
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treat action spotting and recognition in a joint manner

[7, 16]. In terms of feature dependency, we observe

several drawbacks hindering the performance of existing

techniques. For example, tracking-based methods [1, 9]

must track multiple body parts or joints and classify

actions based on stable motion trajectories. But the

tracker initialization and its robustness often impede a fully

automatic operation, and manual intervention is therefore

inevitable. Contour/silhouette based methods [12, 20]

seek to extract features from the 3D space-time body

shape. But it is often hard to perform robust segmentation

for complex videos. For optical flow-based methods

[2, 10], the dense flow estimates are unreliable when the

scene is under camera motion, such as zooming, pan,

or translation. Space-time interest points based methods

[8, 21] are usually adopted to construct global bag-of-words

descriptors. Although showing merits, they may fail

to detect interest points within shadows, along object

occluding boundaries, or in highly dynamic clutters.

A natural way to represent a video is to holistically

encode its internal dynamics in a three-way tensorial form,

rather than commonly-used vectorization. The multilinear

tensor analysis, subsuming conventional linear analysis as a

special case, emerges as a unifying powerful mathematical

framework suitable for addressing problems in many fields

[26]. In computer vision, the past decades witnessed many

successful applications in areas such as face recognition

[26], action recognition [25], action categorization and

detection [15], etc.

Our motivation is to spot actions in a data-driven manner

without relying on commonly-used features, aiming to

avoid the problems pointed out above. In a nutshell,

we treat all video cubiods involved as three-way tensors.

We propose a new multilinear tensor decomposition called

Two-Phase Decomposition (TP-Decomp) tailored for action

spotting, by combining the Tucker decomposition with

CANDECOMP/PARAFAC (CP for short) decomposition

[17] in a natural yet effective way. We then

establish a Rank-based Tensor Core Pyramid (Rank-TCP)



descriptor using multiple tensor cores under multiple ranks,

which is basically a new tensor-based hierarchical video

representation. At the final template matching stage, we

adopt two effective boosting strategies that requires no

human localization, segmentation, or frame-wise tracking.

2. Two-Phase Decomposition (TP-Decomp)
The Tucker and CP decomposition are two powerful

techniques that decompose tensors onto modes [17].

However, they have very different characteristics1, and

have been mostly treated as two distinct algorithms

independently applied to various fields [3, 22, 26].

We establish a procedure called TP-Decomp that

combines these two powerful techniques in a natural yet

very effective way. Its resulting vectors shows remarkably

good performance in terms of robustness and discriminative

ability.

2.1. TP-Decomp procedure
Given a query videoQ ∈ RI×J×K and a large target video

S , where I and J correspond to the spatial dimension of

Q, and K corresponds to the temporal dimension. The

objective of action spotting is to find the best match for Q
out of all sub-volumes of S . We formulate this problem in

a tensor-based framework. For the preliminaries of tensor

definitions and operations, please refer to [17].

Since query video Q is a 3-way tensor, we first apply

the Tucker decomposition to Q, resulting in a smaller-sized

tensor G and three factor matrices

Q ≈ G ×1 A ×2 B ×3 C =
P

∑
p=1

Q

∑
q=1

R

∑
r=1

gpqrap ○ bq ○ cr, (1)

where A ∈ R
I×P , B ∈ R

J×Q, and C ∈ R
K×R are the

orthogonal factor matrices. The ×i operator denotes the

multiplication between a tensor and a vector in mode-i of

that tensor, whose result is also a tensor, namely, A =
B×iα⇐⇒ (A)jk = ∑

I
i=1 Bijkαi.

The first-phase operator Ftk is defined as follows.

Definition 1: The Ftk operator is a mapping that

transforms the input tensor Q ∈ R
I×J×K into a tensor

G ∈ RR×R×R, namely, Ftk(Q) = G = Q×1AT ×2BT ×3CT ,

where R < min{I, J,K}, and AT ,BT ,CT are transposes

of the factor matrices in Eq.(1).

Recall that the CP decomposition factorizes a 3-order

tensor X ∈ RI×J×K into a sum of component rank-1 tensors

X ≈ ∑R
r=1 ur ○ vr ○ wr, where R is a positive integer and

ur ∈ R
I , vr ∈ R

J , and wr ∈ R
K for r = {1, ...,R}. If

P = Q = R = 1, then the CP decomposition degenerates to

the rank-1 decomposition.

We define the second-phase operator Fcp as follows.

1The Tucker algorithm is a form of higher-order PCA that decomposes

a tensor into a core tensor multiplied by a matrix along each mode; while

the CP decomposition factorizes a tensor into a sum of component rank-1
tensors [17]

Figure 1. The illustration of Tucker decomposition followed by CP

decomposition.

Definition 2: The Fcp operator is a mapping that

transforms a cubical G ∈ RR×R×R into a quadruple, namely,

Fcp(G) = ⟦λR;UR, VR,WR⟧, where λ is a scalar, and

U,V,W are three vectors of sizes 1 ×R.

We emphasis that, it is this second phase operator

Fcp, which operates directly on G, that distinguishes our

TP-Decomp from conventional approaches. Schematically,

the transformation flow is as follows:

Q
Ftk�→ GR

Fcp

�→ ⟦λQR ;U
Q
R , V QR ,WQ

R ⟧.
For notation purpose, we define a mapping function Ξ that

maps the input volume Q to a quadruple

Ξ ∶ RI×J×K �→ {R;R1×I ,R1×J ,R1×K}.

2.2. Theoretical insights
We now elaborate the theoretical insights of TP-Decomp.

In Ftk, the G ∈ RP×Q×R is called the tensor core. Under a

proper rank R, G can be considered as a compressed version

of Q for 2 reasons: (1) The dimension of G could be much

smaller than Q. (2) The core is intuitively analogous to

the diagonal singular value matrix in matrix SVD 2. Hence,

it encodes both the data variation and internal dynamics

across its 3 orthonormal basis. In terms of action spotting,

Ftk eliminates large amount of redundancy inherited in Q,

and retains, irrespective ofQ’s appearance, only the critical

motion variation and internal dynamics in G.

The essence of Fcp in the second phase is to directly

apply rank-1 CP decomposition to G itself. This step is

effective because Fcp is theoretically guaranteed by the

fact that, for a 3-way tensor, the property of rotational
uniqueness holds for CP decomposition [18], i.e, there is

one and only one possible combination of rank-one tensors

that sums to G.

Thus, decomposing the core itself yields even more

compact vectors than independently applying either the

Tucker or the CP algorithm. The resulting rank-1 vectors

UR, VR, and WR are equal-sized, unique, and carry key

information from the core. The λR in quadruple is of little

significance since it is a scalar that can be absorbed into the

factor vectors.

2.3. Properties
TP-Decomp has three good properties. We mainly focus

on the robustness of TP-Decomp stated in Property 3.

2Note, however, that pure analogy between matrix SVD and tensor

SVD is not well-established because high-order SVD shows far more

complicated behavior than the matrix SVD [26].
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Figure 2. Comparison of the resulting quadruples for kicking,
running and benchswing actions under three types of operations:

Gaussian blurring, down-sampling, and noise perturbation. For

Gaussian blurring, the 2nd−4th rows correspond to different blur

amount. For scaling, the 6th − 8th rows correspond to scaling

ratios of 10%,8%, and 7%, respectively. For noise perturbation,

the 10th − 12th rows correspond to noise variance values of

0.04,0.07, and 0.1, respectively. All curves in the last column

show the dynamics of the resulting vectors U,V , and W .

Property 1: The TP-Decomp produces very compact
representations. By contrast, the dimensionality is reduced

from I ×J ×K forQ, to R3 for G, and finally to 3R for ΞQR ,

namely IJK → R3 → 3R.
Property 2: The TP-Decomp is invariant to

spatiotemporal dimension permutation for query video.
Holistically treating video cuboid as tensor, we use a

uniform rank R for both spatial and temporal dimensions.

By rotational uniqueness property [18], when permutating

the spatiotemporal dimension of a query video, both the

tensor core and the factored matrices remain invariant. This

leads to stable quadruples in Fcp. Practically, this property

is useful to spot the cubiods that are rotated, mirrored, or

transposed along certain axis in the target video.

Property 3: Under proper rank R, the TP-Decomp
is robust to Gaussian blurring, downscaling, and
noise perturbation. What happens when the target

video is degraded by intensive blurring, low resolution

down-sampling, or drastic noise perturbation? Many

approaches will possibly fail to answer this due to feature

dependency. For example, heavy Gaussian blurring

removes high frequency intensities in image. It may

affect optical flow extraction that highly depends on pixel

gradients. The low resolution down-sampling removes

intermediate pixels in frames. It may affects the HOG/HOF

features whose statistical performance almost entirely

depends on redundant sub-image patches. The heavy noise

perturbation adds random contaminations in video frames.

It may affect the effective extraction of the silhouettes or

STIP features in space-time. In addition, bag-of-features or

bag-of-words paradigms, which rely on statistical clustering

of sufficient descriptors, may also be hard to classify the

codebooks under heavily contaminated situations.

For illustration purposes, we tested TP-Decomp on 3
action classes: kicking (KTH), running (UCF Sports), and

benchswing (UCF Sports), as shown in Fig.2. We applied

TP-Decomp on Q under rank R = 20, and plotted the

resulting triplets as curves. For the Gaussian blurring

degradation, under various smoothing kernels, we found

that the resulting quadruple of kicking largely captures

the action dynamics, with merely slight fluctuations in

quadruple. For down-sampling, we downscaled the running
video into various low resolution ones. Even when

over 90% of the frame pixels were missing, the running
dynamics was still well-preserved. For noise perturbation,

we contaminated the benchswing with Gaussian noises.

Even when the frames were heavily contaminated, the

resulting triplets remained resilient to noise.

To fully investigate how the TP-Decomp performs for

action spotting under heavy perturbation, we create a

challenging dataset called Heavily Perturbed Video Array

(HPVA). We will describe it in detail in experiment section.



Algorithm 1: Rank-TCP descriptor construction

input : A query video Q ∈ RI×J×K where I and J
correspond to spatial dimension of frames, and

K corresponds to temporal dimension

output: Tuple {U,V,W}.
Initialize U,V,W to empty vectors;

for index e from 2 to 7 do
Rank R = 2e;

if R ≤min{I, J,K} then
Apply Ftk operator to Q using rank R;

Compute core GR = Q ×1 AT ×2 BT ×3 CT ;

Apply Fcp operator to GR;

Compute quadruple ⟦λR;UR, VR,WR⟧ ;

Concatenate UR to the rear of U ;

Concatenate VR to the rear of V ;

Concatenate WR to the rear of W ;

end
end

3. Rank-TCP descriptor
3.1. Motivation

The core dimension is solely decided by the rank R, yet

the final quadruple is solely decided by the core. Hence,

the rank R is the ultimate factor that affects both core and

quadruple dynamics.

However, there is no prior on which R leads to good

representation for action dynamics in core/quadruple,

because determining tensor rank is NP-hard [11],

and the behavior of higher-order SVD is far beyond

well-understood [26]. In the extreme cases, for instance, if

R is too small (R ≤ 3), the core will be too small to capture

sufficient information, whereas if R is too large, the Ftk

operator may become undefined by Lemma 1; and the Fcp

operator may not be unique by Lemma 2, as shown in the

Appendix.

For this reason, we experimentally validate how ranks

affect the TP-Decomp on a realistic big dataset called

CCWebVideo, as stated in Section 5. Our results on five

classes (2471 videos) show that, combining quadruples

from multiple ranks outperform that of individual ranks

(Fig.5). This is what motivates us to establish a Rank-based

Tensor Core Pyramid to fully characterize an action.

3.2. Construction procedure
We establish a new tensorial coarse-to-fine pyramid

using multiple cores under multiple ranks. Smaller ranks

correspond to cores of smaller size, lying above the larger

ones in the pyramid. Under each candidate rank R, we

apply the TP-Decomp on the query tensor Q, yielding its

corresponding quadruple ΞQR = ⟦λ
Q
R ;U

Q
R , V QR ,WQ

R ⟧.
Cores with lower ranks coarsely encode the dynamics in

Q, whereas cores with higher ranks encode dynamics of Q
more precisely. But in terms of computational burden, the

larger the R, the longer the TP-Decomp takes. Practically,

we consider the following candidate ranks

R = {4,8,16,32,64,128}.
This choice stems from practical concerns. All 6 ranks are

unevenly distributed in a sense that we lean towards lower

rank spectrum while not losing higher ranks. This choice

can weight the computational burden of TP-Decomp.

For the 6 pyramid layers, there are totally 6 × 3 = 18
vectors generated. At the ith layer, the size of the quadruple

is 3∗2i+1. Our final feature descriptor is the concatenation

of the quadruple in all pyramid layers. We concatenate the

U,V,W vectors at each level, yielding three long vectors

U,V,W, namely
⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

U = [U4, U8, ..., U128]
V = [V4, V8, ..., V128]
W = [W4,W8, ...,W128].

The triplet {U,V,W}, with each element of size ∑i 2
i =

252, i = [2,⋯,7], will be fed into the final template

matching phase. If a candidate rank R is larger than the

size of query tensor, namely R > min{I, J,K}, then we

let Rmax be the largest candidate rank, which is smaller

than the query tensor size. Then each element in the triplet

{U,V,W} is of size ∑i 2
i, i = {2,⋯, log2Rmax}.

Experimental results in CCWebVideo dataset shows

that combining multiple ranks outperforms single rank

representations (Fig.5). Intuitively, by combining multiple

cores, the pyramid achieves a rich and redundant

representation for video.

The procedure to build the Rank-TCP descriptor is shown

in Algorithm 1. The storage space saved in TP-Decomp is

from I×J×K to 3R+1. For Rank-TCP descriptor, the space

complexity of the final quadruple is∑min{I,J,K}
e=2 (3∗2e+1).

In the case that min{I, J,K} ≥ 128, the total size for the

pyramid is 756.

4. Boosting strategies for matching
Although costly, template matching can avoid

problematic preprocessing operations in localization,

tracking, and segmentation [14]. The computational

burden can be reduced by various techniques such as

branch-and-bound [31] or voting algorithms [29].

In our framework, two strategies are adopted to boost the

template matching: (1) to reduce the space complexity, we

employ the dense trajectory in [13], and prune the search

space using cues derived from trajectories. (2) to reduce the

time complexity, we use a coarse-to-fine strategy assisted

by the Rank-TCP descriptor.

4.1. Trajectory-assisted space reduction
Motion is the most reliable and informative source of

information for action analysis [27]. The method using



Figure 3. (1st) The point cloud formed by the dense trajectories

extracted from a video of MSR I dataset. Red points map to top

trajectories by length. (2nd) Top trajectories thresholded by the

mean length of all trajectories. (3rd) Top trajectories thresholded

by the mean unsigned total curvature of all trajectories. (4th) Our

filtered trajectories. The red dots denote the average locations of

trajectories. The red, green, and blue boxes denote the ground

truth volume for clapping, waving, and boxing, respectively (zoom

in for better view)

dense trajectories to compute local descriptor in [27] is one

of the state-of-the-art approaches for action recognition.

The work in [13] further improves the work of [27] and

shows high reliability and robustness in handling motion.

Given a target video, we first extract its dense trajectories

by the method in [13] using default parameters. Instead

of being used in codebooks for k-means clustering as in

[13, 27], the dense trajectories are treated as reliable cues

to prune the huge matching space. Our underlying intuition

of this trajectory-assisted matching agrees with that of [19]:

despite the huge number of candidate cuboids needing

search, only very few contain the true motion of interest

(MOI). Instead of exhaustively evaluating them all, we

target only the best few.

Inspecting thoroughly, we observe the motion annotated

by trajectories can be roughly divided into 8 categories:

(a) limb movement around MOI, such as the hands in

handwaving, the head and feet in jumping, etc. (b) camera

motion, such as zoom, pan, translation, vibration, etc. (c)
non-MOI motion inside blobs. (d) patch motion inside

MOI, such as motion caused by appearance (e.g. cloth) in

bending or jumping, non-limb body region motion, etc. (e)
background clutter, such as cars on street, crowd, remote

or close pedestrians, etc. (f) foreground motion, such as

a pedestrian moving from left to right across the scene,

etc. (g) local motion propagation, such as a fountain in

background, etc. (h) regional random movement of noisy

patches.

Out of those 8 categories, we are especially interested

in the first. The category (b) is effectively canceled out

by method in [13], and few trajectories are responsible

for it. Further observation reveals that, short trajectories

stem from Cshort = {c, d, e}, long trajectories stem

from Clong = {a, d, e, f}, curved trajectories stem from

Ccurved = {a, e, g, h}, and relatively straight trajectories

stem from Cstraight = {c, d, e, f}. Notice that

Clong⋂Ccurved = {a}.
This observation suggests that, a long curved trajectory

indicates a possible MOI around this trajectory. This

inspires us that, the length and the curvature of trajectory

is possibly a very good cue to spot the MOI.

In practice, given a trajectory denoted by T = {pi}, i =
1, ..., n and a neighborhood m, we calculate its tangent

orientation based discrete curvature [4] at point pi by

k(pi) =
∠(pi−mpi, pipi+m)
∣pi−mpi∣ + ∣pipi+m∣

.

Since curvature is signed, the total curvature of a S-shaped

trajectory is possibly zero. We then use unsigned total

curvature κ = ∑ ∣k(pi)∣ to reflect the total “bendness” of

a trajectory. Along with its total length l = ∑ ∣pi+1 − pi∣, we

define

ς = κl
as our metric to measure the trajectories, and define the

threshold as θ = mean(ςj), j = 1, ..., t, where t is

the total number of extracted trajectories. This metric

is unsupervised, simple, yet powerful enough to prune a

significant number of irrelevant trajectories, as shown in

Fig.3. The mean position of all survived trajectories are

used as search locations in template matching.

4.2. Coarse-to-fine matching
The trajectory-assisted strategy prunes a considerable

amount of search locations. Let the set of survived search

locations be L = {Li}, i = 1..n. Due to the coarse-to-fine

structure in Rank-TCP descriptor, we can further accelerate

the matching in an iterative coarse-to-fine manner.

Since the descriptor with lower rank coarsely represent

the candidate volume, we first match all locations in L
using the lowest rank R = 4. Within the resulting 3D score

map, we set a loose threshold θR=4, filtrating all matched

candidate cuboids below this threshold. For the survived

candidates CR=4, we apply the second round of matching

under a higher rank R = 8. Under a proper second threshold

θR=8, a smaller portion of the survived candidates from last

round, denoted by CR=8, survives, and participates in the

next level where R = 16. We iterate this process m times

(m <= 6). Under lower ranks (R = {4,8}), there could

be numerous false alarms, because lower ranks correspond

to far more cuboids needing match. As rank grows (R =
{16,32,64,128}), many false alarms will be filtered out. To

ensure true positives (locations around MOI) are not falsely

filtered out, the thresholds under lower ranks, i.e., θR=4 and

θR=8, will not be set too tight; but as rank grows, more strict

thresholds will be enforced to eliminate false positives. In

practice, this strategy can reduce 15%−30% matching time.

4.3. Matching measure
To define the similarity measure between the query tensor

Q and candidate sub-volume V in search video S , we



Figure 4. Our HPVA dataset. (1st) The 6 seed videos. We use boxing, clapping, waving as queries, and the rest as outliers. (2nd) The

3D tiled cuboid grid of size 300 × 300 × 180. Each cell is filled with a random seed video. (3rd) One frame of a video grid perturbed by

random heavy noise; (4th) One frame of a video grid affected by random degree of blurring; (5th) A random mixture of noise and bluring

perturbation; (6th) The exhaustive matching on a randomly generated grid. Blue/red cuboids denote the ground truth position of queries

(eg. boxing, clapping, waving), while green cuboids denote sliding windows

extract the Rank-TCP descriptor out of both Q and V ,

resulting in two quadruples
⎧⎪⎪
⎨
⎪⎪⎩

ΞQR = ⟦λ
Q
R ;U

Q
R , V QR ,WQ

R ⟧
ΞVR = ⟦λ

V
R;U

V
R , V VR ,WV

R ⟧.
We define the matching measure function as

D(ΞQR ,Ξ
V
R) = φ(U

Q
R , UVR) + φ(V

Q
R , V VR ) + φ(W

Q
R ,WV

R ),
where the function φ is the Euclidean distance measure

function.

We define the similarity score between Q and V under

rank R as ξR = − log(D(ΞQR ,Ξ
V
R)). The score is inversely

proportional to the measure function D. A high score

means the two tensors are similar while a low score implies

dissimilarity. The peaks of the similarity score across the

3D score volume indicate potential match locations.

5. Experimental evaluation
We extensively experiment on 5 benchmarks. For

CCWebVideo, the retrieval requires no window sliding,

since we holistically match query and target. For the

remaining 4 datasets, following [14], we match at a

single scale instead of multiple scales since actor sizes are

stable. We use exhaustive search as our baseline denoted

by “RTCP-Exha”, and the trajectory-assisted matching is

denoted by “RTCP-Traj”.

CCWebVideo Dataset This huge dataset [28] contains

24 set of 13129 videos. For each seed video, there are

hundreds of different versions, with considerable amount

of intra-class variation (such as photometric variations,

lighting change, unrelated frames, text overlay, etc.). We

use this dataset to verify how our Rank-TCP descriptor

performs given huge intra-class variance. We select 5
classes, totally 2471 videos. Since action spotting is

analogous to video retrieval, we treat the seed as query

video, and spot all videos that matche the seed. We test

5 descriptors, of which 4 use a single rank (4,8,16,32), and

1 combines these multiple ranks.

HPVA Noise Blur Mixed

RTCP-Exha (baseline) 0.44 0.37 0.21

Table 2. Average precision for HPVA results

CCWebVideo CMU MSR I MSR II HPVA

RTCP-Exha (baseline) 23 18 15 n/a 0.8

RTCP-Traj wo/ c2f n/a 2.0 2.3 7.2 n/a

RTCP-Traj w/ c2f n/a 1.2 1.5 6.3 n/a

Table 3. Time (hours) spent in 3 template matching scenarios for 5
benchmarks. “c2f” means using coarse-to-fine matching strategy

CMU Action Spotting Dataset The CMU action dataset

[14] consists of 5 action classes (48 videos, 6 subjects):

jumping jacks, pickup, push button, one-handed wave,

and two-handed wave. Videos are recorded in crowded

environments such as streets, restaurants, and bus stop. We

compare with 3 baseline methods: the holistic flow [23], the

part-based shape plus flow [14], and the space-time oriented

energy measurements [7].

MSR Action Dataset I This dataset [31] contains 3
classes (16 video sequences, 10 subjects). The video

sequences and has in total 63 actions: 14 hand clapping,

24 hand waving, and 25 boxing. Each sequence contains

multiple types of actions. There are both indoor and outdoor

scenes with clutter and moving backgrounds. The MSR
Action Dataset II is an extended version of the MSR I. It

contains 3 classes (54 video sequences): hand waving, hand

clapping, and boxing. In total 203 action instances. Since

instances of a query often do not begin and end at the same

time span [14], we preserve only the best in each frame.

Heavily Perturbed Video Array (HPVA) Dataset We

created a new challenging dataset to test the robustness

of our framework under heavily perturbed situations. We

choose 6 seed videos (boxing, clapping, waving, 1-handed
wave, pickup, pushbutton), each of size 60 × 60 × 60. We

form a 300 × 300 × 180 3D tiled cuboid grid in space-time,

as shown in Fig.4 (Each cell contains a random seed). Since

down-sampling can be regarded as a variation of Gaussian

blurring, we apply one of the two operators, Fnoise or

Fblur, on seeds. The degree of Fnoise and Fblur are

randomly specified, and which cell maps to which seed is

also randomly generated. We created 3 such grids in HPVA,

of which 2 are enforced by Fnoise and Fblur, respectively,

and the other one by mixing such 2 operations. In other

words, our benchmark has three videos (300 × 300 × 180).

The first is under randomly perturbed noise. The second is

degraded by random intensive blurring. The last is a random
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Figure 5. The Precision-Recall Curve for CCWebVideo (1st row) and CMU Action dataset (2nd row). For CCWebVideo dataset, each

figure denotes the comparison results between using a single rank and multiple ranks. From left to right, the action classes are: The lion
sleep tonight, Evolution of dance, Fold shirt, I will survive Jesus, and Little superstar. Note that our PR curves for Little superstar is more

jagged than others because there is only 59 ground truths available out of 377 videos (84% are outliers). For CMU Action, we compare

our method with 3 baseline methods, namely, the holistic flow [23], the part-based shape plus flow [14], and the spacetime oriented

energy measurements [7]. The 5 subfigures correspond to jumping jacks, pickup, push button, one-handed wave, and two-handed wave,

respectively. Red curves correspond to our proposed method (better be viewed by zooming in and in color)

CCWebVideo “The lion sleep tonight” “Evolution of dance” “Fold shirt” “I will survive Jesus” “Little superstar”

Total video # 792 483 436 416 377

Outlier # 458 361 253 29 318

Outlier % 58% 75% 58% 7% 84%

Wu [28] 0.95 0.90 0.86 0.88 0.78

Song [24] 0.94 0.79 0.92 0.94 0.94

RTCP-Traj 0.97 0.94 0.93 0.98 0.81
Dataset CMU MSR I MSR II

Actions jjacks pickup pushbutton 1-h wave 2-h wave clapping waving boxing clapping waving boxing

Video instance # 16 20 14 18 34 14 24 25 51 71 81

Deerpanis [7] 0.50 0.95 0.80 0.55 0.48 - - - - - -

Ke [14] 0.30 0.45 0.50 0.40 0.60 - - - - - -

Yuan [31] - - - - 0.75 - - - - - -

Yu [30] - - - - - - - - 0.30 0.84 0.60

Boyraz [5] - - - - - - - - 0.35 0.40 0.50

RTCP-Exha (baseline) 0.55 0.59 0.35 0.40 0.57 0.19 0.43 0.25 - - -

RTCP-Traj 0.75 0.92 0.74 0.69 0.78 0.63 0.82 0.70 0.57 0.73 0.64

Table 1. Average Precision (AP) comparison for CCWebVideo, CMU, MSR I, and MSR II datasets

mixture of noise and blurring. We choose boxing, clapping,
waving as queries and the rest as outliers.

5.1. Analysis
Average precision (AP) For CCWebVideo, despite the

large amount of outliers and intra-class variations, the PR

curves of our spotted (or retrieved) results show remarkably

high precisions. The precision of higher ranks (32) is often

higher than lower ranks (4,8). The combination shows

highest AP amongst all 5 cases. For 4 out of 5 seeds, our

AP outperform the state-of-the-art (Table 1). The results

for 3 out of 5 actions in CMU data outperforms previous

works. Higher ranks indeed lead to richer representations,

and combining multiple ranks is better than a single one.

Using RTCP-Exha, our AP on CMU data outperform 2
out of 5 actions. Using RTCP-Traj, our AP improves for

all 5 actions. Especially, we observe that AP of pickup
action increases 35% compared to baseline. This action

involved a large body motion when the person’s upper

body approaches to the ground. By inspecting the filtered

trajectories of pickup, we observed that a considerable

amount of irrelevant trajectories were filtered out, leading

to largely reduced number of false alarms.

The MSR I and MSR II are challenging because of

their long durations and dynamic backgrounds. Some

previous works did not provide AP per action, so they are

unavailable in Table 1. Note that, we observe the hands

of the clapping in some videos often overlap the inner

region of human body, and lead to some level of intensity

confusions. Thus for clapping, our AP is relatively low

using exhaustive matching without pruning. Because of

the matching time (> 40 hours), the exhaustive matching



results for MSR II is unavailable in our test. Our reported

trajectory-assisted matching for MSR II took about 6.3
hours with coarse-to-fine boosting (Table 3). Overall, our

AP is comparable to that of [30]. Across all test scenarios,

RTCP-Traj largely outperforms RTCP-Exha, showing that

our trajectory-assisted pruning is indeed effective.

We perform only exhaustive matching on HPVA, because

the extracted trajectories on HPVA can hardly represent

motion dynamics due to heavy contamination in videos.

The results are shown in Table 2. Due to the robustness

of TP-Decomp stated in Section 2, our method still spotted

many true positives, regardless of the randomness and

contamination introduced in HPVA.

Matching time In practice, we parallelized template

matching on a cluster using multiple cores. We compare

the time spent in matching in Table 3. Along with the

AP analyzed above, our trajectory-assisted space reduction

is an effective way to reduce search space and boost the

spotting precision. The adaptation of coarse-to-fine (c2f)

can reduce around 15% − 30% of the matching time on

average compared to when c2f is not used.

6. Conclusions
We propose an action spotting framework that

is feature-independent and does not rely on human

localization, segmentation, or frame-wise tracking. We

start by treating all involved video cuboids as multilinear

tensors, and theoretically and experimentally show that, the

internal dynamics of an action can be effectively encoded

by our new Two-Phase Decomposition technique. We

further verify that combining multiple cores under multiple

ranks lead to enhanced performance compared to single

rank. This inspired us to devise hierarchical rank-based

descriptors to fully represent action dynamics. We boost

the costly template matching by two strategies, which

reduce the size of search space and the matching time.

The experimental results on 5 benchmarks, including our

newly-created HPVA dataset, show that our framework is

very effective in spotting actions under various challenging

conditions. We conclude that, (1) Our TP-Decomp method

yields compact, discriminative, and robust features. (2)

Rank-TCP is effective in yielding richer and reliable

representations. (3) Filtering out irrelevant outliers in

matching volume, targeting only the best few, indeed leads

to largely boosted speed and enhanced precisions. (4) A

robust descriptor that preserves action dynamics is critical

for spotting actions under heavily perturbed situations.

Appendix
Lemma 1: For a 3-order tensor X ∈ R

I×J×K , only the following

weak upper bound on its maximum rank is known [18]: rank(X) ≤
min{IJ, IK,JK}.

Lemma 2: For a 3-order tensor X ∈ RI×J×K , the CP decomposition

is generically unique if the following two conditions hold [6]: (1) R ≤ K;

(2) R(R − 1) ≤ I(I − 1)J(J − 1)/2, where R is the rank of X .
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[27] H. Wang, A. Kläser, C. Schmid, and C.-L. Liu. Dense trajectories and motion
boundary descriptors for action recognition. IJCV, pages 1–20, 2013.

[28] X. Wu, A. G. Hauptmann, and C.-W. Ngo. Practical elimination of
near-duplicates from web video search. In ACM MM, pages 218–227, 2007.

[29] A. Yao, J. Gall, and L. Van Gool. A hough transform-based voting framework
for action recognition. In CVPR, pages 2061–2068. IEEE, 2010.

[30] G. Yu, N. A. Goussies, J. Yuan, and Z. Liu. Fast action detection via
discriminative random forest voting and top-k subvolume search. Multimedia,
IEEE Transactions on, 13(3):507–517, 2011.

[31] J. Yuan, Z. Liu, and Y. Wu. Discriminative subvolume search for efficient action
detection. In CVPR, pages 2442–2449. IEEE, 2009.


