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Abstract

Several descriptors have been proposed in the past for
3D shape analysis, yet none of them achieves best perfor-
mance on all shape classes. In this paper we propose a
novel method for 3D shape analysis using the covariance
matrices of the descriptors rather than the descriptors them-
selves. Covariance matrices enable efficient fusion of dif-
ferent types of features and modalities. They capture, using
the same representation, not only the geometric and the spa-
tial properties of a shape region but also the correlation of
these properties within the region. Covariance matrices,
however, lie on the manifold of Symmetric Positive Defi-
nite (SPD) tensors, a special type of Riemannian manifolds,
which makes comparison and clustering of such matrices
challenging. In this paper we study covariance matrices in
their native space and make use of geodesic distances on
the manifold as a dissimilarity measure. We demonstrate
the performance of this metric on 3D face matching and
recognition tasks. We then generalize the Bag of Features
paradigm, originally designed in Euclidean spaces, to the
Riemannian manifold of SPD matrices. We propose a new
clustering procedure that takes into account the geometry of
the Riemannian manifold. We evaluate the performance of
the proposed Bag of Covariance Matrices framework on 3D
shape matching and retrieval applications and demonstrate
its superiority compared to descriptor-based techniques.

1. Introduction
Quantifying shape similarity between 3D objects, here-

inafter refereed to as shape analysis, is central to many
computer vision and pattern recognition tasks. The com-
mon factor in existing techniques is the use of shape signa-
tures that capture the main properties of 3D objects. While
early methods focused on global descriptors that are invari-
ant under rigid transformations [19], the use of local fea-
tures has gained a significant momentum in the past few
years [5, 37, 33].

Due to their good performance in many image analy-

sis settings, many authors attempted to adapt popular local
image descriptors to 3D shapes. Examples include the 3D
SIFT [41] and the 3D Shape Context [11, 17]. One of the
main strengths of local features is their flexibility in terms
of type of analysis that can be performed with. For instance
they can be used as local descriptors for shape matching and
registration but can be also aggregated over the entire shape,
using the Bag of geometric Words (BoW), to form global
descriptors for recognition, classification and retrieval [5].
These techniques, however, face two main concerns. First,
local features do not capture the spatial properties or struc-
tural relations between shape elements. Second, often 3D
shape collections exhibit large inter-class and intra-class
variability that cannot be captured with a single feature type.
This triggers the need for combining different modalities or
feature types. However, different shape features have dif-
ferent dimension and scale, which makes their aggregation
difficult without normalizing or using blending weights.

To overcome some of these shortcomings, Behmo et
al. [2] proposed to compute a graph based representa-
tion that captures the spatial relations between features.
Bronstein et al. [5] extended this approach and proposed
spatially-sensitive bags of features by considering pairs of
geometric words. Laga et al. [18] combined both geomet-
ric and structural features to capture the semantics of 3D
shapes. While these representations take into account the
spatial relations between features of the same type, they are
limited when it comes to handling multimodal features.

Recently, the image analysis community showed a grow-
ing interest in characterizing image patches with the covari-
ance matrix of local descriptors rather than the descriptors
themselves. They have been used for object detection and
tracking [29, 38, 39, 21], texture classification [38], action
recognition and face recognition [13]. The use of covari-
ance matrices has several advantages. First, they provide
a natural way for fusing multi-modal features without nor-
malizing. Second, covariance matrices extracted from dif-
ferent regions have the same size. This enables comparing
any regions without being restricted to a constant window
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size or specific feature dimension.
Covariance matrices, however, lie on the manifold of

Symmetric Positive Definite (SPD) tensors (Sym+
d ), a spe-

cial type of Riemannian manifolds. This makes the de-
velopment of classification and clustering methods on the
space of SPD matrices quite challenging. Many authors
attempted to generalize computational methods, originally
designed for Euclidean spaces, to Riemannina manifolds.
Jayasumana et al. [14], for example, generalized the power-
ful kernel methods to manifold-valued data, such as covari-
ance matrices, and has demonstrated their usage in pedes-
trian detection, visual object categorization, texture recog-
nition and image segmentation. Similarly, Faraki et al. [9]
demonstrated the usage of bag of covariance matrices in the
classification of human epithelial cells in 2D images.

In this paper, we generalize the ideas presented in [29,
38] to 3D shape analysis problems, particularly to 3D shape
matching and recognition and to 3D shape retrieval. Our
idea is to represent a 3D model with a set of n landmarks
sampled (uniformly or randomly) on its surface. Each land-
mark has a region of influence, which we characterize with
the covariance of features of different types. Each type of
features captures some properties of the local geometry. Co-
variance matrices are not elements of the Euclidean space,
they are elements of the Lie group, which has a Riemannian
structure. Therefore, matching with covariance matrices re-
quires the computation of geodesic distances on the mani-
fold using a proper metric. We show how such dissimilarity
measure can be computed in an efficient way and demon-
strate its performance in 3D face matching and recognition.
We also propose an extension of the BoW approach to non-
linear Riemannian manifolds of covariance matrices. Our
dictionary construction procedure uses geodesic distances
and thus it captures effectively the structure of the manifold.

We demonstrate the performance of the proposed frame-
work in several 3D shape analysis applications. We show
that covariance descriptors perform better than individual
features on 3D correspondence and registration tasks and
on 3D face matching and recognition. We also evaluate the
retrieval and classification performance of the Bag of Co-
variance matrices on 3D shape retrieval and recognition us-
ing standard benchmarks.

Our contributions are three-fold. First, we propose co-
variance matrices as new descriptors for 3D shape analy-
sis. While similar descriptors have been proposed for object
tracking and texture analysis in 2D, it is the first time that
covariance based analysis is explored for 3D shape analysis.
Second, the framework enables the fusion of multiple and
heterogeneous features without the need for normalization.
Finally, using a Riemannian metric on the manifold of co-
variance matrices, we introduce the concept of Bag of Co-
variance matrices for 3D shape classification and retrieval.

The rest of the paper is organized as follows. We intro-

duce covariance matrices for 3D shape analysis in Section 2
and review the basic concepts of Riemannian geometry in
Section 3. Section 4 presents how covariance matrices can
be used in comparing 3D models. Section 5 extends the
Bag of Features paradigm to the non-linear space of covari-
ance matrices of 3D shapes. We evaluate our approach on
various datasets in Section 6 and conclude in Section 7.

2. Covariance matrices on 3D shapes
We represent a 3D shape as a set of overlapping patches

{Pi, i = 1 . . .m}, each patch Pi is extracted around a rep-
resentative point pi = (xi, yi, zi)

t. For each point pj =
(xj , yj , zj)

t, j = 1 . . . , ni, in the patch Pi, we compute a
feature vector fj , of dimension d, that encodes the local ge-
ometric and spatial properties of the patch. The following
properties can be used:

• F1: The location of the point pj with respect to the
patch center pc = 1

ni

∑ni

k=1 pk. It is given by pj − pc.

• F2: The distance of the point pj to pi.

• F3: The volume of the parallelepiped formed by the
coordinates of the point pj .

Note that our framework is generic and thus other features
can also be added to the representation. Examples include
the norm of the gradient, the two principal curvatures k1 and
k2, the mean and Gaussian curvatures, the shape index [16],
the curvedness at pi, which is defined as

√
(k21 + k22)/2,

the shape diameter function [12, 30], and the scale-invariant
heat kernel signature [6].

Let {fj}j=1..n be the d-dimensional feature vectors
computed over all points inside Pi. We represent a given
3D patch Pi with a d× d covariance matrix Xi:

Xi =
1

n

n∑
j=1

(fj − µ) (fj − µ)T (1)

where µ is the mean of the feature vectors computed in the
patch Pi. The covariance matrix Xi is a symmetric matrix.
Its diagonal elements represent the variance of each feature
and its off-diagonal elements represent their respective cor-
relations. It has a fixed dimension (d× d) independently of
the size of the patch Pi.

3. Riemannian geometry of SPD matrices
For the sake of completeness, we present here the math-

ematical properties of the space of covariance matrices and
the metrics that have been proposed for comparing them.

3.1. The space of covariance matrices

Let M = Sym+
d be the space of all d × d symmetric

positive definite matrices and thus non-singular covariance
matrices. Sym+

d is a non-linear Riemannian manifold, i.e.
a differentiable manifold in which each tangent space TX at



X has an inner product 〈·, ·〉X∈M that smoothly varies from
point to point. The inner product induces a norm for the tan-
gent vectors y ∈ TX such that ‖y‖2 = 〈y, y〉X . The short-
est curve connecting two points X and Y on the manifold
is called a geodesic. The length d(X,Y ) of the geodesic
between X and Y is a proper metric that measures the dis-
similarity between the covariance matrices X and Y . Let
y ∈ TX and X ∈ M. There exists a unique geodesic start-
ing at X and shooting in the direction of the tangent vector
y. The exponential map expX : TX 7→ M maps elements
y on the tangent space TX to points Y on the manifoldM.
The length of the geodesic connecting X to Y is given by
d(X, expX(y)) = ‖y‖X .

Machine learning algorithms require the definition of
metrics for comparing data points. When data lie in the Eu-
clidean space, Euclidean distance is often used as the natu-
ral choice of metric. Covariance matrices, however, lie on
a non-linear manifold and thus, efficient algorithms are re-
quired for computing geodesics and their lengths. Geodesic
lengths can then be used as a metric for subsequent machine
learning algorithms. In this paper, we focus on the compu-
tation of geodesic lengths. Most of the existing classifiers
(e.g. the nearest neighbor classifier) only requires a notion
of distance between points on the manifoldM. We use the
distance proposed in [28] to measure the dissimilarity of
two covariance matrices.

3.2. Geodesic distance between covariance matrices

The Riemannian metric of the tangent space TX at a
point X is given as 〈y, z〉X = trace

(
X−

1
2 yX−1zX−

1
2

)
.

The exponential map associated to the Riemannian met-
ric expX(y) = X

1
2 exp

(
X−

1
2 yX−

1
2

)
X

1
2 is a global dif-

feomorphism (a one-to-one, onto, and continuously dif-
ferentiable mapping in both directions). Thus, its in-
verse is uniquely defined at every point on the manifold:
logX(Y ) = X

1
2 log

(
X−

1
2Y X−

1
2

)
X

1
2 . The symbols exp

and log are the ordinary matrix exponential and logarithm
operators, while expX and logX are manifold-specific oper-
ators, which depend on the point X ∈ Sym+

d . The tangent
space of Sym+

d is the space of d×d symmetric matrices and
both the manifold and the tangent spaces are of dimension
m = d(d+ 1)/2.

For symmetric matrices, the ordinary matrix exponen-
tial and logarithm operators can be computed in the fol-
lowing way. Let X = UDUT be the eigenvalue decom-
position of the symmetric matrix X . The exponential se-
ries is defined as: exp (X) =

∑∞
k=0

Xk

k! = U exp (D)UT ,
where exp (D) is the diagonal matrix of the eigenvalue ex-
ponentials. Similarly, the logarithm is given by log (X) =∑∞

k=1
−1k−1

k (X − I)k = U log (D)UT . The exponential
operator is always defined, whereas the logarithms only ex-
ist for symmetric matrices with strictly positive eigenvalues.

The geodesic distance between two points on Sym+
d is then

given by:

d2g (X,Y ) = 〈logX (Y ) , logX (Y )〉X
= trace

(
log2

(
X−

1
2Y X−

1
2

))
(2)

An equivalent form of the affine-invariant distance metric
has been given in [10] and [25] in terms of joint eigenvalues
of X and Y . We will use this metric to derive algorithms
for 3D shape analysis using covariance matrices as local
descriptors.

4. 3D shape matching using SPD matrices
In this section, we propose a metric for matching 3D

shapes using covariance matrices as descriptors and the Rie-
mannian metric as a measure of dissimilarity. Let us con-
sider a point pi represented by the covariance descriptor
Xi on the first 3D model and a point qj represented by
the covariance descriptor Yj on the second 3D model. Let
c (pi, qj) = dg(Xi, Yj) denote the cost of matching these
two points. It is defined as the geodesic distance on the Rie-
mannian manifold between the two descriptors Xi and Yj .

Given the set of costs cij between all pairs of points pi
on the first 3D shape and qj on the second 3D shape, we
define the total cost of matching the two 3D shapes as:

C(ϕ) =
∑
i

c
(
pi, qϕ(i)

)
(3)

Minimizing C(ϕ), subject to the constraint that the match-
ing is one-to-one, gives the best permutation ϕ(i). This is
an assignment problem, which can be solved using the Hun-
garian method. In our implementation, we use the shortest
augmenting path algorithm [15]. The input to the assign-
ment problem is a square cost matrix with entries cij . The
result is a permutation ϕ(i) such that Equation 3 is mini-
mized. The minimum of this cost function is then used as
the dissimilarity between the two 3D models.

5. Bag of Words on Riemannian manifold
We extend the Bag of Words (BoW) approach [32, 24] to

covariance matrices for 3D shape analysis. In the classical
BoW approach, a 3D model is represented as a collection
of local descriptor prototypes, called visual words, given a
well chosen vocabulary, i.e. the codebook. BoW represen-
tations have been widely adopted by the 3D shape analysis
community [37, 5]. One of their advantages in 3D shape
retrieval is their ability to aggregate a large number of local
descriptors into a finite, low dimensional, histogram. The
dissimilarity between a pair of 3D models becomes then a
distance between their respective histograms, which is com-
putationally more efficient than minimizing a cost function.

The first step of the BoW approach consists of approx-
imating a set of training samples with a finite set of visual



words, the centers, which form the codebook. The code-
book is often obtained using clustering algorithms, such as
k-means. A good codebook should represent the original
data with minimum distortion. The distortion is usually de-
fined as the average mean square distance of all the training
points to the centers: MSD = 1

|S|
∑

X∈S d
2
g(X, X̂) where

the set S denotes the input data set, |S| its cardinality, and
X̂ is the center of the cluster to which X is assigned. The
classification of a query model involves the assignment of
the descriptors computed on the model into one of the code-
book elements. This process involves the computation of
distances between feature points. When these points lie in
Euclidean spaces, the computation of Euclidean distances in
straightforward. In what follows, we describe how to extend
this concept to covariance matrices, which are elements of
the non-linear Riemannian manifold Sym+

d and thus re-
quire efficient algorithms for computing geodesic distances.

5.1. Center computing

Let S = {Xi}i=1..N be a set of points onM = Sym+
d .

The intrinsic mean of points in Riemannian manifold is the
point on Sym+

d that minimizes the sum of squared geodesic
distances:

X̂ = arg min
X∈M

N∑
i=1

d2g (Xi, X) , (4)

where dg is the geodesic distance between two points on the
manifold. The mean is the solution to the nonlinear matrix
equation

∑N
i=1 logX (Xi) = 0, which can be solved using a

gradient descent procedure. At each iteration, the estimate
of the mean is updated as follows:

X̂t+1 = expX̂t

[
1

N

N∑
i=1

logX̂t (Xi)

]
. (5)

Equation 5 starts by mapping the points onto the tangent
space to the manifold at the current estimate of the mean
(using inverse exponential map), computes an estimate of
the mean in the tangent space, and maps back the estimated
mean onto the manifold using exponential map. This pro-
cess is iterated until convergence.

The iterative use of the logarithmic and exponential maps
makes this method computationally expensive. To over-
come this, many solutions can be used:

• One can use the k-medoid algorithm instead of k-
means. When computing the codebook, k-means tries
to find the true mean of the data. Thus, the mini-
mization in Equation 4 is over the entire manifold. K-
medoids on the other hand constrains the center to be
one of the data points and thus the search space for the
best solution is significantly reduced. Using K-medoid
requires the computation of the pairwise distances be-
tween all training data, which can be time consuming.

• Alternatively, one can map all the training points to
the tangent space of the manifold at one point (e.g.
mean point), obtaining an Euclidean representation of
the manifold-valued data. As stated in [14], this map-
ping does not globally preserve distances, resulting in
a poor representation of the original data distribution.

• The third solution is to use the geodesic distance dg
with the Frobenius distance when computing the cen-
ters of k-means. The idea is that the Euclidean average
of covariance matrices lies in the Riemannian mani-
fold, as stated in [4]. Indeed, any non-negative linear
combination of symmetric positive definite (SPD) ma-
trices is an SPD matrix. This implies that the linear av-
erage X̂ of X1, ..., XN given by: X̂ = 1

N (X1 + ... +
XN ) is an SPD matrix, hence belongs to the Rieman-
nian manifold. The Frobenius distance from which the
linear average came is given by:

d2Fro(X1, X2) =
∑

1≤i,j≤n

∣∣∣(X1 −X2)ij

∣∣∣2 . (6)

We tested those three codebook constructions and studied
the repartition of the final set of centers obtained from each
solution in the space of Hermitian forms, SPD matrices.

5.2. Center repartitions

After running the three earlier mentioned solutions, we
evaluate the distance between each center and the identity
element In of this space. This distance is computed accord-
ing to Equation 2 when the geodesic metric is used, and
Equation 6 when the Frobenius metric is chosen.

Figure 1 shows the repartition of the centers after run-
ning k-means on a sample of 104 Hermitian forms, using
three variants based on geodesic distance (presented in the
previous section), and a fourth variant based on the Frobe-
nius distance (cf. Eq. 6). In each sub figure, the origin rep-
resents the identity matrix In and a green symbol represents
a center X̂i placed on a circle of radius equal to its distance
from the identity. The angles, α(X̂i) = 2π

(
card(X̂i)∑
k card(X̂k)

)
(where

{
X̂k

}
1≤k≤K

are the centers), that surround the dif-

ferent centers are proportional to the size of their corre-
sponding cluster.

From Figure 1-(a) and (c), one can notice that the size of
different classes is almost equal. This demonstrates that the
data points are equally partitioned when using the geodesic
distance. On the other hand, Figure 1-(b) and (d) show that
large classes contain most of the data samples. This shows
that the use of Frobenius distance when assigning the points
to their closest centers is not suitable for covariance ma-
trices. It also shows that approximation using the tangent
space of the mean data point voids one of the benefits of
using the geodesic distance.
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Figure 1. (a) k-medoid using geodesic distance, (b) k-means on the tangent space of the mean data point (c) k-means using Geodesic
distance and linear update of centers and (d) k-means using Frobenius distance, K = 20 classes.

Algorithm 1 Codebook construction
Require: N data points to classify and an initial set of K data points{

X̂k

}
k=1..K

chosen randomly.

Ensure: labeled data points and K centers
iter = 1; MSEiter = 0; MSEiter−1 = 1;
while (iter ≤ maxIter)&& (MSEiter 6= MSEiter−1) do

MSEiter = 0
for i = 1 to N do

d = MAXV AL
for k = 1 to K do

dk = dg(X̂iter
k , Xi) using eq. 2

if d > dk then
d = dk
kmin = k

end if
end for
Assign Xi to the center X̂iter

kmin
MSEiter+ = dkmin

end for
for k = 1 to K do

X̂iter+1
k = 1

Nk

∑
i (Xik)

end for
iter ++

end while

Another observation that can be made from Figures 1-
(a), (b) and (c) is that the centers are located at different
distance levels from the identity matrix. This demonstrates
that the geodesic distance is more discriminant for covari-
ance matrices than the Frobenius one as shown in Figure 1-
(d). We can conclude that the geodesic distance gives better
repartition of the data samples than the Frobenius distance.
We can also see that the K-medoid algorithm (Figure 1-(a))
behaves better than the other solutions. However, as men-
tioned earlier, using the K-medoid algorithm, all pairwise
distances between training data have to be computed, which
is time consuming when dealing with large data samples.
The third solution (see Figure 1-(c)) behaves similarly to K-
medoid solution. In this paper, we used the third solution,
which is detailed in Algorithm 1 for codebook construction.

5.3. Signature computing

We describe 3D shapes using vectors of visual word fre-
quencies. For a given 3D model, each point Pi represented

by its covariance descriptor is assigned to its closest center
using the geodesic distance of Equation 2. The frequency
of a visual word in a given shape is simply the number of
times a given visual word appears in that model. For best
performance, we perform a normalization step of the sig-
nature. In our experiment, we use the 0.3 power norm. At
the retrieval stage, 3D shapes are ranked using as metric the
cosine of the angle between the query vector and all shape
vectors in the database.

6. Experimental results

We carried out an extensive set of experiments to evalu-
ate and verify the effectiveness of the proposed method in
matching and retrieving 3D models.

6.1. 3D face matching and recognition

We analyzed the performance of the proposed covari-
ance descriptors on 3D face recognition tasks. We used the
GavabDB1 dataset, which is among the most noise-prone
datasets currently available in public domains. It contains
549 three-dimensional facial surfaces of 61 different indi-
viduals (45 males and 16 females). Each individual has nine
facial surfaces with two frontal views at neutral expression,
two views rotated with +35 degrees around the x-axis, one
looking up and another looking down, both in neutral ex-
pression, two profile views (left and right), both in neutral
expression, and three frontal images with facial expressions
(laugh, smile and a random expression chosen by the user).
Thus, the database provides large variations with respect to
pose and to facial expressions. All the individuals are Cau-
casian and their age varies between 18 and 40 years old.

We have first preprocessed the surfaces to remove spikes,
fill in the holes and align them. We have then uniformly
sampled m = 100 feature points on the 3D face scan. To
ensure a uniform sampling, we first select a random set of
vertices on the face and then apply few iterations of Lloyd
relaxation algorithm. We then generate a set of patches
{Pi, i = 1 . . .m}, each patch Pi has a radius r = 10% of

1http://www.gavab.es/recursos en.html



Methods Neutral Expression Overall

Proposed method 100% 93.30% 94.91%
Drira et al. [8] 100% 94.54% 94.67%
Li et al. [40] 96.67% 93.33% 94.68%
Mahoor et al. [22] 95.00% 72.00% 78.00%
Moreno et al. [26] 90.16% 77.90% NA

Table 1. Results on Gavab dataset.

the radius of the shape’s bounding sphere, and it is identi-
fied with its corresponding seed point pi. For each patch we
compute a 5×5 covariance matrix that encodes the features
F1, F2 and F3 defined in Section 2. We then use the match-
ing method presented in Section 4 to compare 3D faces.

In this experiment, the first frontal facial scan of each
subject was used as gallery while the others were treated as
probes. To objectively evaluate our method for face recog-
nition, we present results in the form of recognition rate, see
Table 1. We can see that our method achieves a recognition
rate of 100% on the faces of neutral expressions. This per-
formance is similar to the approach of Drira et al. [8]. Our
approach performs slightly lower than the approach of Drira
et al. on faces with expressions (93.3% vs. 94.54%). It is
interesting to note that in [8], authors manually landmarked
points on all the face scans in the dataset to ensure an effi-
cient face registration. Table 1 also shows that the proposed
method outperforms all the other methods and achieves the
best overall result when the neutral and expressive faces are
merged together.

6.2. 3D shape retrieval

We have analyzed the performance of the proposed
covariance-based descriptors on 3D shape retrieval tasks us-
ing three different databases:

• The McGill2 database [31], which contains 255 objects
divided into ten classes. Each class contains one 3D
shape under a variety of poses.

• The SHREC07 dataset3 for global 3D shape retrieval.
It contains 400 models evenly distributed into 20 shape
classes. The experiment was designed so that each
model was used in turn as a query against the remain-
ing elements of the database, for a total of 400 queries.

• The SHREC07 dataset4 for partial 3D shape retrieval.
It contains a database of 400 models and a query set
of 30 composite models. The dataset exhibits di-
verse variations including pose change, shape variabil-
ity, and topological variations (note that four of the 20
classes contain non-zero genus surfaces) [23].

2http://www.cim.mcgill.ca/ shape/benchMark/
3http://watertight.ge.imati.cnr.it/
4http://partial.ge.imati.cnr.it/

Methods NN 1-Tier 2-Tier DCG

Covariance Method 0.977 0.732 0.818 0.937
Graph-based [1] 0.976 0.741 0.911 0.933
PCA-based VLAT [35] 0.969 0.658 0.781 0.894
Hybrid BoW [20] 0.957 0.635 0.790 0.886
Hybrid 2D/3D [27] 0.925 0.557 0.698 0.850

Table 2. Results on McGill dataset.

We randomly sample m = 600 points on the 3D mesh. We
assign for each point pi a patch Pi, i = 1 . . .m, on which
we compute a covariance descriptor. We extract the local
patch Pi by considering the connected set of facets belong-
ing to a sphere centered at pi and of radius r = 15% of the
radius of the shape’s bounding sphere. We then compute a
5 × 5 covariance matrix from the features F1, F2 and F3
defined in Section 2. We then use our Riemannian BoW
method (Section 5) to compare 3D shapes. We use a code-
book of size 250 visual words.

We have evaluated the proposed method using various
performance measures, namely: Precision-Recall graphs,
Nearest Neighbor (NN), the First Tier (1-Tier), The Second
Tier (2-Tier), and the Discounted Cumulative Gain (DGC).

6.2.1 Watertight 3D shape retrieval

Table 2 summarizes the retrieval performance of the pro-
posed method on the McGill dataset. We compare our
results to various state-of-the-art methods: the Hybrid
BoW [20], the PCA-based VLAT approach [35], the graph-
based approach of Agathos et al. [1], and the hybrid 2D/3D
approach of Papadakis et al. [27]. Although the proposed
method does not consider structural information of shapes,
it achieves the best performance on NN and DCG. The
graph-based algorithm performs slightly better than ours on
1-Tier and 2-Tier. The robustness of the Riemannian BoW
method to nonrigid deformations of shapes is probably due
to the local descriptors we used in building the covariance
matrices.

6.2.2 Global shape retrieval

We used the SHREC07 dataset to evaluate the performance
of our method in global shape retrieval tasks. Figure 2 sum-
marizes and compares the precision-recall performance of
our approach against three state of the art methods: the Hy-
brid BoW of Lavoué [20], the curve based method of Tabia
et al. [34] and the BoW method of Toldo et al. [37]. We
can clearly see that covariance-based BoW achieves signifi-
cantly better precision than previous methods for low recall
values. The precision is kept over 70% when half of the
relevant objects have been returned (recall equals to 0.5).
Since low recall values correspond to the first objects re-
trieved, this result shows that our method is significantly



Methods NN 1-Tier 2-Tier DCG

Covariance Method 0.930 0.623 0.737 0.864
Hybrid BoW [20] 0.918 0.590 0.734 0.841
Tabia et al. [34] 0.853 0.527 0.639 0.719

Table 3. Results on SHREC07 for global 3D shape retrieval.
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Figure 2. Precision vs recall curves of our method compared to
recent state of the art method [34], for the SHREC 2007 global
shape retrieval dataset.

Figure 3. Some examples of query objects (the most-left object
in each row) from the SHREC07 Partial retrieval dataset and the
top-6 retrieved models.

better than the other methods in retrieving relevant models
at the top of the ranked list of results. Table 3 also shows
that the proposed approach outperforms the state-of-the-art
on NN, 1-Tier, 2-Tier and DCG measures.

6.2.3 Partial shape retrieval

Partial shape similarity is a complex problem, which has
not been fully explored in the literature. We have tested
the performance of the proposed method on this problem
using the SHREC07 partial retrieval dataset. Figure 3 shows
some query models and the top-6 results returned by our
method. We can observe that all the retrieved models are
highly relevant to the queries.

We conducted a quantitative evaluation using the Nor-
malized Discounted Cumulated Gain vector (NDCG) [23].
For a given query, NDCG[i] represents the relevance to
the query of the top-i results. It is recursively defined as
DCG [i] = G [i] if i = 1 and DCG [i] = DCG [i− 1] +
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Figure 4. NDCG curves of our method compared to recent state of
the art methods, for the SHREC 2007 Partial retrieval dataset.

G [i]× log(i) otherwise where G [i] is a gain value depend-
ing on the relevance of the ith retrieved model (2 for highly
relevant, 1 for marginally relevant and 0 otherwise). The
NDCG is then obtained by dividing the DCG by the ideal
cumulated gain vector.

Figure 4 shows the NDCG curves of the proposed
method and six other state-of-the-art methods: the Hybrid
BoW [20], the curve-base method [34], the BoW method
of Toldo et al. [37], the graph-based technique of Tierny et
al. [36], the extended Reeb graphs (ERG) [3] and the curve-
skeleton based many-to-many matching (CORNEA) [7].
We can clearly see that our method outperforms them. The
high performance of the proposed method is due to the de-
scriptive power of the covariance descriptor that efficiently
discriminates relevant regions of each model.

Discussion. Analyzing shapes with covariance matrices
has several advantages compared to individual descriptors:
(1) covariance matrices enable the fusion of multiple het-
erogeneous features of arbitrary dimension without normal-
ization or blending weights, and (2) spatial relationships can
be encoded in the covariance matrices. In 3D shape analy-
sis tasks, it is often desirable to design descriptors that are
invariant to shape-preserving transformations. Covariance-
based descriptors inherit their invariance properties from
the features that are used to build them. Finally, building
covariance-based descriptors requires local features that are
correlated to each other otherwise covariance matrices be-
come diagonal and will not provide additional benefits com-
pared to using the individual features instead of their covari-
ances.

7. Conclusion
We proposed in this paper a new approach for comparing

3D shapes using covariance matrices of features instead of
the features themselves. As covariances matrices lie on a
Riemannian manifold, we use the geodesic distance on the



manifold to compute the distance between two descriptors.
We proposed two ways of computing the similarity between
3D models. First, we presented a matching method based on
covariance descriptors and the associated Riemannian met-
ric. We then presented an extension to the BoW model using
covariance descriptors and the Riemannian metric. Exper-
imental results have demonstrated the performance and the
potential of the two methods.
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