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Abstract

The probabilistic methods based on Symmetrical Gauss
Mixture Model(SGMM) [4, 13, 8] have achieved great suc-
cess in point sets registration, but are seldom used to find the
correspondences between two images due to the complexi-
ty of the non-rigid transformation and too many outliers.
In this paper we propose an Asymmetrical GMM(AGMM)
for point sets matching between a pair of images. Differ-
ent from the previous SGMM, the AGMM gives each Gauss
component a different weight which is related to the feature
similarity between the data point and model point, which
leads to two effective algorithms: the Single Gauss Model
for Mismatch Rejection(SGMR) algorithm and the AGMM
algorithm for point sets matching. The SGMR algorithm it-
eratively filters mismatches by estimating a non-rigid trans-
formation between two images based on the spatial coher-
ence of point sets. The AGMM algorithm combines the fea-
ture information with position information of the SIFT fea-
ture points extracted from the images to achieve point sets
matching so that much more correct correspondences with
high precision can be found. A number of comparison and
evaluation experiments reveal the excellent performance of
the proposed SGMR algorithm and AGMM algorithm.

1. Introduction
Point sets matching between a pair of images is to define

a set of points in each image and find the correspondences
between them, which is one important problem in computer
vision.

Most of point sets matching technologies are based on
local feature descriptors. Mikolajczyk and Schmid [12]
compared the performance of different kinds of local de-
scriptors and concluded that the SIFT-based descriptors [11]
perform best. The traditional SIFT feature matching is
mainly based on the similarity of the SIFT features, which
tends to produce many mismatches due to the variation of
light, the change of illumination and the repeated local pat-
terns in images [1]. Some post-processing strategies are

usually used to reject the mismatches [10, 14, 16, 18]. How-
ever, the produced matches are often too sparse, especially
serious in wide-baseline cases.

The point sets matching problem between two images
can also be regarded as the non-rigid point sets registration
problem if only the position information is used. There exist
many algorithms to handle point set registration. An effec-
tive strategy is to consider the alignment of two point sets
as a probability density estimation problem [4, 5, 8, 13].
The core idea for these techniques is to assume one point
set as the data points X and the other one as the mod-
el points Y . Among them a representative method is to
use the Gauss Mixture Model(GMM) [4, 8, 13] to describe
the model points. This GMM-based point sets registration
framework is a Symmetrical GMM framework(SGMM),
where all Gauss components are given the same weights.
The SGMM has achieved great success in point set reg-
istration [8, 13], where the points in two sets have only
position information but without available feature informa-
tion. However, the SGMM is seldom directly used to find
the correspondences between two images for three reason-
s: 1)The non-rigid transformation between two images is
complex due to the complexity of the projection of the 3D
depth scene to the 2D plane images; 2)There are usually too
many outliers among the initial extracted feature points, e.g.
SIFT, often up to or even more than eighty percent; 3)There
often exist too large rotation and deformation in multi-view
images, especially in wide baseline cases.

To overcome the limitations mentioned above, we
propose an Asymmetrical GMM(AGMM) with variable
weights for point sets matching. In the AGMM-based point
sets matching framework, each Gauss component is given
a different weight which is related to the feature similari-
ty between the data point and model point. The motivation
for doing so is threefold: 1) If the Gauss distribution cen-
troid which one model point corresponds to is very similar
to the data point in feature space it is reasonable to give a
large weight to this GMM component so that the two points
have more chance to form a correspondence; 2) The AGMM
framework may converge faster and be more robust to noise
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or outliers since the feature similarity has provided a rea-
sonable prior information for the match between two point
sets; 3) By applying AGMM, the feature similarity and spa-
tial coherence can be conveniently and naturally integrated
in the identical GMM framework for point sets matching.

1.1. Related Works

Feature points matching across images is a challenging
task when too many outliers and noise are included and the
spatial transformation between two point sets is too non-
rigid. Some of these problems can be addressed by integrat-
ing spatial consistency and feature similarity for matching
points. One of the effective strategies is to formulate corre-
spondence finding as a graph matching problem [2, 3]. An
attributed graph is constructed where graph nodes denote
the feature descriptors and edges denote the spatial relations
between features. And then the corresponding graph match-
ing problem is solved by some optimization algorithms. Al-
though there are some efficient algorithms for graph match-
ing, such approaches are still difficult to be applied to han-
dle large numbers of features due to the complexity of the
problems themselves.

Another strategy integrating spatial consistency and fea-
ture similarity for point sets matching is to simultaneously
encode spatial consistency and feature similarity in a lower-
dimensional subspace [6, 15]. In [15], Torki and Elgammal
proposed a nonrigid feature matching framework by fusion
of the feature descriptor and its spatial location. This is
implemented by learning an embedded representation com-
bining the feature similarity and spacial arrangement in a
unified Euclidean embedding space. Hamid et.al [6] im-
proved the works [15] by using approximate subspace learn-
ing with random projections instead of exact spectral de-
composition so that the computational efficiency is signif-
icantly increased. Although the feature embedding meth-
ods can effectively improve the accuracy of matching, the
ability to cope with outliers and noise is still limited. Fur-
thermore, the sparsity of the matches was not remarkably
amended.

To the best of our knowledge, it is the first time for us
to propose the Asymmetrical GMM(AGMM) with variable
weights for point sets matching where the feature similarity
is effectively integrated into GMM-based point sets regis-
tration framework. The feature similarities are encoded as
the weights of the Gauss components of GMM instead of
the identical weights for all Gauss components in Symmet-
rical GMM(SGMM). Extensive experiments on some typ-
ical datasets show that AGMM is more robust in the face
of excessive outliers and large distortion and rotation. Fur-
thermore, much more reliable matches can be found by the
proposed methods than feature-based matching method and
the other state-of-the-art algorithms combining feature and
position information.

1.2. The Contribution

1)The SGMM has been extensively applied to point sets
registration and achieved great success until now, but very
little attention is paid to the AGMM and hardly any inves-
tigation is involved in it. In this paper, we propose the AG-
MM for point sets matching. The SGMM can be regarded
as the special case of the AGMM when there is no available
prior feature information. In AGMM algorithm framework,
the feature similarities are encoded as the weights of the
Gauss components of GMM instead of the identical weight-
s for all Gauss components in SGMM framework. If one
data point is very similar to one model point in feature s-
pace their corresponding Gauss component will be awarded
a relatively larger weight, otherwise it will be punished with
a smaller weight.The embedding of the feature information
in AGMM is testified faster convergence, better robustness
to outliers, deformation and rotation and can be exploited
to handle more complex non-rigid transformation than only
position information used.

2) If we have obtained the initial match set by a certain
match method, we can simplify the AGMM to an extreme
situation, which can be used to remove mismatches. In this
situation, the weight of the GMM component which corre-
sponds to a match pair is given one while the other weights
are given zero. When the algorithm converges the matches
with low probabilities will be discarded. This mismatch-
es rejection algorithm is demonstrated to outperform many
state-of-the-art methods.

3) The traditional feature-based matching methods such
as SIFT feature match suffer from the excessive sparsity of
the match and low precision, which can be improved by
the fusion of the feature and position information. Howev-
er, the previous works in this area are concentrated on graph
matching and embedding space representation. By applying
AGMM, the feature similarity and spatial coherence can be
conveniently and naturally integrated in the identical GMM
framework for point sets matching. This strategy is testified
extremely effective to find much more correct correspon-
dences with higher accuracy than feature-based point sets
matching methods. The AGMM algorithm is also demon-
strated to outperform other matching methods combining
the feature and position information in state-of-the-art.

2. Asymmetrical Gauss Mixture Models for
Point Sets Matching

When using probability density estimation to solve the
alignment problem of two point sets, one point set is con-
sidered as the GMM centroids and the other one represents
the data points. Assume X = {xi|xi ∈ R2, i = 1, . . . , n}
and Y = {yj |yj ∈ R2, j = 1, . . . ,m} are respectively the
SIFT points extracted from a pair of images. We consider
the points in Y as m centroids of the GMM and the points
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in X as the data points generated by the GMM. The GMM
probability density function is

p(xi) =

m∑
j=1

pijp(xi|j). (1)

Suppose C(Y ) is the motion model of the points in Y
and ∀yj ∈ Y ,yj

∗ = yj + C(yj) is the new location of the
jth Gauss component. Accounting for noise and outliers
an additional uniform distribution is added. Denoting the
weight of the uniform distribution as 1− ω, 0 ≤ ω ≤ 1, the
mixture model is

p(xi|Θ, ω) = ω

m∑
j=1

pijp(xi|j) + (1− ω)p(outlier), (2)

where

p(xi|j) =
1

(2πσ2)
D
2

e−

∥∥xi−y∗
j

∥∥2

2σ2 (3)

is the jth Gauss component with respect to xi. p(outlier) =
1
n models the outliers and noise. pij(i = 1, . . . , n; j =
1, . . . ,m) is the mixture coefficient for all the Gauss com-
ponents. In the previous works [5, 8, 13], each component
in GMM is assumed to have the same weight and pij = 1

m
for all GMM components. Θ = {C(Y ), σ} is the motion
parameters and D is the dimension of the point sets.

However, besides considering the consistence of the lo-
cation of point sets, the feature similarity between point sets
is also an important factor that influences the reliability of
the correspondences. If one Gauss distribution centroid is
very similar to one data point in feature space it is reason-
able to give a large weight to this GMM component so that
the point pair with similar features has more chance to form
a correspondence. Therefore, in the proposed asymmetrical
GMM the weights are defined as follows:

pij =
e−α‖descr(xi)−decsr(yj)‖2∑m
k=1 e

−α‖descr(xi)−decsr(yk)‖2
. (4)

descr(xi) and descr(yj) respectively denote the SIFT fea-
tures of point xi and yj . α is a control parameter.

Thus, the likelihood is a mixture model of distributions
for inliers and outliers as follows:

L(Θ, ω) =

n∏
i=1

p(xi|Θ, ω). (5)

To effectively deal with point sets registration with more
complex transformation, we use Tikhonov regularization to
define the prior as follows:

p(C) = e−
λ
2 ‖C‖

2
H , (6)

where ‖C‖2H is the norm of C(y) in the Reproduction Ker-
nel Hilbert Space(RKHS). C can be solved using calculus
of variation and the optimal form can be written as the lin-
ear combination of kernels C(z) =

∑m
j=1 ϕjK(z, yj) =

KΦ, where K is a m × m kernel matrix. K(yi, yj) =

e−
1
2

‖(yi−yj)‖2

β , where β is a kernel bandwidth controlling
the local structure.

According to (5) and (6) the posteriori probability
p(Θ, ω|X) ∝ L(Θ, ω)p(C). Thus, we can solve the max-
imum a posteriori (MAP) problem to estimate the parame-
ters Θ and ω. This is equivalent to minimizing the negative
log-posterior ε(Θ, ω|X) as

ε(Θ, ω|X) = −
n∑
i=1

log(p(xi|Θ, ω)) +
λ

2
‖C‖2H, (7)

where p(xi|Θ, ω) is given by (2).

3. EM Algorithm
The Expectation-Maximization(EM) algorithm is an el-

egant algorithm to solve this MAP problem. We use the
EM algorithm to find the optimal Θ and ω. We first guess
the values of parameters(“old” parameter values) and then
use the Bayes theorem to compute a posteriori probability
distribution of the mixture components, which is the expec-
tation or E-step of the algorithm. In the M-step, the “new”
parameter values are then found by minimizing Q(Θ, ω),
the expectation of ε(Θ, ω). Omitting terms that are inde-
pendent of Θ and ω, Q(Θ, ω) can be written as

Q(Θ, ω) =
D

2
log σ2

n∑
i=1

m∑
j=1

pold(j|xi,Θ, ω)

+
1

2σ2

n∑
i=1

m∑
j=1

[
pold(j|xi,Θ, ω)

∥∥xi

−
(
yj +

m∑
k=1

ϕjK(yj ,yk)
)∥∥2]

− logω

n∑
i=1

m∑
j=1

pold(j|xi,Θ, ω)

− log(1− ω)
n∑
i=1

pold(outlier|xi,Θ, ω)

+
λ

2
trace(ΦTKΦ). (8)

E-step: Compute the posteriori probability distribution of
mixture components by the Bayes theorem:

p(j|xi,Θ, ω) =

pij

(2πσ2)
D
2
e−

∥∥xi−y∗
j

∥∥2

2σ2

ω
∑m
k=1 pikp(xi|k) + (1− ω)/n, (9)

where i = 1, . . . , n and j = 1, · · · ,m.

p(outlier|xi,Θ, ω) =
1− ω

nω
∑m
k=1 pikp(xi|k) + (1− ω) .

(10)
Formula (9) indicates the probability the sample xi match-
es with yj .The smaller the probability is, the less reliable
the match is. Therefore, the probability of the matches can
be used to filter those unstable matches after EM algorithm
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converges. Giving a threshold tp, the matches whose prob-
abilities are less than tp can be regarded as mismatches to
be removed.
M-step: Update parameters Θ and ω by minimizing the
energy function Q(Θ, ω).

Solving ∂Q
∂σ = 0 by (8), we can compute σ by

σ2 =

∑n,m
i,j=1 p

old(j|xi,Θ, ω)
∥∥xi − y∗j

∥∥2
D
∑n,m
i,j=1 p

old(j|xi,Θ, ω)
. (11)

Similarly, solving ∂Q
∂ω = 0, ω can be computed by

ω =

[ n,m∑
i,j=1

pold(j|xi,Θ, ω)

]
/

[ n,m∑
i,j=1

pold(j|xi,Θ, ω)

+

n∑
i=1

pold(outlier|xi,Θ, ω)

]
. (12)

And let ∂Q∂Φ = 0, we can get Φ by

(diag(P1)K+ λσ2)Φ = PX − diag(P1)Y , (13)
where 1 is a column vector of all ones, P is the matrix with
P (j, i) = p(j|xi,Θ, ω).

4. Single Gauss Model for Mismatch Rejection
In GMM framework, the point xi in X is generated by

the Gauss mixture models centered at yj(j = 1, · · · ,m),
as shown in (1). In the proposed AGMM model(Section 2),
the weight of each Gauss component is related to the feature
similarity between the data point and the Gauss distribution
centroid. We simply binarize the weights computed by (4)
into 1 and 0 by only giving 1 to the largest weight and 0 to
the others, which leads to the SGMR algorithm. This mean-
s, for each data point we have decided its match by feature
similarity. This matching process is actually the SIFT-based
feature matching.

Assume we have obtained the registration result between
point sets X and Y by a certain algorithm. Let S be the
match set between X and Y . If (xi,yj) is a match, we
have (xi,yj) ∈ S. Some mismatches may be included in
S. Therefore, pij in (1) can be rewritten as

pij =

{
1, (xi,yj) ∈ S
0, else . (14)

According to (2), (3) and (14) p(xi|Θ, ω) takes the form

p(xi|Θ, ω) =
ω

(2πσ2)
D
2

e−

∥∥xi−y∗
j

∥∥2

2σ2 +
1− ω
n

(15)

for all (xi,yj) ∈ S.
The negative log-posterior ε(Θ, ω) of the posterior-

i probability can be obtained by (7)

ε(Θ, ω) = −
n∑
i=1

log(
ω

(2πσ2)
D
2

e−

∥∥xi−y∗
j

∥∥2

2σ2

+
1− ω
n

) +
λ

2
‖C‖2H . (16)

We can still use EM algorithm to minimize (16) and the
expectation of (16) is just like formula (8).

For (xi,yj) ∈ S, the p(j|xi,Θ, ω) can be computed
by (9), (10), (14) and (15) as follows,

p(j|xi,Θ, ω) =
ωe−

∥∥xi−y∗
j

∥∥2

2σ2

ωe−

∥∥xi−y∗
j

∥∥2

2σ2 + (1−ω)
n (2πσ2)

D
2

, (17)

otherwise p(j|xi,Θ, ω) = 0. p(outlier|xi,Θ, ω) can be
written as

p(outlier|xi,Θ, ω) =
(1− ω)(2πσ2)

D
2

nωe−

∥∥xi−y∗
j

∥∥2

2σ2 + (1− ω)(2πσ2)
D
2

.

(18)

5. The Implementation Details

The SGMR algorithm filters the mismatches in the initial
match set by motion coherence of point sets [13]. When the
algorithm converges a transformation is learned from the
given match sets and a probability matrix P is obtained.
Those matches with probabilities less than a probability
threshold tp are considered to be less consistent with the
transformation and should be removed as mismatches. An
appropriate value of the threshold tp can bring good bal-
ance between precision and recall of the SGMR algorithm.
Parameter β defines the model of the nonrigid transforma-
tion and λ controls the degree of the coherence constraint of
point sets. In our experiments, we find our method insensi-
tive to parameters tp, λ and β. We empirically set β = 3.5,
λ = 5 and tp = 0.3 throughout this paper. The inlier ra-
tio ω is initialized to 0.3 and parameter σ is initialized as
σ2 = 1

m∗n∗D
∑n
i=1

∑m
j=1 ‖xi − yj‖2, Φ = 0. Parameters

ω and σ will be updated during the algorithm.
Similar to CPD [13], the AGMM algorithm aligns the

point sets by iteratively alternating between the correspon-
dence and the transformation estimation until convergence.
Different from the SGMR algorithm, the AGMM algorithm
just uses the information of the SIFT feature points extract-
ed from two images, not including the match information.
Since the SGMR algorithm is the special case of the AGMM
algorithm, the same settings of the parameters work well for
AGMM. The initially extracted two SIFT point sets are con-
sidered as data set and model set respectively. The weight of
each Gauss component is decided by the feature similarities
between the data points and model points, which is given by
formula (4). The matches are decided according to the prob-
ability matrix P after the algorithm converges. The maxi-
mum element in each column vector of P decides a match.
However, due to outliers and noise, the result may include
many mismatches. There are two alternatives to filter the
mismatches: (1) Filter unstable matches using the probabil-
ity threshold tp only. This is feasible when the scene is sim-
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Figure 1: Columns from left to right: 4 image
pairs (boat1,boat3), (graf1,graf4), (trees1,trees5) and
(bikes1,bikes3) are selected to visualize the results.

Figure 2: The mismatch eliminating results on the image
pairs in Fig. 1 by SGMR. The red arrows(true negative) and
black arrows (false negative) are the filtered mismatches,
and the blue arrows(true positive) and green arrows(false
positive) are the retained matches by SGMR.

ple. (2) Use fundamental matrix F and tp = 0.3 to discard
mismatches for a challenging scene. This combination is
proved to work well in most cases. Besides, other excellent
mismatch rejection methods can also be applied depending
on the situation.

6. Experiments

In this section we will present experimental results on
the application of our proposed SGMR algorithm and AG-
MM algorithm to some data sets. The main data set used
to test the proposed algorithms is the data set of Mikola-
jczyk et al. [12]. The reasons why we choose this dataset
lie in two-fold:1) It offers ground-truth for the performance
evaluation; 2) It contains challenging situations in matching
such as illumination, rotation, view point changing and so
on. The Mikolajczyk dataset includes eight groups of da-
ta, namely “bark”, “boat”, “graf”,“leuven”, “ubc”, “wall”,
“trees” and “bikes”. Each group has six images correspond-
ing to the same scene and forms five matching image pairs.
In the experiments on the Mikolajczyk datasets, we use the
method presented in [12] to identify the correct matches to
evaluate the performance. Also some other data sets are de-
signed to test the robustness of the proposed algorithms to
rotation, distortion, outliers and noise. We use the “VLFeat
toolbox” [17] with all the default parameters to extract SIFT
features throughout this paper.
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Figure 3: The precision (a) and recall (b) rate of SGMR over
all the forty image pairs [12] with different lambda and beta.
As a tradeoff, we take λ ∈ [4, 12] and β ∈ [2, 6].

6.1. Mismatch Rejecting by SGMR Algorithm

The Mikolajczyk dataset [12] is first used to evaluate the
mismatch rejection performance of the proposed SGMR al-
gorithm. The performance for mismatch removing is char-
acterized by precision and recall. We first use four typical
image pairs (boat1,boat3), (graf1,graf4), (trees1,trees5) and
(bikes1,bikes3) in Fig. 1 to illustrate the mismatch removing
performance of the proposed SGMR algorithm. A match is
represented by a directed arrow in Fig. 2 to show coher-
ence. We can see that the SGMR algorithm can filter most
of the obvious mismatches with tp = 0.3, which is shown
in Fig. 2.

In Fig. 3 we evaluate the proposed SGMR algorithm with
respect to the values of parameters β and λ on all the forty
image pairs in Mikolajczyk dataset [12]. We find the re-
sults insensitive to the parameters. For a wide range of β
and λ, both precision and recall do not change significantly.
Comparatively, the algorithm is more sensitive to β since
it reflects the inherent relationship of the model set. As a

0 0.2 0.4 0.6 0.8 1
0

200

400

600

800

1000

1200

1400

1600

1800

probability

nu
m

be
r 

of
 m

at
ch

es

 

 

true positive
true negative

Up to 21096

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

recall

pr
ec

is
io

n

 

 

Local Smoothness [14]
ICF [10]
Non−rigid RANSAC [16]
SGMR

(b)

Figure 4: (a) The distribution of SGMR’s p(j|xi,Θ, ω)(17)
for all the 40 image pairs in [12]. (b) The precision-
recall of the Local Smoothness [14], ICF [10], Non-rigid
RANSAC [16] and the proposed SGMR algorithm.
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Figure 5: Robustness test: outliers and deformation. (a) The
image pair “kampa” [9] and the marked 94 reliable match-
es(blue lines). (b) The number of correct matches with in-
creasing outlier ratio. (c) The number of correct matches
with increasing deformation.

tradeoff, the algorithm performs best for λ ∈ [4, 12] and β
∈ [2, 6].

We now test the effect of different tp on the mismatch
rejection performance of the SGMR algorithm. Fig. 4(a)
shows the distribution of the probability p(j|xi,Θ, ω)(17)
for all the matches found using the forty image pairs in
Mikolajczyk dataset [12]. The histogram bin width is set to
0.01. The blue line denotes the distribution of the true pos-
itive matches and the red line denotes the the distribution
of the true negative matches. From the figure we see that
almost all of the true negative matches are centralized in the
section with tp < 0.02 and almost all of the true positive
matches are centralized in the section with tp > 0.98. This
means that parameter tp can be set as any value between
0.02 and 0.98 to obtain satisfactory performance. There-
fore, we can point out that the parameter tp can effectively
discard the mismatches and the performance of the SGMR
is not sensitive to tp.

The overall mismatch removing performance is evalu-
ated by precision and recall. The precision-recall plot of
the SGMR algorithm with tp = 0.3 is given in Fig. 4(b).
Several state-of-the-art mismatch rejection algorithms [10,
14, 16] are used to compare with the SGMR algorithm. As
shown in Fig. 4(b), our proposed SGMR algorithm can get
the best precision-recall trade-off among all the algorithms.
And we find that the proposed SGMR algorithm is robust to
large view angle, image rotation, and affine transformation
since all these situations occur in Mikolajczyk dataset [12].

6.2. Point Sets Matching by AGMM algorithm

In this part, the performance of the proposed AGMM al-
gorithm is tested. We first testify the robustness of the pro-
posed AGMM algorithm to outliers, deformation and ro-
tation and compare with CPD. In Fig. 5, one image pair
“kampa” from [9] is chosen to carry out the outliers and de-
formation experiments. We first obtain a true correct match
set of the “kampa” image pair, shown in Fig. 5(a). Then the
outlier ratio is gradually increased to 90%. Outliers are ran-
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Figure 6: Robustness test: rotation. (a) The “semper”
dataset [7]. From left to right: the results of our algorith-
m is displayed in the first row while the second row shows
the results of CPD’s. We use the fundamental matrix to e-
valuate the results. The blue line indicates correct matches
and the red line indicate false matches. (b) The number of
correct matches with increasing rotation angle.

domly selected SIFT feature points on each image except
for the given correct matches beforehand. We can see from
Fig. 5(b) that the correct matches found by CPD gradually
decreases as the outlier ratio increases while the proposed
AGMM can always find all the correct matches, or even
more (the reason is that the randomly added SIFT feature
points may include a few inliers). In Fig. 5(c) the robustness
test to deformation is shown. Deformation is generated by
adding a Gauss white noise on each true correct match and
the degree of deformation is controlled by the parameter τ .
The results show that the robustness of the proposed AGM-
M algorithm is much better than CPD. For the experiments
in both (b) and (c) of Fig. 5 we conduct 30 trials with the
same settings and plot the mean and variance as well. The
rotation experiment is shown in Fig. 6, where the “semper”
dataset [7] is adopted. The “semper” dataset [7] contains
9 images of increasing rotation angle. We get eight image
pairs by matching the first image to the other eight images
respectively. For each image pair, we mark a set of true
correct matches(notice that this set may be different for dif-
ferent image pairs). Then we restart the search of the corre-
spondences between the point sets regardless of the existing
match relationship between them by using only the position
information of the two point sets to conduct the CPD algo-
rithm [13] and using the position information together with
the feature information of the point sets to conduct the pro-
posed AGMM algorithm. The test results demonstrate that
the proposed AGMM algorithm has better robustness to ro-
tation than the CPD algorithm.

Another dataset that we use to evaluate the perfor-
mance of the AGMM algorithm is still the Mikolajczyk
dataset [12] for its convenient quantitative evaluation. For
most of the image pairs in [12] the ratio of the outliers in
the extracted SIFT points exceeds 80% and for some image
pairs it exceeds 90%. Therefore, this dataset is challenging
for GMM-based point sets registration algorithms.

The iterative process comparison for the CPD algorith-
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Figure 7: The iterative process for both CPD[13] and AG-
MM using the image pair “bikes1v3”. The number of it-
erations and the found corresponding correct matches are
shown under each figure. Correct matches are displayed
in blue and false matches in red. Top row: the results of
CPD. CPD iterates 434 times and finally finds 1107 correct
matches. Bottom row: the results of AGMM. AGMM finds
1690 correct matches after only 53 iterations.
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Figure 8: Plot of the number of correct matches versus the
number of iterations for both CPD [13] and AGMM using
the image pair “bikes1v3”. The vertical dashed line indi-
cates that the algorithm converges here.

m [13] and the proposed AGMM algorithm is shown in
Fig. 7 and Fig. 8. We use the image pair “bikes1v3” in
column 4 of Fig. 1 to illustrate the comparison process. The
results show that the proposed AGMM algorithm converges
much faster than the CPD algorithm and can find more cor-
rect matches. For all the forty image pairs in Mikolajczyk
dataset [12] the average running time of AGMM and CPD is
respectively about 90s and 630s. A PC, which is equipped
with a 2.4GHz Intel i3 CPU and 4GB memory, is used.

As done for the SGMR algorithm, we also evaluate the
proposed AGMM algorithm with respect to the values of
parameters β and λ in Fig. 9 on all the forty image pairs in
Mikolajczyk dataset [12]. We find the results also insensi-
tive to the parameters like in the SGMR algorithm. There-
fore, we can still set λ ∈ [4, 12] and β ∈ [2, 6] for the AG-
MM algorithm.

In Fig. 10, we visually illustrate the performance of the
AGMM algorithm using the four image pairs in Fig. 1.
We first discard matches(yellow arrows) that dissatisfy the
epipolar geometry. Then tp = 0.3 is used to eliminate un-
stable matches(green arrows). The red arrows are the mis-
matches evaluated by the method in [12] and the blue arrows
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Figure 9: The precision rate(a) and number of correc-
t matches(b) of AGMM over the forty image pairs [12] with
different λ and β. As a tradeoff, we take λ ∈ [4, 12] and β
∈ [2, 6].

Figure 10: The illustration of the AGMM algorithm using
the four image pairs in Fig. 1. See the text for details.
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m [13] and the proposed AGMM algorithm is shown in
Fig. 7 and Fig. 8. We use the image pair “bikes1v3” in
column 4 of Fig. 1 to illustrate the comparison process. The
results show that the proposed AGMM algorithm converges
much faster than the CPD algorithm and can find more cor-
rect matches. For all the forty image pairs in Mikolajczyk
dataset [12] the average running time of AGMM and CPD is
respectively about 90s and 630s. A PC, which is equipped
with a 2.4GHz Intel i3 CPU and 4GB memory, is used.
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t matches(b) of AGMM over the forty image pairs [12] with
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Figure 10: The illustration of the AGMM algorithm using
the four image pairs in Fig. 1. See the text for details.
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are the final correct matches.
More comprehensive results are shown in Fig. 11. The

results of all of the eight groups of image pairs in [12] by the
AGMM algorithm and the other compared algorithms such
as SIFT [11, 17], CPD [13], RPM-TPS [5], ProgGM [3] and
PW [15] are illustrated. For each group of image pairs, the
top is the precision and the bottom is the number of correct
matches. Two results are given by the proposed AGMM al-
gorithm, one is AGMM with tp = 0 filtering and the other
is AGMM with F+tp = 0.3 filtering. The results show that
the proposed AGMM algorithm can find much more correc-
t matches with higher precision than SIFT match method.
The CPD algorithm fails for most of the image pairs due
to the lack of feature information in spite of its outstanding
performance in point sets registration. Our proposed AG-
MM algorithm is also demonstrated to outperform the other
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Figure 11: Precision and number of correct matches for dif-
ferent methods: SIFT [17], CPD [13], RPM-TPS [5], Prog-
GM [3], PW [15] and AGMM algorithm. Two results, AG-
MM with tp = 0 filtering(yellow line) and AGMM with
tp = 0.3 filtering(blue line) are plotted.

are the final correct matches.
More comprehensive results are shown in Fig. 11. The

results of all of the eight groups of image pairs in [12] by the
AGMM algorithm and the other compared algorithms such
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as SIFT [11, 17], CPD [13], RPM-TPS [5], ProgGM [3] and
PW [15] are illustrated. For each group of image pairs, the
top is the precision and the bottom is the number of correct
matches. Two results are given by the proposed AGMM al-
gorithm, one is AGMM with tp = 0 filtering and the other
is AGMM with F+tp = 0.3 filtering. The results show that
the proposed AGMM algorithm can find much more correc-
t matches with higher precision than SIFT match method.
The CPD algorithm fails for most of the image pairs due
to the lack of feature information in spite of its outstanding
performance in point sets registration. Our proposed AG-
MM algorithm is also demonstrated to outperform the other
compared algorithms in state-of-the-art. The AGMM algo-
rithm with tp = 0 filtering can find the most correct matches
for almost all of forty image pairs. The AGMM algorithm
with F+tp = 0.3 filtering may sacrifice some correct match-
es but almost find the most correct matches with the highest
precision among all the compared algorithms. Consider that
CPD [13] and RPM-TPS [5] use only the position informa-
tion of the point sets while our proposed AGMM algorithm
and the other two compared algorithms PW [15] and Prog-
GM [3] use both the position information and feature in-
formation of the point sets. Therefore, to some degree, the
comparison is unfair for the CPD [13] and RPM-TPS [5]
algorithms since they can be effectively used in many other
situations such as 2D and 3D point sets registration where
the feature information is not available. Here the aim of our
comparison just emphasizes two points: 1) The fusion of the
position information and feature information is superior to
the pure position information for point sets matching if the
feature information is available; 2) Our proposed AGMM
algorithm outperforms the other algorithms which combine
the position information and feature information for point
sets matching.

7. Conclusion

In this paper, we extend the classical SGMM-based point
sets registration to point sets matching based on the AGM-
M. The earning for doing this includes three aspects: 1) the
point pair with similar feature has more chance to form a
correspondence, which directly leads to faster convergence
than the SGMM-based method like CPD; 2) the robustness
to outliers, deformation and rotation is extremely enhanced;
3) Much more correct matches can be found than the meth-
ods in state-of-the-art. One by-product of the AGMM is the
Single Gauss Model for Mismatch Rejection (SGMR) algo-
rithm, where the weights are binarized into {0, 1}. Thus,
the AGMM framework is reduced to Gauss Model frame-
work where only the given point in the data set has a Gauss
distribution. A large number of qualitative and quantitative
comparison experiments demonstrate good performance of
the proposed SGMR and AGMM algorithms.
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