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Abstract

We present a video object segmentation approach that
extends the particle filter to a region-based image repre-
sentation. Image partition is considered part of the parti-
cle filter measurement, which enriches the available infor-
mation and leads to a re-formulation of the particle filter.
The prediction step uses a co-clustering between the pre-
vious image object partition and a partition of the current
one, which allows us to tackle the evolution of non-rigid
structures. Particles are defined as unions of regions in the
current image partition and their propagation is computed
through a single co-clustering. The proposed technique is
assessed on the SegTrack dataset, leading to satisfactory
perceptual results and obtaining very competitive pixel er-
ror rates compared with the state-of-the-art methods.

1. Introduction
In image object tracking, difficulties such as fast object

motion, changes of the object patterns or the scene, non-
rigid object structures, occlusions and camera motion are
common problems that must be handled by the system [28].
In this context, an object trajectory is generated by estimat-
ing the object location in each video frame.

Such an estimation has a crucial role in video editing,
postprocessing and interactive applications in which the
shape of the object should be considered. Objects are usu-
ally represented by a geometrical shape (e.g., an ellipse).
However, a fixed shape is a too simple representation of real
objects and applications using object’s shape to extract in-
formation about the scene (i.e.: gesture recognition) cannot
make use of these trackers and require video object segmen-
tation. Moreover, since a fixed shape does not allow seg-
menting the object from the scene, an updated model of the
target may be corrupted by those pixels that do not belong
to the object and are included inside the estimated shape.
Techniques such as [7] solve that problem by including an
object segment in the loop. One key distinction between

∗This work has been partially supported by the Spanish Ministerio de
Ciencia e Innovación, under project TEC2010-18094.

Figure 1. Video object segmentation using a region-based particle
filter. From left to right and top to bottom: original image, fi-
nal object segmentation, image partition and particles of the filter
formed with regions from the partition.

tracking and segmentation is that tracking systems are usu-
ally designed for real time purposes, while segmentation
systems may work off-line as the value of its applications
relies on obtaining accurate segmentations ([24], [27]).

In this paper, we propose a video object segmentation
based on a novel formulation of the particle filter algorithm
using a region-based image representation. The proposed
algorithm performs off-line object tracking in a reliable
manner and provides an accurate segmentation of the target
along the sequence. The inclusion of regions requires the
re-formulation of some aspects of the particle filter (Section
4), leading to satisfactory perceptual results and obtaining
a very competitive results compared with the state-of-the-
art methods even on sequences with rapid movement and
drastic object changes (Section 5).

2. Related work

Object tracking and segmentation is addressed in [5] us-
ing pixel-wise posteriors. In it, although good results are
obtained over a large database, errors appear due to the lack
of spatial information. We overcome this problem by con-
sidering the spatial information provided by the relations
among regions (Section 4.2.2). Motion estimation is used
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to obtain video object segmentation in [9]. Besides, an ap-
pearance model with spatial constraints is considered. De-
spite their promising results, some parts of the objects are
lost due to the importance assigned to each fragment during
the tracking. In [29], motion, appearance and predicted-
shape similarities are used to perform object extraction in
video sequences. However, this work assumes that objects
are spatially cohesive and characterized by locally smooth
motion trajectories. Our approach substitutes the motion
estimation step by a co-clustering (Section 4.2.1) to predict
the position and the shape of the object. In [17], a system to
segment foreground objects in video is presented using both
static and dynamic cues. This strategy produces satisfactory
estimations by discovering object-like key-segments, but it
is not robust when the foreground and background are simi-
lar. We use both shape descriptors and a contour-based rep-
resentation of the object to solve these errors (Section 5).

Object tracking is modeled as a Maximum Weight
Cliques problem in [20] to perform object segmentation in
all video frames simultaneously. In this approach, the shape
of the object is not predicted in adjacent frames when re-
gion similarity is computed. Thus, the segmentation perfor-
mance is degraded for fast moving objects. Our approach
overcomes this problem combining a co-clustering with a
tracking oriented adjacency graph.

In [27], objects are tracked by identifying stationary
statistics of both appearance and shape over time. In it, oc-
clusions and disocclusions are taken into account, obtain-
ing accurate segmentations of the object in challenging se-
quences. However, further work is required to deal with
occlusions caused by other objects and to improve the de-
tection of self-disocclusions. A similar approach is used in
[3] to identify static and moving objects in the scene.

In contrast with other tracking methods, particle filters
can robustly deal with occlusions and track objects in clut-
ter as they neither are limited to linear systems nor re-
quire the noise involved in the process to be Gaussian. In
[15], a particle filter with edge-based features is proposed.
This method has been widely used since it provides a ro-
bust framework for tracking curves in clutter. However, the
space of possible deformations is limited and some transfor-
mations of the object shape may not be correctly estimated.
We adapt this idea considering shape descriptors without
any restriction in the space of possible deformation.

Image-based features for particle filters were introduced
by [22]. In it, color histogram is used to robustly track ob-
jects in the scene. This feature has the advantages of being
scale invariant and robust to partial occlusions and rotations.
Moreover, it can be efficiently computed. In our work, we
use the Diffusion distance [18] instead of the Bhattacharyya
distance [4] for histogram comparison since it leads to bet-
ter perceptual performance (Section 4.2.2). As the color of
an object can vary through time, the target model is adapted

during temporally stable image observations in [23]. Note
that [22], [23] do not provide shape estimation.

We propose a region-based particle filter that allows
tracking and segmenting objects in video sequences. The
extension from the pixel model to a region-based model has
already been considered for object tracking. For instance,
a region-based tracker relying on the mean shift algorithm
[10] is presented in [25]. In it, objects correctly modeled
as given shapes are robustly tracked and segmented (e.g.,
faces modeled as ellipses). In our work, we overcome this
situation as we do not consider any geometrical shape to
represent the object (Section 4). In [21], a set of patches is
considered as regions to define the object, which is tracked
with a particle filter. Targets are tracked in challenging sit-
uations, but their shape is not estimated.

3. Particle filters in object tracking
3.1. The tracking problem

Let us consider the problem of estimating the state of a
system xk, that defines the evolution of a target at time k
given a set of measurements z1:k = {zj , j = 1, ..., k} up to
the same time instant:

xk = fk(xk−1, vk−1) (1)

zk = hk(xk, nk) (2)

where fk : Rnx × Rnv → Rnx and hk : Rnx × Rnn →
Rnz are a priori unknown and possibly nonlinear functions,
{vk−1, k ∈ N} and {nk, k ∈ N} are i.i.d. noise sequences,
and nx, nz , nv , nn are the dimensions of the state, measure-
ment, state noise vector and measurement noise vector.

3.2. Particle filters

A common way to solve this problem without impos-
ing any constraint is particle filters. Let us consider a set
of support points {x(i)

1:k, i = 1, ..., Ns} ∈ Ω ≤ RDx with
associated weights {w(i)

k , i = 1, ..., Ns}, where Dx is the
dimension of each support point, and Ω is denoted as the so-
lution space. Let us define a set of particles {x(i)

1:k, w
(i)
k }

Ns
i=1

that characterize the posterior p(x1:k|z1:k), where x1:k =
{xj , j = 1, ..., k} is the set of all states up to time k. Then,
the posterior p(x1:k|z1:k) can be approximated as:

p(x1:k|z1:k) ≈
Ns∑
i=1

w
(i)
k δ(x1:k − x(i)

1:k) (3)

where the weights w(i)
k are chosen using importance sam-

pling [12]. As this posterior is computed using a sequential
procedure, weights can be expressed as [2]:

w
(i)
k ∝ w

(i)
k−1

p(zk|x(i)
k )p(x

(i)
k |x

(i)
k−1)

q(x
(i)
k |x

(i)
k−1, zk)

(4)
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where q(x(i)
k |x

(i)
k−1, zk) is called importance density. Parti-

cles are drawn from this function that is a priori not defined.

3.3. Color-based particle filters

The color-based particle is presented here for further
comparisons with our region-based approach. This tech-
nique estimates the state of an object in a video sequence.
At each time instant, the algorithm receives an image (mea-
surement) and the object is tracked using a parametrization
of a geometrical shape and motion cues (state):

xk = {x, y,Hx, Hy, ẋ, ẏ} (5)

zk = Ik (6)

where (x, y) is the object position, Hx, Hy are the axis
lengths of a geometrical shape (rectangle or ellipse) and
(ẋ, ẏ) represent the object motion.

The filter which is most commonly used for video object
tracking in the literature [15], [23], [16] is the Sampling
Importance Resampling (SIR) filter proposed by [14].

In this SIR filter, the choice of importance density
q(xk|x(i)

k−1, zk) = p(xk|x(i)
k−1) is intuitive and simple to im-

plement. This choice states that each particle at time k is
drawn from a function that only depends on the particle at
k − 1. Substitution of this equality in Equation 4 yields to:

w
(i)
k ∝ w

(i)
k−1p(zk|x

(i)
k ) (7)

Moreover, a resampling step is applied at each time instant.
This process generates a new set {xi∗k−1}

Ns
i=1 by resampling

with replacement Ns times from the approximate discrete
representation of p(xk−1|z1:k−1). The result is an i.i.d.
sample of the function presented in Equation 3. Thus, the
weights are reset to wi

k−1 = 1/Ns and the expression to
compute the new weights at k becomes:

w
(i)
k ∝ p(zk|x

(i)
k ) (8)

These two considerations form the basis of the SIR color-
based particle filter algorithm. This method tracks objects
comparing the histogram of the pixels that lay inside a geo-
metrical shape (typically, rectangle or ellipse) representing
the object state and the histogram of the object model.

Resample: Given a set of Ns particles
Sk−1 ={x(1)

k−1, ..., x
(Ns)
k−1 }, another set with the same

number of particles S′k−1 ={x′(1)
k−1, ..., x

′(Ns)
k−1 } is created

using the SIR algorithm [14]. The new set of particles
S′k−1 is created by randomly sampling (with replacement)
the set Sk−1. Thus, some particles with high weights may
be chosen several times, while others may not be chosen as
the number of elements of the set does not change.

Propagation: Particles of the new set S′k−1 are propa-
gated using a function that describes the evolution of the ob-
ject between consecutive time instants as showed in Equa-
tion 1. Usually, this evolution is modeled by a linear
stochastic differential equation:

x
(i)
k = Ax

′(i)
k−1 +Bv

(i)
k−1 (9)

Those particle parameters contained in x(i)
t−1 that are sup-

posed to change between consecutive images are first esti-
mated using a deterministic matrix (A) in a prediction step.
Then, they are slightly modified using a random variable
v

(i)
t−1 with variance B to describe the trajectory and the evo-

lution of the object scale in k. This random component is
added in the perturbation step to the samples of the set cre-
ating Ns hypothetical states of the system.

Evaluation: The evaluation process assigns to each parti-
cle i a weight w(i) associated with the probability of correct
representation of the object. To weight the sample set, a
similarity measure is required. Color-based particle filters,
commonly relate this weighting with color distributions.

To weight the sample set, the similarity measure is com-
puted between the target distribution (object model) and the
distribution of the samples (object estimations). The distri-
bution of each particle is formed by those pixels included in
the geometrical shape defined by its propagated parameters.
Particles with a color distribution closer to the target dis-
tribution will be assigned high weights, meaning that they
represent the object better than those with lower weights.

3.3.1 Estimation

Once the weights of the samples are calculated, the mean
state of the system at each iteration can be computed as:

E[Sk] =

Ns∑
i=1

w
(i)
k x

(i)
k (10)

Since all the samples represent the same geometrical shape,
mean state is a new particle with the same shape and whose
parameters are defined by the weighted mean of the param-
eters of the Ns particles.

4. Region-based particle filter
In this section, we propose a region-based particle filter

to perform video object tracking and segmentation. The al-
gorithm is presented using the previous section structure to
allow comparing with the color-based approach.

Let us define a new representation of both the state and
measurement for the tracking problem in terms of regions:

xk =

no
k⋃
r

Rr
k (11)
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zk = [Ik, Pk] (12)

where Pk = {R1
k, R

2
k, ..., R

nk

k } is a partition of the image
Ik defined on a domain Ψ ∈ R2, nk is the number of regions
that form the partition, nok is the number of regions that
characterize the object with nok ≤ nk, and Ψ =

⋃nk

r=1R
r
k.

Given that the state estimation xk is formed using a set
of regions from an image partition Pk, several object rep-
resentations that could be computed at pixel level are not
allowed. In other words, analyzing a partition and assum-
ing that the solution must be formed by regions from this
partition, drastically reduces the solution space Ω. More-
over, particle propagation is no longer only dependent on
their previous state, it also depends on Pk (measurement).
Thus, the new importance density is:

q(xk|x(i)
k−1, zk) = p(xk|x(i)

k−1, zk) (13)

As shown in [12], choosing p(xk|xik−1, zk) as the impor-
tance density minimizes the variance of the weights wi

k so
that the effective sample size Neff [19] is maximized. Re-
placing Equation 13 into Equation 4:

w
(i)
k ∝ w

(i)
k−1

∫
p(zk|x′k)p(x′k|x

(i)
k−1)dx′k (14)

This integral over Ω involves the states represented by all
the regions of the partition and all their possible combina-
tions, which can be represented by a summation:

w
(i)
k ∝ w

(i)
k−1

∑
c

p(zk|xck)p(xck|x
(i)
k−1) (15)

This summation becomes intractable using a brute force ap-
proach. For each w(i)

k−1, its probability of being represented
by all the possible solutions in Ω (regions and combinations
of regions of Pk) should be computed p(xck|x

(i)
k−1) and eval-

uated p(zk|xck) (Section 4.3).

4.1. Resample

The resampling only considers the support points of the
tracked pdf represented by the particles and their associated
weights. These weights have been previously computed in
the Evaluation step. Thus, the resampling algorithm de-
scribed for the color-based approach is applied at this point.
However, the expression of the weights in the region-based
approach presented in Equation 15 shows that this process is
not performed at each time step. This can be inferred from
the dependence betweenwi

k andwi
k−1. The resampling step

is performed according to the Neff value to avoid the de-
generacy problem [2].

4.2. Propagation

The propagation of particles between consecutive time
instants is usually calculated in two steps ([15], [23], [6]).

4.2.1 Prediction

Prediction is performed to ensure a minimum quality of the
particles estimation. We propose to perform particle pre-
diction as a global process using the information provided
by all particles. This step will create a new set of particles
optimizing a certain score function over the representation
of the object in two partitions between consecutive time in-
stants. In order to compute a single operation for all par-
ticles, a co-clustering of both partitions is performed. The
co-clustering proposed in [13] is adapted to be used in a
tracking scheme. Its keypoints for the case of two partitions
are briefly described to motivate our choice and modifica-
tions, as well as to present some results (Section 4.3).

Co-clustering: Let us consider a pair of images
{Ij}j=k−1,k and their associated partitions {Pj}j=k−1,k.
Each of these partitions is formed by a group of nj regions
Pj = {R1

j , R
2
j , ..., R

ni
j } where Ψ ∈ R2 and Ψ = ∪nj

r=1R
r
j .

A co-clustering between partitions is defined by X ∈
{1, 0}n×c, where n = nk−1 + nk and c is the number of
clusters. Each column xl with l ∈ {1, ..., c} corresponds
to a single cluster. Regions from partitions are assigned to
only one cluster if matrix X is constrained to have unitary
rows. The score associated with X is computed as:

tr(XTQX) =

c∑
l=1

xTl Qxl (16)

where Q ∈ Cn×n is a matrix that measures affinities be-
tween regions. This matrix is constructed using an additive
score function over the elements of region contours [13].

Matrix Q is computed with similarities between pairs
of regions from the same partition (Intra image similari-
ties) and from different partitions (Inter image similarities).
In [13], intra image similarity is proportional to the num-
ber of contour elements that share both regions and their
color similarity. In turn, inter image similarities are cap-
tured comparing the HOG descriptor of their contour ele-
ments that are closer than 20 pixels. Then, co-clustering of
both partitions becomes an optimization problem:

max
X

tr(XTQX)

Xi,j ∈ {0, 1}∀i, j
∑
j

Xi,j = 1∀i (17)

This is a Quadratic Semi-Assignment Problem (QSAP)
[26] for which a Linear Programming relaxation was pre-
sented by [8] imposing distances between regions based
on the triangular inequality. Further relaxation approaches
([26],[13]) make use of distances defined over cliques in a
region adjacency graph. Considering these relaxations, this
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optimization can be stated as:

min
D

∑
i,j

qi,jdi,j

0 ≤ di,j ≤ 1 di,i = 0 ∀i di,j = dj,i ∀i, j
di,j ≤ di,k + dk,j ∀ei,j , ei,k, ek,j ∈ G (18)

where G is the previous adjacency graph and di,j ∈ {0, 1}
is the distance between regions i and j. Regions that belong
to the same cluster have distances equal to 0.

Prediction using co-clustering: Let us now extend the
previous co-clustering [13] to our tracking problem. At time
k, let us suppose that the tracked object has been estimated
at the previous time instant and that an object partitionP o

k−1

has been generated clustering regions from a fine partition.
In the ideal case, only two clusters (object and background)
form this partition. As we can consider these clusters as
regions in a different scale, we will denote them as regions.
Finally, we consider that an image Ik and a fine partition Pk

(measurement) are available at the present time instant.
Before the optimization, similarities expected between

regions from both partitions must be analyzed. Intra im-
age similarities are computed as in [13]. Inter image sim-
ilarity between regions l and m from partitions Pk and
P o
k−1 respectively should be proportional to pl,m(k,k−1) =

p(Rl,k|Rm,k−1). Three types of changes are considered in
our algorithm to model differences between regions from
consecutive partitions: changes of color/illumination, de-
formations and changes of position. In terms of probability,
we consider these processes to be independent:

pl,m(k,k−1) = p
Cl,m

(k,k−1)p
Dl,m

(k,k−1)p
Pl,m

(k,k−1) (19)

The color information is obtained from a local histogram
of pixels from the image in a neighborhood of boundary
elements. As each contour element can be represented by
two pixels in the image (one pixel from the analyzed region
and another from the adjacent region), two histograms are
computed in the direction of the normal. Each histogram
is centered on the pixel of the region which is closer to the
boundary in that direction and they are averaged. To com-
pute deformations, the information about the shape of the
boundary around each contour element is captured comput-
ing a HOG descriptor [11]. Finally, changes of position are
computed using the Euclidean distance between elements.

Similarity between contour elements is computed as
W(k,k−1)(l,m) = e(fl,k−fm,k−1)T Σ−1(fl,k−fm,k−1), where
fq,j is the feature vector of element q that belongs to the par-
tition at time j. This vector is formed as the concatenation
of the three types of descriptors that have been previously
described. In order to model fast movement and deforma-
tions, we allow contour elements which are closer than 100
pixels to be matched. Otherwise, W(k,k−1)(l,m) = 0.

In order to obtain a consistent co-clustering, similarity
information is propagated using an adjacency graph. In
[13], regions from Pk and P o

k−1 are considered adjacent
if at least one pixel of each region shares the same posi-
tion at both partitions. As in a tracking problem this con-
strain may not hold because of object and camera motion,
we define a tracking-oriented adjacency graph. In it, we al-
low any region from P o

k−1 to potentially be represented by
any region in Pk. We model this defining that each region
from P o

k−1 is adjacent to all the regions from Pk. Partition
P o
k−1 is formed by the minimum number of regions neces-

sary to define all particles in k − 1. This allows us to per-
form all particle propagations with a single co-clustering.
As regions in P o

k−1 have been previously labeled as object
or background, those having different labels are considered
to be disconnected. In turn, adjacency between regions in
Pk is defined using spatial connectivity.

Once the optimization problem is solved, a vector d of
distances between regions is obtained. This vector assigns
to each region of Pk a label from P o

k−1. Accordingly, each
particle at k − 1 can be propagated to k by selecting those
regions of Pk that have been assigned the same label than
the regions that formed the particle in P o

k−1 (Figure 2). As
a consequence, a global estimation of the movement for all
particles is achieved using a single optimization operation.

(a) P o
k−1 (b) Particle 1 in k − 1 (c) Particle 2 in k − 1

(d) Co-cluster in k (e) Prediction 1 in k (f) Prediction 2 in k

Figure 2. In (a) and (d) two clustered partitions at k − 1 and k are
presented. Images (b) and (c) show two different particles at k−1
and their propagation can be observed in (e) and (f) respectively.

4.2.2 Perturbation

The second step of the propagation process is to perturb the
estimated particles. This step is crucial to introduce diver-
sity between particles and create multiple hypotheses lead-
ing to a good estimation of the object when combined. Ran-
domness is used to generate these hypotheses.

As previously, let us consider Ω a subspace formed by all
the regions from a partition Pk and all their possible combi-
nations. This is the solution space of our tracking problem.
Let us consider a co-clustered partition PC

k after the estima-
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tion step. As the optimization has been globally performed
for all particles, PC

k also defines the union of regions that
form each particle. Thus, Ns points of Ω are sampled to an-
alyze. We name these points as anchor points. Each anchor
point is formed as a union of regions x(i) =

⋃Nr

r Rr,PC
k

.

Some regions that form the particle may belong to the
object while others may not. In order to find better esti-
mates of each anchor point, we will randomly search the
best representation of the object in a neighborhood of these
points included in Ω.

Two statements have been taken into account to perform
this search. First, as showed in Equation 13, constraining
the representation of the object to be formed by a set of re-
gions from a partition leads to an importance density func-
tion in which the measurement is involved. This means that
we can use the information from both image and partition to
generate new particles. Second, using this density function
the weight of each particle only depends on its representa-
tion at the previous time instant as presented in Equation
15. Thus, we can select as perturbed particle the best es-
timation of each anchor point in a restricted subspace of Ω
without any variation on its weight.

Each particle x(i) is perturbed as follows. First, a dis-
tance between the particle and each region of the partition is
estimated. This distance is calculated as the average of Eu-
clidean distances from each region pixel to the closest pixel
of a particle region. Regions which are closer than D pix-
els (typically 100) are considered as candidates to be added
to the particle, whereas all the regions that form the parti-
cle are considered as candidates to be suppressed. Then,
the likelihood of these regions to belong to the object is ob-
tained as L(Rj) = Qk,k−1(l, j) + Qk−1,k(l, j) to ensure
real values, where l is the union of regions that represent
the object in k − 1 and j is a region from k. Finally, this
likelihood is normalized (L′(Rj)) in the range [0, 1] being 0
and 1 the selected regions with lower and higher scores from
Pk respectively. The probability of change of each region is
defined as the probability of the region that belongs to the
particle to be suppressed and vice versa. It is computed as:

pC(Rj) =

{
1− L′(Rj), if j is part of the anchor point
L′(Rj), otherwise

(20)
Regions to be changed are randomly selected. Each region
is selected with a probability pS(Rj) ∝ e(pC(Rj)). Once
a region is selected, it is changed (included or suppressed
from the particle) if a realization from a uniform random
variable is lower than pC(Rj). This process is repeated until
C changes have been produced, creating C potentially new
particles. Those changes from potential new particles with
a Diffusion distance lower than the same value of the initial
anchor point are applied and a new particle is generated.

4.3. Evaluation

In the evaluation step, particles are weighted according
to Equation 15. As each particle represents an object seg-
mentation of the image, we compute these weights with an
expression based on region similarities using the additivity
property [13]. This way, we reduce the huge computational
effort of comparing the particle in the previous time instant
with all possible combinations of regions from Pk.

Thus, probabilities between combinations of regions, the
model and the particle at the previous time instant are as-
sumed to be proportional to scores of a similarity matrix:

w
(i)
k ∝ w

(i)
k−1

∑
c

p(zk|xck)p(xck|x
(i)
k−1) =

= w
(i)
k−1

∑
c

(
mTZxck

)(
(xck)

T
Q′x

(i)
k−1

)
=

= w
(i)
k−1m

TZXQ′x
(i)
k−1

(21)

where w(i)
k−1 is the weight of the ith particle at the previous

time instant, m, xck, x(i)
k−1 are binary vectors encoding the

regions that form the object in the initial partition, a certain
combination of regions from Pk and the regions that formed
the particle in P o

k−1 respectively. Matrices Z and Q′ con-
tain similarities between regions from the model and each
region from Pk and similarities between each region from
Pk and the regions that formed the particle in k−1. Finally,
matrix X is formed by the summation of matrices created
by all the possible combinations of regions from Pk. Note
that matrix Z is computed only once for all the particles
and Q′ is formed using the information from Q previously
computed in the prediction step of Section 4.2.1.

As all possible combinations of regions from Pk are con-
sidered, matrix X does not depend on a given particle. In
fact, it can be computed without any other knowledge than
the number of regions nk, being the value of the elements
in its diagonal equal to 2nj−1 and to 2nj−2 otherwise. Ac-
tually, we consider a matrix with elements equal to 1 in its
diagonal and elements equal to 0.5 elsewhere because par-
ticle weights are normalized after this process.

4.4. Estimation

The object is estimated averaging the states of the parti-
cles. In the color-based approach, as all samples have the
same geometrical shape, the average of the particles can be
computed as the average of the parameters. Note that in
the region-based case each particle has its own associated
object shape obtained through the propagation step (Sec-
tion 4.2). Thus, the object shape is estimated combining the
masks associated with all particles.

Let M (i) be the binary mask associated with the ith par-
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Ours [29] [3] [20] [24] [17] [9]
Birdfall 243 155 166 189 252 288 454
Cheetah 391 633 661 806 1142 905 1217
Girl 1935 1488 1214 1698 1304 1785 1755
Monkeydog 497 365 394 472 563 521 683
Parachute 187 220 218 221 235 201 502
Penguin 903 - - - 1705 136285 6627

Table 1. Segmentation results

ticle. The average mask AM is computed as:

AM =

Ns∑
i=1

w(i)M (i) (22)

where Ns is the total number of particles and w(i) is the
weight of the particle after the Evaluation step (see Section
4.3). The shape of the estimated object will be formed by
all those pixels with a value higher than a threshold To. In
this work To has been set to 0.5. As each mask M (i) is
composed by a set of regions of the current partition Pk, the
estimated object will also be composed by a certain number
of regions of Pk.

5. Experiments
In this section, we present both qualitative and quantita-

tive assessment of our region-based particle filter. The Seg-
Track dataset [24] is used for the evaluation and compari-
son with other state of the art methods due to its accurate
frame annotation. In all experiments, segmentations have
been performed using [1] and 80 particles have been used.

In order to quantitatively compare our results with other
methods, we compute the average pixel error rate per frame
as done in [17], [24], [9], [29], [3], [20]. As it can be ob-
served in Table 1, our method outperforms the results of
these methods in three out of six sequences of the Seg-
Track database (cheetah, parachute and penguin), in two
sequences it is ranked the fourth (birdfall and monkeydog)
and in one sequence it is ranked the seventh (girl).

Note that this rate measures the average number of pixels
that are misclassified per image without any distinction be-
tween foreground or background. To analyze the behaviour
of the algorithm taking into account this distinction, in Ta-
ble 2 we present mean and variance of precision and recall
values for each sequence.

From the qualitative point of view, the results on the
monkeydog video are particularly significant in two main
aspects. First, the correct prediction of the object in a
sequence with rapid movement is performed thanks to a
tracking-oriented graph and a co-clustering scheme oriented
to this task as presented in Section 4.2. This estimation
would not be possible considering adjacency between re-
gions as in [13]. Second, considering color information im-
proves the result of the co-clustering when the shape of the

µP µR σP σR

Birdfall 0.86 0.70 0.22 0.27
Cheetah 0.85 0.77 0.19 0.25
Girl 0.76 0.72 0.27 0.36
Monkeydog 0.78 0.73 0.28 0.22
Parachute 0.99 0.89 0.02 0.25
Penguin 0.95 0.91 0.08 0.10

Table 2. Precision and recall analysis.

object suffers strong deformations. At the first row of Fig-
ure 3, several qualitative results are presented. As it can be
observed, our method produces robust object segmentations
along the sequence. Images (c) and (d) show the frames
with lower and higher average pixel error, respectively. The
error introduced in (d) is mainly caused by the blurring ef-
fect of the arm when it moves very fast. However, the filter
corrects these errors in only three frames (Image (e)) even
when a low number of particles is used (80). The pertur-
bation step explores the space of solutions in an effective
manner and finds satisfactory estimates for the original an-
chor points, being capable of both correctly segmenting the
object and correcting errors from other steps.

On the cheetah and penguin videos, the color informa-
tion is not enough to perform a satisfactory segmentation
of the tracked object. In these situations, shape descrip-
tors and the orientation of the contours are the basis of a
good performance. However, as the background is similar
to the object, particles become very different and degener-
ation arises. This effect is eliminated using the resampling
step and co-clustering, which fuse erroneous parts of the
particles with the background. This process is used by the
parachute sequence to achieve such a high performance.

The most challenging sequence for our algorithm is the
girl video. In this sequence, an arm of the girl appears and
the algorithm is not capable to track it because it does not
have enough information. This is due to the fact that the Q
matrix, which is involved in both the co-clustering and the
random selection of regions to form the particles, is created
using contour information. As we use an object segmenta-
tion of the previous frame and the other arm is not part of
the contour, the co-clustering does not select the arm as a
part of the object. Moreover, as the probability of selecting
this region to include it as a part of the object is related with
its similarity with the object used by the co-clustering, the
likelihood of being selected is very low.

6. Conclusions
We present a novel technique for video object segmen-

tation based on a formulation of the particle filter in terms
of region-based image representation. Our approach is as-
sessed over the SegTrack database producing robust object
segmentations and leading to competitive results compared
with the state-of-the-art. The code used in this work will be
publicly available to encourage reproducible research.
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(a) Frame 5 (b) Frame 9 (c) Frame 12 (d) Frame 29 (e) Frame 32 (f) Frame 43

(g) Frame 1 (h) Frame 27 (i) Frame 47 (j) (k) (l)

Figure 3. Qualitative results.
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