
From Stochastic Grammar to Bayes Network:
Probabilistic Parsing of Complex Activity

Nam N. Vo and Aaron F. Bobick
Georgia Institute of Technology

namvo@gatech.edu, afb@cc.gatech.edu

Abstract

We propose a probabilistic method for parsing a tempo-
ral sequence such as a complex activity defined as compo-
sition of sub-activities/actions. The temporal structure of
the high-level activity is represented by a string-length lim-
ited stochastic context-free grammar. Given the grammar,
a Bayes network, which we term Sequential Interval Net-
work (SIN), is generated where the variable nodes corre-
spond to the start and end times of component actions. The
network integrates information about the duration of each
primitive action, visual detection results for each primitive
action, and the activity’s temporal structure. At any moment
in time during the activity, message passing is used to per-
form exact inference yielding the posterior probabilities of
the start and end times for each different activity/action. We
provide demonstrations of this framework being applied to
vision tasks such as action prediction, classification of the
high-level activities or temporal segmentation of a test se-
quence; the method is also applicable in Human Robot In-
teraction domain where continual prediction of human ac-
tion is needed.

1. Introduction
For a variety of activity monitoring tasks ranging from

surveillance to work-flow monitoring to quality control in-
spection, the challenge is to observe some complex activity
being performed and to be able to label which action has
been performed and often to parse or segment the input se-
quence into its component actions. Additionally, if a sys-
tem is intended to respond appropriately and at the correct
time with respect to an activity, it is necessary to perform
such parsing while the activity is occurring; examples of
this last task are seen in the domain of human robot interac-
tion [9, 10].

In this paper we consider the problem of parsing com-
plex activities where we recursively define such activities
to be compositions of some combination of complex (sub-
)activities and primitive actions. We presume as given the

Figure 1. Overview of our framework

temporal structure and decomposition of the activity, such
as a task plan of an assembly process where there may be
partially ordered or even optional steps. We further assume
that probabilistic low level visual detectors are provided
or learned from training examples; these detectors provide
noisy evidence as to occurrence of some primitive action.
The goal is to develop a probabilistic representation of such
activities that leverage the temporal constraints and local
sensing and which allows the system to assess, at any mo-
ment in time, the probability as to which actions have oc-
curred or will occur and when.

The overview of our framework is shown in Figure 1.
First, a stochastic-context-free-grammar is used to repre-
sent the activitys structure: AND operations in the gram-
mars production rules encode ordered composition of sub-
actions while the OR operations permit variation in the
course of actions. Next we develop a method to gener-
ate the Sequential Interval Network (SIN), a discrete-time
graphical model whose hidden nodes are actions timings,
observed nodes are the output of primitive actions detectors,
and edges encodes dependencies between action-action or
action-detection. Given the networks conditional probabil-
ity tables (CPT) computed using the learned duration mod-
els and the visual detector outputs, we describe how to per-
form exact inference by a message-passing algorithm. Our
framework has several advantages: (1) The grammar offers
a hierarchical representation of the activity, allowing multi-
ple layers of abstraction when defining action compositions
(2) The primitive actions detector is assumed to be a black-

box and can be engineered independent of the grammar. (3)
The information obtained from the inference output is rich:
the posterior probability of whether an action happens and
if so when it happens. The probability of an action being
active at a time step can also be inferred for every action
and every time step both in the past and arbitrarily far in the
future.

The following section discusses related works. In Sec-
tion 3, we describe the grammar notation. Detail of the
generation and inference on SIN are shown in Section 4.
We present several experiments in Section 5 and 6. We con-
clude and discuss future works in Section 7.

2. Related Works
Broadly, previous work in activity recognition can be

characterized as belonging to one of two classes of analysis.
The first focuses on recognizing short, low-level actions.
Common approaches use BOW framework with video fea-
ture such as STIP, HOG3D, Cuboid [24], Dense Trajectories
[23]. When these short time actions appear in a sequence of
such primitives, there is the more challenging tasks of seg-
menting the sequence or localizing the actions within the
sequence. For example in [19, 8], SVM is used for classi-
fication and segmentation is chosen to maximize the total
SVM score using dynamic programming. Amer et al [2]
use Sum Product Network and Tang et al [22] use hidden
semi-markov model (HSMM) to exploit temporal structure
for action recognition and event detection. Both leverage
BOW feature representation.

The second type of activity representation and recogni-
tion methods considers more complex activities that can be
meaningfully decomposed into smaller components. A va-
riety of models have been proposed to represent the com-
positional structure and to perform the video analysis. An
popular line of approaches is to detect a sequence of dis-
crete events from the raw visual input, and then apply string
parsing technique. In [11, 16], traditional stochastic context
free grammar parsing algorithm was adapted for Computer
Vision problems; adjustments were made to handle different
types of errors. To the same end, Damen et al [4] proposed
Attribute Multiset Grammars which can encode richer con-
straints on activity structure. For parsing, an automatically
generated Bayesian Network is used to find the detections
that correspond to the best explanation. Albanese et al [1]
used Probabilistic Petri Net to detect interesting human ac-
tivities. In [15], Probabilistic Suffix Tree was used to learn
the pattern of symbols (or ”actionlets”) for early detection
of on-going activity. Similarly in [21, 18], AND-OR gram-
mar is learnt from example strings of symbols, each repre-
sents an action according to the grammar’s language. The
learnt grammar discovers the pattern of actions and can be
used for prediction. This, however, assumes that the string
is not noisy i.e. the primitive action detectors are accurate.

Different from these approaches, we assume detection of
primitive actions is not a discrete set of events, but more
general: a “heatmap” that represents the action likelihood
for every interval, hence our framework can principally han-
dle wide range of detection uncertainties.

The approaches most related to our work are Dynamic
Bayes Network (DBN) methods [20, 14] in which the sys-
tem’s state encodes when each action starts and ends. Infer-
ence by a particle filter is done in streaming mode. While
the current state can be inferred, it is computationally infea-
sible to derive the distribution of the start and end of actions
at arbitrary points in the past or future (prediction) using all
available observation up till the current time. Koppula et al
[13] introduce Anticipatory Temporal Conditional Random
Field, which is an undirected graphical model designed to
run online like a DBN. Prediction is done by extending the
network into the future. Most recently, Wei et al [25] pro-
posed method for modeling sequence that could incorporate
rich information (duration and object/human poses) about
each action. However, these approaches have to resort to
approximate inference since it is infeasible to explore every
possible state of every timesteps. Our framework can be
considered a class of segment model and HSMM [17, 26].
By reasoning on the timings, it has the similar rich capabil-
ity while permitting exact inference.

3. Modeling complex activity structure by a
Stochastic Grammar

The complex composite activity can be represented in
hierarchical fashion: the activity consists of several actions,
which can in turn consist of even smaller actions and so on.
Therefore we define two types of actions: the action that
is represented as a composition of other actions, and the
primitive action which is explicitly modeled using learned
duration model and visual detector. The whole activity is
the top-level composition.

We use a stochastic grammar to model this hierarchical
structure. The grammar is formally defined as G = (S, T,
N, R) where: T is the set of terminal symbols, correspond-
ing to the primitives, N is the set of non-terminal symbols,
corresponding to the compositions, S is the starting symbol,
corresponding to the top-level activity, R is the set of prob-
abilistic production rules, which define the compositions.
The stochastic component of the grammar is reflected in the
probabilities associated with these production rules.

3.1. Compile the grammar
Before generating SIN, a preprocessing step is necessary

to convert the original grammar to a “compiled version”
that satisfies three constraints. Two of these constraints are
merely syntactic and do not restrict the structure of the top
level activity. The last constraint places a string-length lim-
itation that bounds the length of time it takes to complete

(a) (b)

(c)
Figure 2. Example activity: ”S → (ab | ba) c (d | ∅)”. Proba-
bilities associated with the OR-rules were not shown in this figure.
Other equivalent representations: (a) the compiled grammar, (b)
the AND-OR tree, (c) Acyclic Finite State Machine

the activity.

1. Each production rule must be either an AND-rule or
an OR-rule. Mixing of AND and OR operations in
one rule is not permitted. However, such rule can be
trivially converted to several pure AND-rules and OR-
rules. Note that since the grammar is stochastic, each
symbol on the right hand side of the OR-rule is associ-
ated with a probability and they sum to 1.

2. Every symbol can only appear on the right hand side of
a production rule at most once. That is every copy of
a single action that appears in more than one rule must
be a distinct instance. However, these instances will
share detectors and duration models (described later)
making the system no more difficult to implement.

3. The grammar cannot generate arbitrary long strings
since our Bayes network will cover all possible se-
quences. This means rules causing loop such as: ”S →
SA | A” are not allowed. Explicitly unrolling such
loops to a maximum number of times can be done to
avoid this situation.

An example grammar is show in Figure 2.a. The top-
level activity is a partially ordered sequence of the actions
a, b in any order, followed by action c, ending with an op-
tional action d. Figure 2.b displays the AND-OR tree of the
grammar.

4. Sequential Interval Network (SIN)
We describe how to generate the network that will rea-

son about timings in sequential data. Our input will be the
compiled grammar of the activity. First we define random
variables As and Ae representing the starting time and end-
ing time for every action A, and let ZA be the observa-
tions of the detector associated with action A; we describe
ZA shortly. Our formulation is defined on a discrete and
bounded representation of time where 1 ≤ As ≤ Ae ≤ T ,
where T is defined to be large enough to cover all varia-
tions in the activitys length. Depending on the course of
actions as permitted by the grammar, action A may hap-
pen or it may not. We employ the special value −1 to
denote the case when action A does not happen. We will
use the notations (∃A) and (!A) to stand for the case A
happens (1 ≤ As ≤ Ae ≤ T) and A does not happen
(As = Ae = −1).

We now design a network that includes nodesAs, Ae and
observations ZA for every symbol A in the grammar. The
basic idea is that SIN is constructed in a hierarchical fash-
ion, similar to the AND-OR tree (Figure 2.b). To do so, we
describe how to construct it recursively for the three cases
of action primitives, AND-rules, and OR-rules. We then
show a recursive message passing algorithm to perform ex-
act inference on the constructed network; the output of the
inference are the posterior distributions of the start and the
end of every action P (As|Z), P (Ae|Z) including the pos-
sibility that the action does not occur (As = Ae = −1).

4.1. The primitive v
The portion of the network that corresponds to a primi-

tive v is shown in Figure 3.a. We use the notation Zpre(A)

and Zpost(A) to stand for the observation of all actions that
happen before A and after A, respectively. There are two
conditional probabilities required for this component:

The condition probability P (ve|vs): represents the
prior information about the duration of action v. In our im-
plementation we define: P (ve|vs) ∝ N(ve − vs;µv, σv)
if ve − vs ≥ dminv , or 0 otherwise, where N(.; .) is
the Gaussian density function and µv, σv are parameters
learned from labeled training data. Note that the Gaussian
is truncated to avoid too small (or even negative) duration.
For the special case when the action does not happen the
duration is defined as: P (ve = −1|vs = −1) = 1.

Likelihood P (Zv|vs, ve) : each primitive has a visual
detector that outputs a detection score Fv[α, β] represent-
ing the evidence that the action starts at time α and ends
at time β for every possible interval (α, β) of the range [1,
T] (covering the entire activity). Then the likelihood can
be computed based on that detection: P (Zv|vs = α, v.e =
β) = hvFv[α, β] for some constant hv . Calculation of Fv
can be assumed to be a black box procedure.

We also need to define the likelihood for the special

(a) (b)

(c)
Figure 3. Structure of the network: (a) primitive v, (b) composi-
tion A defined by AND-rule A → M N , (c) composition A defined
by OR-rule A → M | N

case P (Zv|vs = −1, ve = −1) which can be written as
P (Zv|!v) = hvFv[−1,−1]. We assign to Fv[−1,−1] a
“null value” defined as the expected detection score (Al-
ternatively if the detector can detect if the action does not
happen, it can be incorporated into this likelihood).

4.2. The composition defined by AND-ruleA→MN

This rule defines the action A to be the sequence of sub-
action M and N (possibly more). The network is shown
in Figure 3.b. Here we make some important assumptions:
(1) the start and end of the composition are the start of the
first action and the end of the last action in the sequence
respectively (As = Ms, Ae = Ne), (2) the end of one
action is equal the start of the next action in the sequence
(Ns = Me),1 (3) the observation of the action consists of
all observations of its sub-actions ZA = ZM,N

4.3. The OR-rule composition A→M | N
Figure 3.c shows the OR network structure. The OR-rule

defines a composite action A to be either M (∃M and !N ,
which means As = Ms, Ae = Me, Ns = Ne = −1) or
N (∃N and !M , which means As = Ns, Ae = Ne,Ms =
Me = −1).

The standard approach to realizing this ”OR” condition
in a Bayes network is to use the multiplexer CPT, with
a ”selector” variable [12] which we write as Ai in our
network. Ai ∈ {M,N} indicate which case it is (∃M
or ∃N). The prior probability P (Ai|∃A), or equivalently
P (∃M |∃A) and P (∃N |∃A), is extracted from the gram-
mar’s production rule. Note that it can be manually de-
fined or learned from training data (usually we will choose
P (Ai = M |∃A) = P (Ai = N |∃A) = 0.5, unless other-
wise stated).

1If time between actions is needed we can insert a special DUMMY
action between them.

Finally for every composition A, we can define
P (ZA|!A) =

∏
M in A P (Z

M |!M). Note that scaling the
likelihood P (Zv|vs, ve) does not affect the final result.
Therefore in the implementation we could choose the scal-
ing such that hvFv[−1,−1] = 1 for every primitive v, then
we can safely ignore the factors P (ZA|!A) for every A.

4.4. Exact inference by message passing

Given the constructed network, we now compactly show
a 4-step inference process (a more explicit description
will be given in the supplemental document). Beside
the CPT P (ve|vs) and P (Zv|vs, ve) described in section
4.1, we need three more inputs: (1) The prior P (∃S),
(2) P (Ss|∃S): the constraint about the start, and (3)
P (Zend|Se,∃S): the constraint about the end. We set
P (∃S) = 1 to make following formulation simple (though
rule such as ”S → A | ∅” can be used to emulate the case
where the activity does not happen all together). For the
task of activity segmentation, we can have: the start is the
first time step/frame and the end is the last time step/frame
of the test sequence (experiment in section 6). On the other
hand, we can assume uniform distributions about the start
and the end of the activity (experiment in section 5). In
that case, our framework effectively performs detection and
parsing at the same time.

Step 1 - Forward phase: Starting from P (Ss|∃S), the
propagation is performed from the high level actions to their
subactions recursively, from the start of the action to the
end, integrating all observations in the process. The out-
put is P (As, Zpre(A)|∃A), P (Ae, Zpre(A),A|∃A) for every
action A.

For primitive v, given P (vs, Z
pre(v)|∃v): we

can multiply it with the duration factor P (ve|vs)
and visual observation factor P (Zv|vs, ve) to get
P (vs, ve, Z

pre(v),v|∃v). Then marginalization can be
done to get P (ve, Zpre(v),v|∃v) .

For AND-rule A → MN : given P (As, Zpre(A)|∃A),
the variable Ms has the same distribution. Recursively per-
form forward phase on M to get P (Me, Z

pre(A),M |∃M).
Next the variable Ns has the same distribution,
so we can perform forward phase on N to get
P (Ne, Z

pre(A),M,N |∃N). The final result is the same
as distribution P (Ae, Zpre(A),A|∃A).

For OR-rule A → M | N : given P (As, Zpre(A)|∃A),
we can represent the distribution of Ae in term of
Me and Ne. For example if A is M, then the
distribution P (Ms, Z

pre(M)|∃M) is the same as As,
we can therefore perform forward phase on M to
get P (Me, Z

M,pre(M)|∃M). Similarly we can find

P (Ne, Z
N,pre(N)|∃N), then distribution of Ae is:

P (Ae = β, ZA,pre(A)|∃A) =
P (∃M |∃A)P (ZN |!N)P (Me = β, ZM,pre(M)|∃M)+

P (∃N |∃A)P (ZM |!M)P (Ne = β, ZN,pre(N)|∃N)

Step 2 - Backward phase: Similarly, starting from
P (Zend|Se,∃S), we compute P (Zpost(A)|Ae,∃A) and
P (ZA,post(A)|As,∃A) for every action A (propagation in
the opposite direction to the first step).

Step 3 - Compute the posteriors: by multiplying
forward and backward messages, we get P (As, Z|∃A),
P (Ae, Z|∃A) for every action A. If v is a primitive, we can
have the joint distribution:
P (vs, ve, Z|∃v) = P (vs, ve, Z

pre(v),v|∃v)P (Zpost(v)|ve,∃v)
Also we can find P (Z) =

∑
t P (Ss = t, Z)

Step 4 - Compute the happening probability: starting
with P (∃S|Z) = P (∃S) = 1, we find P (∃A|Z) for every
action A recursively.

For AND-rule A → MN : given P (∃A|Z), then
P (∃M |Z) = P (∃N |Z) = P (∃A|Z)

For OR-rule A→M | N : given P (∃A|Z), we compute
(apply similar formulas for N):

P (∃M,Z|∃A) = P (∃M |∃A)
∑
t>0

P (Me = t, Z|∃M)

(1)

P (∃M |Z) = P (∃A|Z) P (∃M,Z|∃A)
P (∃M,Z|∃A) + P (∃N,Z|∃A)

(2)
Output: the probability of action A happening

P (∃A|Z), and if that is the case, the distribution of the start
and the end P (As, Z|∃A), P (Ae, Z|∃A), or even the joint
of them if A is a primitive.

4.5. Interpreting the result for recognition, detec-
tion/prediction and segmentation

First if a symbol A is on the right hand side of an OR-
rule, then P (∃A|Z) is the posterior probability associated
with that OR-rule. Hence we can do action recognition and
infer the most probable course of actions.

Secondly we can compute P (As|Z), P (Ae|Z):

P (As|Z) = P (∃A|Z) P (As, Z|∃A)∑
t>0 P (As = t, Z|∃A)

(3)

for values between 1 and T (note that P (As = −1|Z) =
P (!A|Z) = 1 − P (∃A|Z)). These distributions are shown
in the experiment in section 5. Using these distributions,
prediction of when an action starts or ends can be made by
picking the expected value, or the value that maximize the
posterior. Even better, one could consume this whole distri-
bution to account for the inferred uncertainty depending on
specific application.

Figure 4. The toy assembly task. (a) Example input frames and
hand detection result. (b) The temporal structure in the form of
state machine. Each box is an AND composition of a number of
primitives (shown in the bracket). The subject first assembles the
body part; follow by the optional wheel part and one of the two
nose parts. Then the wing part and tail part can be done in any
order. Finally the subject puts the sticker on the model. There are
40 different primitive actions and 12 complete task variations.

These results can be mapped back to the original gram-
mar: to compute the distribution of actions’ timing in the
original grammar, one can combine the distributions of sep-
arate actions in the compiled version corresponding to the
same action in the original version.

For the task of labeling frames, the probability of a time
step t having the label of primitive v can be computed easily:

P (labelt = v|Z) =
t∑

α=1

T∑
β=t

P (vs = α, ve = β|Z) (4)

We obtain the distribution of the label of time step t. If
A is a composition, P (labelt = A|Z) can be found be sum-
ming over all its subactions. Therefore temporal segmenta-
tion can be done in any hierarchy level by choose the label
that maximize the probability. We perform activity segmen-
tation in term of primitives in the experiments to demon-
strate this feature. Alternative method of segmentation is to
derive the parsing with highest probability (the most proba-
ble course of actions), estimates the start and the end of the
actions in that sequence, and then labels the frames.

4.6. Implementation Explanation
The primitive detector is the only component that pro-

cesses the test sequence and it is particularly important. Not
only does it affect the action localization result, it impacts
the OR-rule situations. For example given A → M |N , a
strong detection of subactions in M can make P (∃M |Z)
higher, while diminishing P (∃N |Z) at the same time.

We assume this procedure is a black-box so that mak-
ing use of different kinds of detectors is possible. Note that
the calculation P (Zv|vs = α, ve = β) ∝ Fv[α, β] can
leverage all the observation data available, not just the seg-

Figure 5. (best view in color) Example posterior distributions of the starts of some actions (first primitive of each part) at 3 different time
steps (computed using Eq.3, note that the special value (-1) is not shown). In order to observe them easily, each distributions is scaled so
that its peak have the same value as the probability that action would happen (e.g. for body1, it is 1; for nose ab1, it’s 0.6 in the first
timestep and about 0.99 in the last timestep; for nose c1, it’s 0.4 and then 0.01)

ment [α, β]. If it is a likelihood based detector, then the
score can be used directly. If it is a discriminative method,
then a post-processing step to calibrate the score is needed
(because each detector might output different kinds of con-
fidence scores). For example one can normalize the SVM-
score and apply a sigmoid function, or apply a exponential
function to the negative of the energy-score in order to ob-
tain a score that better indicates the likelihood. The likeli-
hood value 0 is usually discouraged as it could nullify the
likelihood of other actions.

Computational complexity: The inference complex-
ity is linear in number of nodes (number of actions in the
grammar: K) and the size of CPT (T 2), i.e. O(K.T 2).

Parsing in streaming mode: This can be done by con-
structing the entire network at the beginning, with all like-
lihoods initialized using the expected detection score (the
“null value” Fv[−1,−1]). As new observations are ob-
tained, likelihoods are recomputed and the inference pro-
cess is re-performed.

5. Toy assembly task experiment
To demonstrate the capability of SIN, we designed a

simple toy assembly task, where the human operator takes
wooden pieces provided in 5 different bins in the workspace
and puts them together to construct an airplane model. The
tasks structure is shown in Figure 4 and the subjects will
follow this recipe. Our dataset consists of 29 sequences;
each one is about 2-3 minutes long. Results are generated
by performing 20 trials where on each trial 3 sequences (1
of each airplane model A, B and C) are randomly selected
for testing and the remaining are for training.

Each primitive action is defined as getting a piece from
a bin and assembling it. The start of the action is defined
as when the hand reaches the piece. In order to detect such
actions, first we implement a simple color blob detector to

Figure 6. In this example, detectors of actions reaching for pieces
in bin 3 are disabled. Here we show all actions that actually happen
in this sequence.

detect the hand positions in the input frame (note that its
performance is not extremely accurate: it fails to to detect
the correct hands roughly 30% of the time). Then we can
compute Fv[α, β] ∝ N(Hα;µv, σv) + uv , where Ht is
the position of the hands at frame t, N(.;.) is the Gaussian
density function and parameters µv, σv are learned, and uv
is a small uniform component representing the likelihood in
case the hand detector fails. Notice that: (1) in this case
the action detectors reduce to special case: event detectors
of the actions starts; (2) actions corresponding to different
pieces in the same bin will end up having similar detectors
(our method naturally resolves this ambiguity).

Qualitative Result: in Figure 5, some example poste-
rior distribution outputs when running our method on a se-
quence in streaming mode are shown (we encourage readers
to watch the supplementary video). At first no observation
is available; the distributions are determined by the prior
information about the start of the task (which we set to be
a uniform in first 30s) and duration models of primitives.
In the second plot, some first actions (Body and Nose) are
detected; however it is still not clear which model is being

done, hence the distributions of all possible actions over-
lap both in the past and future. Finally, these uncertainties
are resolved when the subject is about to finish TailA part.
It is recognized that model A is being assembled and the
next actions going to be WingA; distributions of model B
and C’s actions have all diminished. As we can see as time
progresses: (1) ambiguities both in the past and future are
resolved, (2) the distributions get tighter, hence the predic-
tion of when the actions are going to happen becomes more
certain.

Our method can perform robustly in the presence of
noise (i.e. some detectors are weak and generate false pos-
itives or false negatives detections). In Figure 6, we show
the result on the same sequence, only this time we com-
pletely disable the detectors of all actions involving bin 3.
There is great uncertainty at the beginning, but eventually
the system is able to recognize the sequence of actions. The
timings of bin 3’s actions are estimated based upon the de-
tection of other actions and the temporal constraint between
them (e.g. body3 is between body2 and body4).

Quantitative Result: we can use the mean of the distri-
butions as the timing estimation, and then the event local-
ization error can be defined as the difference between this
estimation and the true timing. Figure 7 shows how the
result changes as more observation is available: the classifi-
cation of the model being assembled (A, B or C) gets better,
the average localization error of every actions’ start time de-
creases, and the entropy of those distributions (representing
the uncertainty) decreases. When the whole sequence has
been seen, the average localization error is less than 1 sec-
ond. We also performed segmentation in offline mode (all
observation is available) and the accuracy is 91.8%.

Note that by taking the mean of the distributions, we are
making a guess that minimizes the squared error. On the
other hand, one can integrate a custom cost function over
the distribution in order to make a prediction that mini-
mizes the expected cost. In earlier work [7] we developed
a linear-chain only method (no grammar) to apply in a Hu-
man Robot Collaboration context where the inference runs
online in real-time. The robot was required to anticipate
when a human would need a given part so that it could make
a plan as to when to fetch bins and when to remove them.
The goal was to create a plan that minimizes the human op-
erator’s idle time; in that situation the robot considered the
entire timing distribution not just the mean.

6. Recognition and Segmentation experiment
We conducted two different activity segmentation exper-

iments. In the first experiment, we constructed long se-
quences of multiple actions by concatenating short videos
from Weizmann dataset [3]. Our method performed com-
petitively in comparison to discriminative methods in [8]
and [19]. Detail and result of this experiment is in the sup-

Figure 7. Result on our toy assembly dataset: (a) accuracy of
model classification, (b) average localization error and (c) entropy
of all actions’ start

plemental document. In the following secton, we describe
the second experiment, which is much more challenging.

6.1. GeorgiaTech Egocentric Activity dataset
The GeorgiaTech Egocentric Activity dataset (GTEA)

[5, 6] consists of 7 high level activities such as making a
cheese sandwich or making coffee; each action is performed
by 4 subjects. There are 61 primitives (such as take spoon,
take cup, open sugar, scoop sugar spoon, open water, pour
water, etc). Following [6], 16 sequences are used for train-
ing and 7 for testing.

For detection, we obtained the beginning state detection
scores SB and ending state detection scores SE of every
primitive from the author [6] (the classification accuracy
is 39.7%). Since these raw scores are not a good indi-
cator of the likelihood, we define our detection score of
a primitive v as Fv[α, β] ∝ (SB [v, α]SE [v, β])

2 to mag-
nify the difference between positive and negative detec-
tions. We also test a 2nd setting, where we use Fv[α, β] ∝
(SB [v, α]SE [v, β])

10.
The grammar is very important and design of a good

grammar is not trivial (this will be discussed in next sec-
tion). We derive our grammar using training sequences in a
very simple way:
S → Activity1 | Activity2 | ...
Activity1→ Sequence1 | Sequence2|...
Sequence1→ p action1 p action2 p action3...
...
This exemplar-like approach effectively matches the test-

ing sequence with all the training data to find similar se-
quences (even though they are not exactly the same).

Our segmentation accuracy is 51% in the first detection
score and 58% in the 2nd setting, compare with [6]’s 42%
and [5]’s 33%. One example result is shown in Figure 8.

Unlike [6], our method models the global structure of the
activity and is able to natively classify high level activity
using posterior probabilities associated with the first OR-
rule. In this experiment, our method correctly classifies the
high level activity label of 6 out of 7 test sequences.

7. Conclusion
We have presented a novel framework for modeling com-

plex composite activity using a Stochastic Grammar. Pars-

Figure 8. Example Segmentation result on GTEA of the activity:
making Cheese Sandwich.

ing a sequence is done by performing message passing on
the generated Bayes Network, called Sequential Interval
Network. As shown in the experiments, our method outputs
the posterior distributions of: (1) all actions’ timing, which
can be used for localization/prediction of actions/events, (2)
strings realized by the grammar (the sequence of actions),
which can be used for classifying high level activity or de-
riving sequence that best explains the observation, and (3)
frames’ label which can be used for activity segmentation.

For future work, we consider a dynamic time resolution
approach for time series to speed up the inference speed.
That way, even sequences with length of hours can be pro-
cessed efficiently. While the grammar is flexible and can
be constructed using expert’s knowledge, designing a good
grammar is not trivial. Moreover, it is desirable to learn it
from training data, so the problem of grammar induction is
very relevant to our work. Finally, the grammar can be ex-
tended to realize multiple streams of actions going on at the
same time. This will be useful for modeling process such as
complicated interaction between multiple agents.

Acknowledgement
We’d like to thank Alireza Fathi for providing data on

GTEA dataset. This work was supported in part by BMW
project #RD441

References
[1] M. Albanese, R. Chellappa, V. Moscato, A. Picariello,

V. Subrahmanian, P. Turaga, and O. Udrea. A constrained
probabilistic petri net framework for human activity detec-
tion in video. Multimedia, IEEE Transactions on, 2008. 2

[2] M. R. Amer and S. Todorovic. Sum-product networks for
modeling activities with stochastic structure. In CVPR, 2012.
2

[3] M. Blank, L. Gorelick, E. Shechtman, M. Irani, and R. Basri.
Actions as space-time shapes. In ICCV, 2005. 7

[4] D. Damen and D. Hogg. Explaining activities as consistent
groups of events. International journal of computer vision,
2012. 2

[5] A. Fathi, A. Farhadi, and J. M. Rehg. Understanding ego-
centric activities. In ICCV, 2011. 7

[6] A. Fathi and J. M. Rehg. Modeling actions through state
changes. In CVPR, 2013. 7

[7] K. P. Hawkins, N. Vo, S. Bansal, and A. Bobick. Probabilis-
tic human action prediction and wait-sensitive planning for
responsive human-robot collaboration. In Proceedings of the
IEEE-RAS International Conference on Humanoid Robots,
2013. 7

[8] M. Hoai, Z.-Z. Lan, and F. De la Torre. Joint segmentation
and classification of human actions in video. In CVPR, 2011.
2, 7

[9] G. Hoffman and C. Breazeal. Cost-Based Anticipatory Ac-
tion Selection for HumanRobot Fluency. IEEE Transactions
on Robotics, 23(5):952–961, Oct. 2007. 1

[10] M. Huber and A. Knoll. When to assist?-Modelling human
behaviour for hybrid assembly systems. In Robotics (ISR),
2010. 1

[11] Y. A. Ivanov and A. F. Bobick. Recognition of visual activi-
ties and interactions by stochastic parsing. Pattern Analysis
and Machine Intelligence, IEEE Transactions on, 2000. 2

[12] D. Kollar and N. Friedman. Probabilistic graphical models:
principles and techniques. The MIT Press, 2009. 4

[13] H. S. Koppula and A. Saxena. Learning spatio-temporal
structure from rgb-d videos for human activity detection and
anticipation. ICML, 2013. 2

[14] B. Laxton, J. Lim, and D. Kriegman. Leveraging temporal,
contextual and ordering constraints for recognizing complex
activities in video. In CVPR, 2007. 2

[15] K. Li, J. Hu, and Y. Fu. Modeling complex temporal com-
position of actionlets for activity prediction. In ECCV. 2012.
2

[16] D. Moore and I. Essa. Recognizing multitasked activi-
ties from video using stochastic context-free grammar. In
AAAI/IAAI, pages 770–776, 2002. 2

[17] K. P. Murphy. Hidden semi-markov models (hsmms). un-
published notes, 2002. 2

[18] M. Pei, Y. Jia, and S.-C. Zhu. Parsing video events with
goal inference and intent prediction. In Computer vision
(iccv), 2011 ieee international conference on, pages 487–
494. IEEE, 2011. 2

[19] Q. Shi, L. Wang, L. Cheng, and A. Smola. Discrimina-
tive human action segmentation and recognition using semi-
markov model. In CVPR, 2008. 2, 7

[20] Y. Shi, Y. Huang, D. Minnen, A. Bobick, and I. Essa. Propa-
gation networks for recognition of partially ordered sequen-
tial action. In CVPR, 2004. 2

[21] Z. Si, M. Pei, B. Yao, and S.-C. Zhu. Unsupervised learning
of event and-or grammar and semantics from video. In ICCV,
2011. 2

[22] K. Tang, L. Fei-Fei, and D. Koller. Learning latent temporal
structure for complex event detection. In CVPR, 2012. 2

[23] H. Wang, A. Klaser, C. Schmid, and C.-L. Liu. Action recog-
nition by dense trajectories. In CVPR, 2011. 2

[24] H. Wang, M. M. Ullah, A. Klaser, I. Laptev, C. Schmid, et al.
Evaluation of local spatio-temporal features for action recog-
nition. In BMVC, 2009. 2

[25] P. Wei, Y. Zhao, N. Zheng, and S.-C. Zhu. Modeling 4d
human-object interactions for event and object recognition.
In ICCV, 2013. 2

[26] S.-Z. Yu. Hidden semi-markov models. Artificial Intelli-
gence, 2010. 2

