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Abstract

Existing methods on video-based action recognition are

generally view-dependent, i.e., performing recognition from

the same views seen in the training data. We present

a novel multiview spatio-temporal AND-OR graph (MST-

AOG) representation for cross-view action recognition, i.e.,

the recognition is performed on the video from an unknown

and unseen view. As a compositional model, MST-AOG

compactly represents the hierarchical combinatorial struc-

tures of cross-view actions by explicitly modeling the geom-

etry, appearance and motion variations. This paper pro-

poses effective methods to learn the structure and param-

eters of MST-AOG. The inference based on MST-AOG en-

ables action recognition from novel views. The training of

MST-AOG takes advantage of the 3D human skeleton data

obtained from Kinect cameras to avoid annotating enor-

mous multi-view video frames, which is error-prone and

time-consuming, but the recognition does not need 3D in-

formation and is based on 2D video input. A new Multiview

Action3D dataset has been created and will be released. Ex-

tensive experiments have demonstrated that this new action

representation significantly improves the accuracy and ro-

bustness for cross-view action recognition on 2D videos.

1. Introduction

In the literature of video-based action recognition, most

existing methods recognize actions from the view that is

more or less the same as the training videos [6]. Their

general limitation is the unpredictable performance in the

situation where the actions need to be recognized from a

novel view. As the visual appearances are very different

from different views, and it is very difficult to find view-

invariant features. Therefore, it is desirable to build models

for cross-view action recognition, i.e., recognizing video

actions from views that are unseen in the training videos.

Despite some recent attempts [13, 7], this problem has not

been well explored.

One possible approach is to enumerate a sufficiently

large number of views and build dedicated feature and clas-

sifier for each view. This approach is too time consuming,

because it requires annotating a large number of videos for

all views multiplied by all action categories. Another pos-

sible approach is to interpolate across views via transfer

learning [13]. This method learns a classifier from one view,

and adapts the classifiers to new views. The performance of

this approach is largely limited by the discrimination power

of the local spatio-temporal features in practice.

In this paper, we approach this problem from a new

perspective: creating a generative cross-view video action

representation by exploiting the compositional structure in

spatio-temporal patterns and geometrical relations among

views. We call this model multiview spatio-temporal AND-

OR graph model (MST-AOG), inspired by the expressive

power of AND-OR graphs in object modeling [18]. This

model includes multiple layers of nodes, creating a hier-

archy of composition at various semantic levels, including

actions, poses, views, body parts and features. Each node

represents a conjunctive or disjunctive composition of its

children nodes. The leaf nodes are appearance and motion

features that ground the model. An important feature of the

MST-AOG model is that the grounding does not have to be

at the lowest layer (as in conventional generative models),

but can be made at upper layers to capture low resolution

spatial and temporal features. This compositional represen-

tation models geometry, appearance, and motion properties

for actions. Once the model is learned, the inference pro-

cess facilitates cross-view pose detection and action classi-

fication.

The AND/OR structure of this MST-AOG model is sim-

ple, but the major challenges lie in the learning of geomet-

rical relations among different views. This paper proposes

novel solutions to address this difficult issue. To learn the

multiple-view structure, we take advantage of the 3D hu-

man skeleton produced by Kinect sensors as the 3D pose

annotation. This 3D skeleton information is only available

in training, but not used for cross-view action recognition.

The projection of the 3D poses enables explicit modeling

of the 2D views. Our model uses a set of discrete views

in training to interpolate arbitrary novel views in testing.

The appearances and motion are learned from the multiview

training video and the 3D pose skeletons.

To learn the multiple-pose structure, we design a new



discriminative data mining method to automatically dis-

cover the frequent and discriminative poses. This data-

driven method provides a very effective way to learn the

structure for the action nodes. Since this hierarchical struc-

ture enables information sharing (e.g., different view nodes

share certain body part nodes), MST-AOG largely reduces

the enormous demands on data annotation, while improving

the accuracy and robustness of cross-view action recogni-

tion, as demonstrated in our extensive experiments.

2. Related Work and Our Contributions

The literature on action recognition can be roughly di-

vided into the following categories:

Local feature-based methods. Action recognition

methods can be based on the bag-of-words representation

of local features, such as HOG [1] or HOF [9] around

spatio-temporal interest points [8]. Transfer learning-bsaed

cross-view action recognition methods [3, 11, 25] are based

on local appearance features. Hankelet [10] represents ac-

tions with the dynamics of short tracklets, and achieves

cross-view action recognition by finding the Hankelets that

are relative invariant to viewpoint changes. Self tempo-

ral similarity [7] characterizes actions with temporal self-

similarities for cross-view action recognition. These meth-

ods work well on simple action classification, but they usu-

ally lack discriminative power to deal with more complex

actions.

2D Pose-based methods. Recently, human pose estima-

tion from a single image has make great progresses [20].

There is emerging interest in exploiting human pose for ac-

tion recognition. Yao et al. [22] estimates the 2D poses

from the images, and matches the estimated poses with

a set of representative poses. Yao et al. [23, 24] devel-

oped spatio-temporal AND-OR graph to model the spatio-

temporal structure of the poses in an actions. Desai et al. [2]

learns a deformable part model (DPM) [4] that estimates

both human poses and object locations. Maji et al. [14] uses

the activations of poselets, which is is a set of pose detec-

tors. Ikizler-Cinbis et al. [6] learns the pose classifier from

web images. [21] proposes a coupled action recognition

and pose estimation method by formulating pose estimation

as an optimization over a set of action-specific manifold.

In general, these methods were not specifically designed to

handle cross-view actions. In contrast, this paper presents a

new multi-view video action recognition approach.

3D skeleton-based methods. Pose-based action recog-

nition generally needs a large amount of annotated poses

from images. Recently, the development of depth cameras

offers a cost-effective method to track 3D human poses [17].

Although the tracked 3D skeletons are noisy, it has been

shown that they are useful to achieve good results in recog-

nizing fine-grained actions [19]. In addition, the 2D DPM

model can be extended to 3D [5, 12] to facilitate multi-
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Figure 1. The MST-AOG action representation. The geometrical

relationship of the parts in different views are modeled jointly by

projecting the 3D poses into the given view, see Fig. 2. The parts

are discriminately mined and shared for all the actions.

view object detection. Parameswaran [15] proposes view-

invariant canonical body poses and trajectories in 2D in-

variant space. In this paper, our proposed method uses the

tracked 3D skeleton as supervision in training, but it stands

out from other skeleton-based method because it does not

need 3D skeletons inputs for action recognition in testing.

In comparison with the literature, this paper makes the

following contributions:

• The proposed MST-AOG model is a compact but ex-

pressive multi-view action representation that unifies

the modeling of geometry, appearance and motion.

• Once trained, this MST-AOG model only needs 2D

video input to recognize actions from novel views.

• To train this MST-AOG model, we provide new and

effective methods to learn its parameters, as well as

mining its structure to enable effective part sharing.

3. Multi-view Spatio-Temporal AOG

3.1. Overview

Being a multi-layer hierarchical compositional model,

the proposed multiview spatio-temporal AND-OR graph

(MST-AOG) action representation is able to compactly ac-

commodate the combinatorial configurations for cross-view

action modeling. It consists of AND, OR and leaf nodes

at various layers, and each node is associated with a score

computed from its children. An AND node models the

conjunctive relationship of its children nodes, and its score

takes the summation over those of its children. An OR node

captures the disjunctive relationship or the mixture of possi-

bilities of its children node, and its score takes the maximum

over its children. A leaf node is observable and is associated

with evidence, and thus grounds the model.

The structure of the proposed MST-AOG model is shown

in Fig. 1. The root node is an OR node representing the

mixture of the set of all actions. We regard an action as a
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sequence of discriminative 3D poses. A 3D pose exhibits a

mixture of its projections on a set of 2D views. A 2D view

includes a set of spatio-temporal parts, and each part is as-

sociated with its appearance and motion features. Thus, the

action nodes, view nodes and part nodes are AND nodes,

and pose nodes are OR nodes. We will discuss the scores

and parameters for these nodes in the following subsections.

The strong expressive power of an AOG [18] lies in the

structure of layered conjunctive and disjunctive composi-

tions. Moreover, MST-AOG shares the part nodes across

different views via interpolation. An example will be given

when discussing the action node in Sec. 3.4.

3.2. Pose/View Nodes and 3D Geometry

To handle multi-view modeling, we introduce pose and

view nodes. A pose node is an OR node that models the

association of spatio-temporal patterns to a 3D pose pro-

jected to various views (each of which is a view node).

For each view node, it captures the AND relationship of a

number of parts (i.e., the limb of the human). Each part

node captures its visual appearance and motion features un-

der a specific view θ. Specifically, we use a star-shaped

model for the dependencies among body parts, inspired by

DPM [4], as Fig. 2 shows. Their 2D locations are denoted

by V = {v0,v1, · · · ,vN}, where v0 is for the root part (the

whole pose). Denote by I the image frame. We define the

score associated with the i-th part node to be SR(vi, I, θ)
(details will be provided in Sec. 3.3).

Two factors contribute to the score of a view node: the

score of its children part nodes SR(vi, I, θ) and the spa-

tial regularization among them Si(v0,vi, θ) that specifies

the spatial relationship between the root part and each child

part. Such spatial regularization measures the compatibility

among the parts from view θ (we only consider the rotation

angle, details will follow). In view of this, the total compat-

ibility score of a view node is written as:

SV(v0, θ) =
N
∑

i=0

SR(vi, I, θ) +
N
∑

i=1

Si(v0, vi, θ) (1)

where vi is the location of the part i, and θ is the view.

The 2D global location of a 2D pose is set to be the lo-

cation of the root part, i.e.,v0. As the pose node is an OR

node, the score for a pose node is computed by maximizing

the scores from its children view nodes:

SP(v0) = max
θ

SV(v0, θ) (2)

The evaluation of the spatial regularization of the parts

needs a special treatment, because a pose node represents a

3D pose and it can be projected to different views to lead to

different part relationships explicitly, as illustrated in Fig.

2.

HOG

HOF

ST Parts

Mined parts

Figure 2. 3D parts and projected parts in different views.

The 3D geometrical relationship of the parts can be mod-

eled as the 3D offsets of the i-th part with respect to the root

part. Each offset can be modeled as a 3D Gaussian distribu-

tion with the mean µi as well as diagonal covariance matrix

Σi.

logP (∆pi) ∝ −
1

2
(∆pi − µi)

T
Σ

−1
i (∆pi − µi) (3)

where ∆pi = (∆xi,∆yi,∆zi) is the 3D offset between the

part i and the root part. Here µi can be estimated using the

3D skeleton data, and Σi will be learned (in Sec. 5).

The distribution of the 3D part offsets is projected to 2D

for a given view. Here we assume scaled orthographic pro-

jections: Qθ
i

Qθ
i =

[

k1 cos θ 0 −k1 sin θ
0 k2 0

]

(4)

where θ is a rotation angle of the view, and k1 and k2 are the

scale factors for two image axes. In training, we take advan-

tage of the 3D skeleton data from Kinect cameras. Since we

have the ground truth 3D (from 3D skeleton data) and 2D

(from multiview videos) locations in our training data, these

parameters can be easily estimated. The orthographic pro-

jection approximation works well in practice because the

actors are sufficiently far away from the camera when per-

forming actions. Since Qθ
i is a linear transform, the re-

sulting projected 2D offset distribution is also a Gaussian

distribution, with mean µθ
i = Qθ

ivi and covariance matrix

Σ
θ
i = Qθ

iΣ(Qθ
i )

T . Thus the 2D spatial pairwise relation-

ship score Si(v0,vi, θ) can be written as follows:

Si(v0,vi, θ) = ((Σθ
i )

−1

11 , (Σ
θ
i )

−1

22 , (Σ
θ
i )

−1

12 )
T
.

(−∆u
2

i ,−∆v
2

i ,−2∆ui∆vi)
(5)

where (∆ui,∆vi) = vi − v0 − µθ
i is the 2D deformation

between the i-th part and the root part.

This 3D geometrical relationship is shared and learned

across different views. The 2D geometrical relationship of
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the novel views can be obtained by projecting the 3D geo-

metrical relationship to the novel views.

3.3. Part Node and Motion/Appearance

The spatio-temporal patterns of a part under a view are

modeled as its motion and appearance features. Each part

has an appearance node with score Ai(vi, I, θ), and a mo-

tion node with score Mi(vi, I, θ). They capture the like-

lihood (or compatibility) of the appearance and motion of

part i located at vi under view θ, respectively. The score

associated with a part node is thus written as:

SR(vi, I, θ) = Ai(vi, I, θ) +Mi(vi, I, θ). (6)

We exploit commonly used HOG [1] and HOF [9] fea-

tures to represent the appearance and motion of a given part,

respectively. In order to model the difference and correla-

tion of the appearance and motion for one part in different

view, we discretize the view angle θ into M discrete bins

(each bin corresponds to a view node), and use exponential

interpolation to obtain the appearance and motion features

in the view bins. The appearance score function Ai(vi, I, θ)
and motion score function is defined as

Ai(vi, I, θ) =

∑M

m=1 e
−d2(θ,θm)φT

i,mφ(I, vi, θ)
∑M

m=1 e
−d2(θ,θm)

(7)

where e−d2(θ,θm) is the exponential of angular distance be-

tween the view θ and the view of bin m, φ(I,vi, θ) is the

HOG features at the location vi in image I under the view

θ. φi,m is the HOG templates of view bin m, and need

to be learned from the training data (see Sec. 5). The mo-

tion score function Mi(vi, I, θ) is defined and learned from

HOF features in a similar way.

Thus, the part node of different nodes are shared across

different views via interpolation. We can learn the appear-

ance/motion of the part nodes for the novel views via inter-

polation.

3.4. Action Node

Basically an action consists of a number of NP 3D dis-

criminative poses, but it is insufficient for an action node to

include only a set of pose nodes for two reasons. First, when

the image resolution of the human subject is low, further

decomposing the human into body parts is not plausible,

as detecting and localizing such tiny body parts will not be

reliable. Instead, low resolution visual features may allow

the direct detection of rough poses. Suppose we have NL

low resolution features, denoted by ϕi, i = 1, 2, · · · , NL.

We simply use a linear prediction function
∑NL

i wT
i ϕi to

evaluate low-resolution-feature action prediction score. The

weights wi can be learnt for each low-resolution features.

We use two low-resolution features: intensity histogram and

size of the bounding boxes of the foreground.

Therefore, an action node consists of two kinds of chil-

dren nodes: a NP number of pose nodes and a NL number

of leaf nodes for low-resolution grounding. The score of an

action node evaluates:

SA(l) =

NP
∑

i

Si
P(v0) +

NL
∑

i

wT
i ϕi (8)

where Si
P(v0) is the score of the i-th pose node, and wi

is weights of the low-resolution features to be learned (as

discussed in Sec. 5).

4. Inference

Given an input video from a novel view, the inference

of MST-AOG calculates the scores of all the nodes so as to

achieve cross-view action classification. Since this MST-

AOG model is tree-structured, inference can be done via

dynamic programming. The general dynamic programming

process contains bottom-up phase and top-down phase,

which is similar to sum-product and max-product algorithm

in graphical model.

4.1. Cross­view Pose Detection

The states of the pose nodes, view nodes, and part nodes

are their locations and scales. The score for a view node is

defined in Eq. (1), and the score for a pose node is defined in

Eq. (2). The inference of a pose node is simply comparing

the scores of all the child view nodes at each location and

scale, and finding the maximum score.

For a view node, since the score function (1) is convex,

we can maximize the score in terms of the locations of the

parts v0,v1, · · · ,vN very efficiently using distance trans-

form [4]. The inference step can be achieved by convolv-

ing the input frame and its optical flow with the appearance

and motion templates of all the parts from different views

and obtain the response maps. Then for each view bin, we

can compute its projected part offset relationship. Using the

distance transform, we can efficiently calculate the response

map for the poses under this view bin. This also enables the

estimation of the novel view by finding the view bin that has

the largest view score.

4.2. Action Classification

We apply the spatio-temporal pyramid to represent the

spatio-temporal relationship of poses and low-resolution

features for action recognition. The scores of the pose nodes

and the low-resolution feature nodes at different locations

and frames constitute a sequence of response maps. We ap-

ply the max-pooling over a spatio-temporal pyramid. The

response of a cell in the pyramid is the maximum among all

responses in this cell.

We divide one whole video into 3-level pyramid in the

spatio-temporal dimensions. This yields 1 + 8 + 64 = 73

4



dimensional vector for each response map. Then, we can

use the linear prediction function defined in Eq. (8) to com-

pute the score of an action. The action node with the max-

imum score corresponds to the predicted action. Although

this representation only acts as a rough description of the

spatial-temporal relationships between the poses, we find it

achieves very good results on our experiments.

5. Learning

The learning process has two tasks. The first is to learn

the MST-AOG parameters, e.g., the appearance and motion

patterns of each part in the part nodes, 3D geometrical re-

lationship in the view and pose nodes, and the classifica-

tion weights in the action nodes. The second task is to dis-

cover a dictionary of discriminative 3D poses to determine

the structure of the MST-AOG model.

5.1. Learning MST­AOG Parameters

Learning MST-AOG parameters for the part and view

nodes can be formulated as a latent structural SVM prob-

lem. The parameters of the latent SVM include: the vari-

ance Σi in Eq. (3), the appearance and motion templates

βi,m and γi,m in Eq. (7).

Although we have the non-root part locations and the

view available in the training data, since we are more inter-

ested in predicting the pose rather than the precise location

of each part and the view, we treat the locations of the parts

vj and the view θ as latent variables. And we apply a latent

SVM to learn the our model using the labeled location of

the parts and the view angle as initialization. This treatment

is more robust to the noise in the training data.

For each example xn, we have its class label yn ∈
{−1,+1}, n ∈ {1, 2, · · · , N}. The objective function is:

min
β,γ,Σi

1

2
‖[β,γ,Σi]‖

2

2 + C

N∑

n=1

max (0, 1− ynSP(v0 : xn))

(9)

where SP(v0 : xi) is defined in Eq. (2), which is the total

score for example xi.

The learning is done by iterating between optimizing

β, γ,Σi, and calculating the part locations and the views

of the positive training data.

For each pose, we use the samples whose distances are

less than η to this pose in the positive videos as positive

examples, and randomly sample 5000 negative training ex-

amples from negative videos. We apply two bootstrapping

mining of hard negatives during the learning process. As

the action score Eq. (8) is a linear function, the parameter

wi can be easily learned via a linear SVM solver.

5.2. Mining 3D Pose Dictionary

To learn the structure of the MST-AOG, we propose an

effective data mining method to discover the discriminative

3D poses, which are specific spatial configurations of a sub-

set body parts.

5.2.1 Part Representation

The 3D joint positions are employed to characterize the 3D

pose of the human body. For a human subject, 21 joint posi-

tions are tracked by the skeleton tracker [17] and each joint

i has 3 location coordinates pj(t) = (xj(t), yj(t), zj(t)), a

motion vector mj(t) = (∆xj(t),∆yj(t),∆zj(t)) as well

the visibility label hj(t) at a frame t. hj(t) = 1 indicates

that the j-th joint is visible in frame t and hj(t) = 0 other-

wise. The location coordinates are normalized so that they

are invariant to the absolute body position, the initial body

orientation and the body size. We manually group the joints

into multiple parts.

5.2.2 Part Clustering

Since the poses in one action are highly redundant, we clus-

ter the examples of each part to reduce the size of the search

space, and to enable part sharing. Let part k be one of

the K parts of the person and Jk be the set of the joints

of this part. For each joint j ∈ Jk in this part, we have

pj = (xj , yj , zj), m(j) = (∆x,∆y,∆z), and hi ∈ {0, 1}
as its 3D position, 3D motion and visibility map, respec-

tively. For a certain part, given the 3D joint positions of the

two examples s and r, we can define their distance:

Dk(s, r) =
∑

j∈Jk

(‖ps
j(t)− Ŝpr

j(t)‖
2
2

+ ‖ms
j(t)− Ŝmr

j(t)‖
2
2) (1 + hs,r(t))

(10)

where Ŝ is a similarity transformation matrix that mini-

mizes the distance between the part k of the example s and

the example t. The term hs,r is a penalty term based on the

visibility of the joint j in the two examples: hs,r(j) = a
if vs(j) = vr(j) and is 0 otherwise. Since this distance is

non-symmetric, we use a symmetric distance as the distance

metric: D̄(s, r) = (D(s, r) +D(r, s))/2.

Spectral clustering is performed on the distance matrix.

We remove the clusters that have too few examples, and use

the rest of the clusters as the candidate part configurations

for mining. We denote the set of all candidates part configu-

rations for the part k as: Tk = {t1k, t2k, · · · , tNkk}, where

each tik is called a part item represented by the average joint

positions and motions in the cluster.

5.2.3 Mining Representative and Discriminative Poses

The discriminative power of a single part is usually limited.

We need to discover poses (the combinations of the parts)

that are discriminative for action recognition.
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For a pose P that contains a set of part items T (P), with

each part item in this set belonging to different part. we

define the spatial configuration of a poses as the 3D joint

positions and motions of all the part items in this pose.

The activation of a pose P with configuration pP in a

video vi can be defined as: ap(i) = mint e
−D(p

P
,pt

P
),

where pt
P is the 3D joint positions of the poses P in the t-

th frame of video, and D(., .) is a distance function defined

in Eq. (10). If very similar poses exist in this video, the

activation is high. Otherwise, the activation is low. One dis-

criminative pose should have large activation in the videos

in a given category, while having low activation vector in

other categories. We define the support of the pose P for

category c as:Suppp(c) =
∑

ci=c
ap(i)

∑
ci=c

1 , where ci the cate-

gory label of video vi, and the discrimination of the poses p

as: Discp(c) =
Suppp(c)∑

c′ 6=c
Suppp(c′)

.

We would like to discover the poses with large sup-

port and discrimination. Since adding one part item into a

pose always creates another pose with lower support, i.e.,

SuppP(c) < SuppP′(c) if T (P) ⊃ T (P ′). Thus we

can use the Aprior-like algorithm to find the discriminative

poses. In this algorithm, we remove the non-maximal poses

from the discriminative pose pool. For a pose P , if there

exist a pose P ′ such that T (P) ⊂ T (P ′) and both P and

P ′ are in the set of discriminative and representative poses,

then P is a non-maximal pose.

This algorithm usually produces an excessive large num-

ber of poses, we prune the sets of discriminative poses with

the following criteria. Firstly, we remove poses that are sim-

ilar to each other. This can be modeled as a set-covering

problem, and can be solved with a greedy algorithm. We

choose a pose P with highest discrimination, and remove

the poses whose distance is less than a given threshold. Sec-

ondly, we remove the poses with small validation scores for

the detectors trained for these poses.

6. Experiments

We evaluate the proposed method on two datasets: the

Multiview Action3D Dataset, collected by ourselves and the

MSR-DailyActivity3D dataset [19].

In all our experiments, we only use the videos from a

single unknown view for testing, and do not use the skeleton

information or the videos from multiple views.

6.1. Northwestern­UCLA Multiview Action3D
Dataset

Northwestern-UCLA Multiview 3D event dataset 1 con-

tains RGB, depth and human skeleton data captured simul-

taneously by three Kinect cameras. This dataset include 10

action categories: pick up with one hand, pick up with two

1http://users.eecs.northwestern.edu/ jwa368/my data.html
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Figure 3. The view distributions of the Multiview-Action3D

dataset (left) and MSR-DailyActivity3D dataset (right).

hands, drop trash, walk around, sit down, stand up, don-

ning, doffing, throw, carry. Each action is performed by 10

actors. Fig. 4 shows some example frames of this dataset.

The view distribution is shown in Fig. 3. This dataset con-

tains data taken from a variety of viewpoints.

The comparison of the recognition accuracy of the pro-

posed algorithm with the baseline algorithms is shown in

Table 1. We compare with virtual views [11], Hankelet [10],

Action Bank [16] and Poselet [14]. For Action Bank, we

use the actions provided by [16] as well as a portion of the

videos in our dataset as action banks. For Poselet, we use

the Poselets provided by [14]. We also compare our model

with training one dedicated model for each view, which is

essentially a mixture of deformable part models (DPM), to

compare the robustness of the proposed method under dif-

ferent viewpoints with DPM model. We have 50 pose nodes

for all the actions and 10 child view nodes for one pose node

for both mixture of DPM and MST-AOG. The number of

the part nodes in DPM and MST-AOG is both 1320 (differ-

ent poses can have different number of parts). MST-AOG

also has 2 child low-resolution feature nodes for each action

node. These parameters are chosen via cross-validation.

In MST-AOG, the appearance/motion and geometrical re-

lationship of the part nodes are shared and learned across

different view nodes, but the mixture of DPM treats them

independently.

We perform recognition experiments under three set-

tings.

• cross-subject setting: We use the samples from 9 sub-

jects as training data, and leave out the samples from 1

subject as testing data.

• cross-view setting: We use the samples from 2 cameras

as training data, and use the samples from 1 camera as

testing data.

• cross-environment setting: We apply the learned model

to the same action but captured in a different environ-

ment. Some of the examples of the cross environment

testing data are shown in Fig. 4.

These settings can evaluate the robustness to the variations

in different subjects, from different views, and in different

environments.
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Figure 4. Sample frames of Multiview Action3D dataset, cross en-

vironment test data, and MSR-DailyActivity3D dataset [19].

Method C-Subject C-View C-Env

Virtual View [11] 0.507 0.478 0.274

Hankelet [10] 0.542 0.452 0.286

Action Bank [16] 0.246 0.176 N/A

Poselet [14] 0.549 0.245 0.485

Mixture of DPM 0.748 0.461 0.688

MST-AOG w/o Low-S 0.789 0.653 0.719

MST-AOG w Low-S 0.816 0.733 0.793

Table 1. Recognition accuracy on Multiview-3D dataset.

The proposed algorithm achieves the best performance

under all three settings. Moreover, the proposed method

is rather robust under the cross-view setting. In contrast,

although the state-of-the-art local-feature-based cross-view

action recognition methods [10, 11] are relatively robust

to viewpoint changes, the overall accuracy of these meth-

ods is not very high, because the local features are not

enough to discriminate the subtle differences of the actions

in this dataset. Moreover, these methods are sensitive to

the changes of the environment. The Poselet method is ro-

bust to environment changes, but it is sensitive to viewpoint

changes. Since the mixture of DPM does not model the re-

lations across different view, its performance degrades sig-

nificantly under cross-view setting. The comparison of the

recognition accuracy of the different methods under cross-

view setting is shown in Fig. 6. We also observe that utiliz-

ing low-resolution features can increase the recognition ac-

curacy, and the proposed method is also robust under cross

environment setting.

The confusion matrix of the proposed methods with low-

resolution features under cross-view setting is shown in

Fig. 5. The actions that cause most confusion are “pick

up with one hand” versus “pick up with two hands”, be-

cause the motion and appearance of these two actions are

very similar. Another action that causes a lot of confusion

is “drop trash”, because the movement of dropping trash can

be extremely subtle for some subjects.

Figure 5. The confusion matrix of MST-AOG on multiview data

under cross-view setting (with low-resolution features).
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Figure 6. The recognition accuracy under cross-view setting.

6.2. MSR­DailyActivity3D Dataset

The MSR-DailyActivity3D dataset is a daily activity

dataset captured by a Kinect device. It is a widely used as a

Kinect action recognition benchmark. There are 16 activity

types: drink, eat, read book, call cellphone, write on a pa-

per, use laptop, use vacuum cleaner, cheer up, sit still, toss

paper, play game, lay down on sofa, walk, play guitar, stand

up, sit down. If possible, each subject performs an activ-

ity in two different poses: “sitting on sofa” and “standing”.

Some example frames are shown in Fig. 4. The view distri-

bution of this dataset can be found in Fig. 3. Although this

dataset is not a multiview dataset, we compare the perfor-

mance of the proposed method with the baseline methods to

validate its performance on single view action recognition.

We use the same experimental setting as [19], using the

samples of half of the subjects as training data, and the sam-

ples of the rest half as testing data. This dataset is very

challenging if the 3D skeleton is not used. The Poselet

method [14] achieves 23.75% accuracy, because many of

the actions in this dataset should be distinguished with mo-

tion information, which is ignored in the Poselet method.

STIP [8] and Action Bank [16] do not perform well on this

dataset, either. The proposed MST-AOG method achieves

a recognition accuracy of 73.5%, which is much better than

the baseline methods.

Notice that the accuracy of Actionlet Ensemble method

in [19] achieves 85.5% accuracy. However, the proposed

method only needs one RGB video as input during testing,
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Method Accuracy

STIP [8] 0.545

Action Bank [16] 0.23

Poselet [14] 0.2375

Actionlet Ensemble [19] 0.835a

MST-AOG 0.731

Table 2. Recognition accuracy for DailyActivity3D dataset.

aThis result is not directly comparable with MST-AOG, because it

uses 3D skeleton.

Figure 7. The confusion matrix of MST-AOG on MSR-

DailyActivity3D dataset.

while Actionlet Ensemble method requires depth sequences

and Kinect skeleton tracking during testing.

The confusion matrix of the proposed method on MSR-

DailyActivity3D dataset is shown in Fig. 7. We can see that

the proposed algorithm performs well on the actions that

are mainly determined by poses or motion, such as “stand

up”, “sit down”, “toss paper”, “cheer up”, “call cellphone”.

However, recognizing some actions requires us to recognize

objects, such as “playing guitar” and “play games”. Model-

ing the human-object interaction will improve the recogni-

tion accuracy for these actions.

7. Conclusion

We propose a new cross-view action representation, the

MST-AOG model, that can effectively express the geome-

try, appearance and motion variations across multiple view

points with a hierarchical compositional model. It takes ad-

vantage of 3D skeleton data to train, and achieves 2D video

action recognition from unknown views. Our extensive ex-

periments have demonstrated that MST-AOG significantly

improves the accuracy and robustness for cross-view, cross-

subject and cross-environment action recognition. The pro-

posed MST-AOG can also be employed to detect the view

and locations of the actions and poses. This will be our fu-

ture work.
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