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Abstract

In this paper, we present a novel online visual tracking

method based on linear representation. First, we present

a novel probability continuous outlier model (PCOM) to

depict the continuous outliers that occur in the linear rep-

resentation model. In the proposed model, the element of

the noisy observation sample can be either represented by

a PCA subspace with small Guassian noise or treated as

an arbitrary value with a uniform prior, in which the spatial

consistency prior is exploited by using a binary Markov ran-

dom field model. Then, we derive the objective function of

the PCOM method, the solution of which can be iteratively

obtained by the outlier-free least squares and standard max-

flow/min-cut steps. Finally, based on the proposed PCOM

method, we design an effective observation likelihood func-

tion and a simple update scheme for visual tracking. Both

qualitative and quantitative evaluations demonstrate that

our tracker achieves very favorable performance in terms

of both accuracy and speed.

1. Introduction

As one of the fundamental topics in computer vision,

visual tracking plays a key role in numerous lines of re-

search and has many practical applications such as video

surveillance, human computer interaction, traffic control,

motion analysis, activity analysis, driver assistance system

and so on. While much work has been done [26] in the

past decades, designing a robust tracking algorithm remains

a challenging task due to numerous factors including illu-

mination variation, partial occlusion, pose change, motion

blur, background clutter, and many more. A typical track-

ing system includes two basic components: (1) a motion

model, which relates the states of an object over time and

supplies the tracker with a number of candidate states (e.g.,

Kalman filter [6], particle filter [16]) ; (2) an observation

model, which represents the tracked object and evaluates

the likelihood of each candidate state in the current frame.

In this paper, we focus on developing an effective observa-

tion model due to its crucial role for visual tracking.

Existing observation models can be categorized into

methods based on templates (e.g., [1, 14]), online classi-

fiers (e.g., [2, 12]), linear representation models (e.g., [19,

18, 24, 23]) and so on. In the template-based algorithms,

the tracked object is described by one single template [6] or

multiple templates [14]. Then the tracking problem can be

considered as searching for the regions which are the most

similar to the tracked object. The trackers based on online

classifiers treat tracking as a binary classification problem,

which aims to distinguish the tracked targets from its sur-

rounding backgrounds. Both classic and recent machine

learning algorithms could promote the progress of tracking

algorithms or systems, including boosting [9], support vec-

tor machines [21], naive bayes [27], random forests [20],

multiple instance learning [2], matting [7] and so on. In

this work, we propose a fast and effective generative tracker

based on the linear representation model, which is able to

deal with continuous outliers and therefore provides an ac-

curate match effectively.

Instead of representing the tracked object as a collection

of low-level features, the linear representation models main-

tain holistic appearance information and therefore provide a

compact notion of the “thing” being tracked [19, 18]. Ross

et al. [19] propose an incremental visual tracking (IVT)

method, which represents the tracked object by using a low

dimensional principle component analysis (PCA) [22] sub-

space and assumes that the representation error is Gaussian

distributed with small variances. Although the IVT method

is robust to illumination and pose changes, it is very sensi-

tive to partial occlusion and background clutter. The under-

lying reason is the noise term cannot be modeled with small

variances when some outlier occurs.

Inspired by the idea of sparse representation [25], Mei

et al. develop a novel ℓ1 tracker [18], which uses a se-

ries of object and trivial templates to represent the tracked

object. In the ℓ1 tracker, object templates are used to de-

scribe the object class to be tracked and trivial templates are

adopted to deal with outliers (e.g., partial occlusion) with

sparsity constraints. Furthermore, several methods improve
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the original ℓ1 tracker in terms of both speed and accu-

racy by using accelerated proximal gradient algorithms [3],

replacing raw pixel templates with orthogonal basis vec-

tors [24], modeling the similarity between different candi-

dates [28], to name a few. Although these algorithms explic-

itly consider outliers by introducing additional trivial tem-

plates, they lack of some theoretical foundation and fail to

consider the spatial information among outliers.

This paper presents a novel effective and fast tracking

method with an adaptive observation model, the main con-

tributions of which are three-folds. First, we represent

the tracked object with the linear representation model and

the proposed probability continuous outlier model (PCOM),

which exploits the spatial information among outliers by us-

ing a first-order Markov field. Second, we propose an iter-

ation algorithm to solve the representation coefficient and

infer outliers simultaneously. Finally, we develop a gen-

erative tracker based on our PCOM method and a simple

update scheme. By using twelve challenging video clips,

numerous experiments are conducted to illustrate both ef-

fectiveness and efficiency of the proposed method.

2. Background and Related Work

2.1. Object tracking via incremental visual tracking
(IVT)

Tracking algorithms based on the linear representa-

tion model have attracted much attention in recent years

(e.g., [19, 18, 10, 24]). Among these methods, the most

influential one is the incremental visual tracking (IVT)

method [19]. The IVT method introduces an online up-

date approach for efficiently learning and updating a low

dimensional PCA subspace representation of the target ob-

ject. Several experimental results show this method is effec-

tive in dealing with appearance change caused by in-plane

rotation, illumination variation and pose change. But this

method is very sensitive to partial occlusion, which can be

explained by equation (1).

y = Ux+ e, (1)

where y denotes an observation vector, x indicates the co-

efficient vector, U represents a matrix of column basis vec-

tors, and e stands for the error vector.

In the PCA representation model, the error term e is

assumed to be Gaussian distributed with small variances.

Based on the maximum likelihood estimation, the coeffi-

cient vector x can be estimated by x = U⊤y, and the re-

construction error can be approximated by
∥∥y −UU⊤y

∥∥2
2
.

However, this assumption does not hold when outliers occur

as outliers cannot be modeled by the Gaussian distribution

with small variance. Hence, the IVT method is sensitive

to partial occlusion and background clutter. Although some

recent works [18, 24] explicitly consider outliers by treating

the error term e as arbitrary but sparse noise, they lack of

some theoretical foundation and fail to consider the spatial

information among outliers.

2.2. Graph cuts

The Graph cuts method [4] solves energy minimization

problems by constructing a graph and computing the min-

cut, which is usually adopted to segment images or videos.

Take image segmentation as an instance, the Graph cuts

method computes a segmentation over a set of pixels P by

the following objective function,

E (f) =
∑

pi∈P

R (pi, fi) + λ
∑

(pi,pj)∈E

B (pi, pj) |fi − fj |,

(2)

where f =
[
f1, f2, ..., f|P |

]⊤
is a binary vector of labels

and fi indicates the label of the i-th pixel pi (fi = 1 stands

for foreground; and fi = 0 means background). R (pi, fi)
is a region cost term based on the label that depicts the indi-

vidual property of a given pixel, and B (pi, pj) is a bound-

ary cost term based on the neighbor set E that models the

spatial relationship between adjacent pixels. The parameter

λ balances the importances of R and B. There exist two

important conclusions on the Graph cuts method: first, the

objective function (2) can be effectively solved by the max-

flow/min-cut method [8, 13]; second, the objective function

(2) can be viewed as the energy function of a first-order bi-

nary Markov random field [15].

3. Probability Continuous Outlier Model

(PCOM)

We present the proposed PCOM method based on the

linear representation model, which aims to solve the repre-

sentation coefficient based on a series of noisy observations,

y = Ax + e, where y ∈ R
n×1 is a n-dimensional obser-

vation vector, x ∈ R
k×1 is the representation coefficient,

and e = y − Ax denotes the error term. In the field of

computer vision, the matrix A = [a1,a2, ...,ak] is usually

known as dictionary or basis matrix, where ai is called an

atom or basis vector.

In this work, we adopt a PCA [19] model (centered at µ,

spanned by the orthogonal bases U) to represent an object,

in which a given image patch should be firstly converted

into one column vector. Thus, we denote y ← y − µ and

A = U for simplification. In order to model the continuous

outliers explicitly, we introduce a binary indicator vector

w = [w1, w2, ..., wn]
⊤

to indicate inliers or outliers (i.e.,

wi = 1 means yi is an inlier; wi = 0 means yi is an outlier).

Inlier: If yi is an inlier (i.e., wi = 1), it can be repre-

sented by the linear representation model with small Gaus-

sian noise (i.e., zero-mean Gaussian random variable with
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variance σ2). Its conditional probability density function is,

p (yi|wi = 1,x) =
1√
2πσ

exp
{
−[yi − (Ax)i]

2
/
2σ2

}
.

(3)

Outlier: If yi is an outlier (i.e., wi = 0), it can be chosen

as an arbitrary value in the interval [a, b] ([a, b] depicts the

range of image values and has same value for different el-

ements). Thus, we adopt a uniform distribution (equation

(4)) to model the conditional probability of an outlier. We

note that the probability distribution of an outlier has no re-

lation to the representation coefficient x.

p (yi|wi = 0,x) =

{
1

b−a
, a ≤ yi ≤ b

0, otherwise
(4)

Spatial Continuity: The image domain can be treated as

a graph G = (V,E), where V = {y1, y2, ..., yn} denotes

the vertex set that consists of n pixels and E stands for the

edges connecting neighboring pixels (we use the standard

4-neighbor in this work). The spatial continuity among the

outliers (and also the inliers as well) can be modeled by a

Markov random field (MRF) [15]. In this work, we adopt a

simple Ising Model for the probability distribution function

of the indicator vector w:

p (w) =
1

Z
exp

(
−
∑

i,j∈E
βij |wi − wj |

)
, (5)

where βij controls the interaction between indicator values

wi and wj , and Z is a normalization constant.

Assuming there is a uniform prior on the coefficient x,

the posterior probability p (w,x|y) can be derived as

p (w,x|y) ∝ p (y|w,x) p (w)

=

[
n∏

i=1

p (yi|wi,x)

]
p (w)

=

[
n∏

i=1

p(yi|wi = 1,x)
wip(yi|wi = 0,x)

1−wi

]
p (w)

=

{
n∏

i=1

[
1√
2πσ

exp

(
− (yi−(Ax)

i)
2

2σ2

)]wi(
1

b−a

)1−wi

}

× 1
Z
exp

(
−∑

i,j∈E βij |wi − wj |
)

.

(6)

The optimal parameters ŵ and x̂ can be obtained by

maximizing the posteriori probability p (w,x|y), which

is equivalent to minimizing the negative logarithm func-

tion − log p (w,x|y). It is not difficult to derive that

− log p (w,x|y) = C + 1
σ2 J (w,x), where C stands for

a specific constant and J (w,x) is defined as

J (w,x) =
n∑

i=1

{
wi

[yi−(Ax)
i]

2

2 + (1− wi)
λ2

2

}

+
∑

i,j∈E λij |wi − wj |
, (7)

where λ =
(
2σ2log

b−a
√

2πσ

) 1

2

(i.e., λ2

2 = σ2log
b−a

√

2πσ ) and

λij = σ2βij (the detailed derivations can be found in Re-

mark 1). In practice, it does not require to know or estimate

the variables σ2, b, a and βij . We can choose appropriate

regularization parameters λ and λij instead, because these

parameters have definite physical meanings. The parameter

λ can be explained as a threshold to designate inliers and

outliers (i.e., if |yi − (Ax̂)i| ≤ λ, yi is indicated as an in-

lier; otherwise, it is viewed as an outlier). In addition, the

parameter λij controls the spatial relationship between the

indicator vector w.

To the best of our knowledge, there is no close-form so-

lution for the optimization problem (7). Thus, we present

an iteration algorithm to compute the optimal parameters x̂

and ŵ based on the following propositions.

Proposition 1: If ŵ is obtained, the optimal x̂ can be solved

by an outlier-free least squares process.

If ŵ is given, it merely requires to consider the first term

in the objective function as the remaining ones are con-

stants. Then the minimization of equation (7) is equivalent

to the minimization of

F (x) =
∑

ŵi 6=0

1

2
[yi − (Ax)i]

2
. (8)

Thus, the optimal x̂ can be obtained by an outlier-free least

squares process x̂ =
(
A⊤

∗ A∗
)−1

A⊤
∗ y∗, where A∗ is orga-

nized by the rows of A that are corresponding to the non-

zero elements of the indicator vector w and y∗ is organized

in the same manner.

1

0

1
i
w

ij i j
w w 

0
i
w

Figure 1. An illustration of Proposition 2.

Proposition 2: If x̂ is given, the optimal ŵ can be obtained

by the standard max-flow/min-cut algorithm [8] effectively.

If x̂ is known, the minimization of equation (7) can be

converted to the minimization of

G (w) =
n∑

i=1

(
|0− wi| e

2

i

2 + |1− wi| λ
2

2

)

+
∑

i,j∈E

λij |wi − wj |
(9)
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Remark 1: A detailed derivation from equation (6) to equation (7).

Here we present a detailed derivation from equation (6) to equation (7), i.e., from − log p (w,x|y) to J (w,x).

log p (x,w|y)
= C0 +

n∑
i=1

{
−wi log

√
2πσ − wi

[yi−(Ax)
i]

2

2σ2 − (1− wi) log
b−a

}
− ∑

i,j∈E

βij |wi − wj |

= C0 +
n∑

i=1

{
− log

√
2πσ − wi

[yi−(Ax)
i]

2

2σ2 − (1− wi)
(
logb−a − log

√
2πσ

)}
− ∑

i,j∈E

βij |wi − wj |

= C + 1
σ2

{
−wi

[yi−(Ax)
i]

2

2 − (1− wi)σ
2log

b−a
√

2πσ

}
− ∑

i,j∈E

βij |wi − wj |

= C + 1
σ2

{
−wi

[yi−(Ax)
i]

2

2 − (1− wi)σ
2log

b−a
√

2πσ − ∑
i,j∈E

σ2βij |wi − wj |
}

where C0 and C denote some constants to make that the equality holds.

By introducing λ =
(
2σ2log

b−a
√

2πσ

) 1

2

(i.e., λ2

2 = σ2log
b−a

√

2πσ ) and λij = σ2βij , we can obtain that − log p (w,x|y) =

C + 1
σ2 J (w,x), where J (w,x) is defined as

J (w,x) =
n∑

i=1

{
wi

[yi−(Ax)
i]

2

2 + (1− wi)
λ2

2

}
+
∑

i,j∈E λij |wi − wj |.

by introducing an error term e = y − Ax̂ (i.e., ei =
yi − (Ax̂)i). The equation (9) can be viewed as the energy

function in the Graph Cuts problem [13], and therefore can

be minimized by using the max-flow/min-cut algorithm [8]

(an intuitive explanation of this proposition is illustrated in

Figure 1).

By Propositions 1 and 2, the optimization problem (7)

can be solved iteratively. Our empirical results demonstrate

that it suffices to use 5 iterations for solving this problem.

Figure 2 illustrates the results of some toy examples ob-

tained by the proposed PCOM algorithm, where the red

color denotes the inlier mask and the blue color stands for

the outlier mask. We can see that the proposed PCOM

method is able to estimate inlier-outlier masks accurately.

Figure 2. Some toy instances for the proposed PCOM algorithm.

4. The PCOM-based tracking framework

Similar to [19], visual tracking is also cast as a Bayesian

inference task with a hidden Markov model. Given a series

of observed samples y1:t = {y1,y2, ...,yt} up to the t-th

frame, the aim is to estimate the hidden state variable zt
recursively,

p (zt|y1:t) ∝ p (yt|zt)
∫

p (zt|zt−1) p (zt−1|y1:t−1)dzt−1,

(10)

where p (zt|zt−1) stands for the motion model between

two consecutive states and p (yt|zt) denotes the observa-

tion model that estimates the likelihood of an observed im-

age patch belonging to the object class. The flowchart of

our tracking framework is illustrated in Figure 3. Simi-

lar to the IVT method [19], we use six parameters of the

affine transform to depict the motion model p (zt|zt−1).
The state transition is formulated by random walk, i.e.,

p (zt|zt−1) = N (zt; zt−1,Ψ), where Ψ is a diagonal co-

variance matrix.

Observation model: By assuming that the variation of the

indicator vectors between two consecutive frames is very

small, we build our likelihood function based on an outlier-

free least squares manner. For each observed image vector

corresponding to a predicted state, we solve the following

equation by using the least squares algorithm,

x̂i
t = argmin

xi
t

∥∥ŵt−1 ⊙
(
yi
t −Axi

t

)∥∥2
2
, (11)

where i denotes the i-th sample of the state zt, t is the frame

index, and⊙ stands for the element-wise multiplication op-

erator. ŵt−1 is the indicator vector that is obtained based

on the PCOM method in frame t − 1. After the optimal x̂i
t
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Initialize 

Our Tracker

Motion Model

Sample 

candidate 

states

Observation Model
Evaluate candidate states by using 

the outlier-free least squares problem

...

.
.
.

PCA bases

Inlier-outlier Mask
Coefficients

Obtain the 

Best candidate 

via MAP

Online Update

Model Update via 

Incremental PCA

Infer the inlier-outlier mask (by the proposed 

PCOM method) and recovery the observation 

sample, then use the recovered sample to 

update the model.

Recovered

Sample

Go to the 

next frame

Figure 3. The flowchart of the proposed tracking framework. There exist three fundamental components: motion model; observation

model; and online update. This work focuses on the latter two components, especially the observation model.

is obtained, the observation likelihood can be measured by

p
(
yi
t|zit

)
∝ exp

[
− 1

γ

∥∥ŵt−1 ⊙
(
yi
t −Ax̂i

t

)∥∥2
2

]
, (12)

where γ is simply set to 0.1 in this work.

Online update: In the proposed PCOM algorithm, the zero

components of the indicator vector w are able to identify

outliers. After obtaining the best state of each frame, we ex-

tract its corresponding observation vector yo and infer the

indicator vector wo. Then we recovery the observation vec-

tor by replacing the outliers with its corresponding parts of

the mean vector µ,

yr = wo ⊙ yo + (1−wo)⊙ µ, (13)

where yr denotes the recovered sample and⊙ stands for the

element-wise multiplication operator. The recovered sam-

ple is cumulated and then used to update the tracker via an

incremental PCA method [19]. In addition, the inferred in-

dicator vector wo is stored, and then used in the next frame

(i.e., ŵt = wo).

5. Experiments

The proposed tracker is implemented in MATLAB

2009B on a PC with Intel i7-3770 CPU (3.4 GHz) with 32

GB memory, and runs 20 frames per second (fps) in this

platform. We resize each observation sample to 32 × 32
pixels and adopt 16 PCA basis vectors. As a trade-off

between effectiveness and speed, 600 particles are used

and our tracker is incrementally updated every 5 frames.

The regularization parameters are set as λ = 0.08 and

λij = 0.02. The MATLAB source codes and datasets are

available on our websites (http://ice.dlut.edu.cn/

lu/publications.html).

In this work, we adopt twelve challenging image se-

quences from prior work [19, 2, 14] and the CAVIAR data

set [5]. The challenges of these sequences include par-

tial occlusion, illumination variation, pose change, back-

ground clutter and motion blur. By using these video

clips, we evaluate our tracker against ten state-of-the-art

tracking algorithms, including the fragment-based tracking

(FragT) [1], incremental visual tracking (IVT) [19], multi-

ple instance learning (MIL) [2], visual tracking decompo-

sition (VTD) [14], tracking learning detection (TLD) [12],

accelerated proximal gradient L1 (APGL1) [3], local sparse

appearance tracking (LSAT) [17], adaptive structural lo-

cal sparse appearance (ASLSA) [11], multi-task track-

ing (MTT) [28] and online sparse prototypes tracking

(OSPT) [24] methods. For fair evaluation, we use the source

codes provided by the authors and run them with adjusted

parameters.

Qualitative evaluation: Figure 4 (a)-(b) demonstrate that

the proposed tracker performs well in terms of position,

scale and rotation when the tracked objects undergo severe

occlusion. This can be attributed to two main reasons: (1)

the proposed PCOM algorithm takes outliers (e.g., occlu-

sion) and their spatial information into account explicitly.

The estimated inlier-outlier masks are able to reflect the

occluded or un-occluded portions accurately; (2) the up-

date scheme is able to remove the outliers from new ob-

served samples and therefore avoid degrading the observa-

tion model. The FragT [1] method deals with occlusion via

the part-based representation, which works well on some

simple occlusion cases (e.g., Occlusion1). However, this

method performs poorly on more challenging cases (e.g.,

Occlusion2 and Caviar2) since it cannot deal with appear-

ance changes caused by pose and scale. For the same rea-

son, the LSAT [17] method also achieves not good perfor-

mance when occlusion and other challenging factors oc-

5
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(a) Occlusion1

(b) Occlusion2

(c) Caviar1

(d) Caviar2

(e) Leno

(f) Walking

(g) DavidIndoor

(h) Car4

(i) Car11

(j) Deer

(k) Jumping

(l) Face

FragT IVT MIL APGL1 LAST PCOM (Ours)

VTD TLD ASLAS MTT OSPT
Figure 4. Qualitative evaluation of different tracking algorithms on twelve challenging image sequences. The estimated inlier-outlier masks

are shown in the lower right (or upper right) of each frame, where the red color stands for inliers and the blue one indicates outliers.
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Table 1. Average center location errors of tracking algorithms. The best three results are shown in red, blue and green fonts.

FragT [1] IVT [19] MIL [2] VTD [14] TLD [12] APGL1 [3] LSAT [17] ASLAS [11] MTT [28] OSPT [24] Ours

Occlusion1 5.6 9.2 32.3 11.1 17.6 6.8 5.3 10.8 14.1 4.7 5.9

Occlusion2 15.5 10.2 14.1 10.4 18.6 6.3 58.6 3.7 9.2 4.0 4.5

Caviar1 5.7 45.2 48.5 3.9 5.6 50.1 1.8 1.4 20.9 1.7 1.4

Caviar2 5.6 8.6 70.3 4.7 8.5 63.1 45.6 62.3 65.4 2.2 1.8

Leno 17.8 6.5 13.2 9.2 11.9 7.8 12.7 9.9 17.2 5.5 5.9

Walking 11.4 1.9 3.3 2.9 9.9 2.2 22.0 1.8 3.7 2.0 2.2

DavidIndoor 148.7 3.1 34.3 49.4 13.4 10.8 6.3 3.5 13.4 3.2 3.8

Car4 179.8 2.9 60.1 12.3 18.8 16.4 3.3 4.3 37.2 3.0 4.6

Car11 63.9 2.1 43.5 27.1 25.1 1.7 4.1 2.0 1.8 2.2 2.2

Deer 92.1 127.5 66.5 11.9 25.7 38.4 69.8 8.0 9.2 8.5 13.9

Jumping 58.4 36.8 9.9 63.0 3.6 8.8 55.2 39.1 19.2 5.0 4.9

Face 48.8 69.7 134.7 141.4 22.3 148.9 16.5 95.1 127.2 24.1 12.5

Average 54.4 27.0 44.2 28.9 15.1 30.1 25.1 20.2 28.2 5.5 5.3

Speed(fps) 4 32 32 4 18 10 2 9 1 5 20

Table 2. Average overlap rates of tracking algorithms. The best three results are shown in red, blue and green fonts.

FragT [1] IVT [19] MIL [2] VTD [14] TLD [12] APGL1 [3] LSAT [17] ASLAS [11] MTT [28] OSPT [24] Ours

Occlusion1 0.90 0.85 0.59 0.77 0.65 0.87 0.90 0.83 0.79 0.91 0.88

Occlusion2 0.60 0.59 0.61 0.59 0.49 0.70 0.33 0.81 0.72 0.84 0.83

Caviar1 0.68 0.28 0.25 0.83 0.70 0.28 0.85 0.90 0.45 0.89 0.89

Caviar2 0.56 0.45 0.26 0.67 0.66 0.32 0.28 0.35 0.33 0.71 0.79

Leno 0.72 0.86 0.78 0.75 0.73 0.82 0.76 0.81 0.70 0.87 0.87

Walking 0.52 0.73 0.55 0.69 0.55 0.64 0.36 0.74 0.75 0.73 0.74

DavidIndoor 0.09 0.69 0.23 0.23 0.50 0.63 0.72 0.77 0.53 0.76 0.76

Car4 0.22 0.92 0.34 0.73 0.64 0.70 0.91 0.89 0.53 0.92 0.83

Car11 0.09 0.81 0.17 0.43 0.38 0.83 0.49 0.81 0.58 0.81 0.80

Deer 0.08 0.22 0.21 0.58 0.41 0.45 0.35 0.62 0.60 0.61 0.56

Jumping 0.14 0.28 0.53 0.08 0.69 0.59 0.09 0.24 0.30 0.69 0.68

Face 0.39 0.44 0.15 0.24 0.62 0.14 0.69 0.21 0.26 0.68 0.75

Average 0.42 0.59 0.39 0.55 0.59 0.58 0.56 0.67 0.55 0.79 0.78

Speed(fps) 4 32 32 4 18 10 2 9 1 5 20

cur simultaneously. The IVT [19] method is sensitive to

partial occlusion since the Gaussian noise assumption can-

not model outliers. The MIL [2] method does not perform

well when the tracked object is occluded by a similar ob-

ject (e.g., Caviar1 and Caviar2) since the Haar-like fea-

tures they used are less effective to distinguish similar ob-

jects when they are occluded by each other. Although the

APGL1 [3] tracker explicitly considers partial occlusion by

using a set of trivial templates, it also performs not well

in some cases (e.g., Caviar1 and Caviar2) as the raw pixel

templates cannot always capture stable visual information.

Figure 4 (e)-(l) show representative results on eight im-

age sequences which highlight other challenging factors

(e.g., pose change, illumination variation, background clut-

ter, fast motion). Our tracker also performs well in these

cases, which can be attributed to two main reasons. First,

the appearance change of the object in these cases can

be well approximated by a PCA subspace [19]. Second,

the estimated inlier-outlier mask is able to indicate unex-

pected factors, including the local illumination variation

(e.g., Car4 #0185 and Car4#0280), the background pix-

els within the object region (e.g., DavidIndoor#0325, Da-

vidIndoor#0365 and Deer#0025), the blurred object re-

gion (e.g., Jumping#0035) and so on. Thus, the inlier-

outlier mask makes that our tracker is able to focus on more

stable object regions and achieve good performance.

Quantitative evaluation: To assess the performance of the

proposed tracking algorithm, we adopt two popular crite-

ria, the center location error and the overlap rate, in this

paper. Table 1 shows the average center location error be-

tween our tracker and other competing algorithms, in which

a small error value means a more accurate result. Table 2

reports quantitative comparisons between our tracker and

other competing algorithms, in which the PASCAL overlap

rate criterion [11, 24] is adopted to measure the accuracy of

a tracker (a large overlap score means a more accurate re-

sult). We can see from these tables that our tracker achieves

very favorable performance in terms of both accuracy and

speed. Although the OSPT [24] method also achieves sim-

ilar performance in terms of accuracy, it runs much slower

than our tracker.

The effects of critical parameters: We note that the regu-
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larization parameters λ and λij are two critical parameters

in the proposed PCOM method. Figure 5 illustrates the av-

erage overlap scores of the proposed tracker with varied λ

and λij values. The parameter λ controls the level of out-

liers. If λ is too small, some inliers are identified as out-

liers. Hence, the solution of our model is not stable. If λ

is too large, some outliers are treated as inliers and there-

fore lead to an incorrect solution. In addition, the parameter

λij also should be moderate to avoid over-sparsity or over-

smoothness for the inlier-outlier mask. In this study, we

choose λ = 0.08 and λij = 0.02 as the default parameters

for our PCOM problem.

Figure 5. The effects of regularization parameters.

6. Conclusion

This paper presents a novel effective and fast tracking al-

gorithm based on the proposed probability continuous out-

lier model (PCOM). In our PCOM method, the element of

the noisy observation sample can be either represented by

a PCA subspace with small Guassian noise or treated as an

arbitrary value with a uniform prior, in which the spatial

consistency prior is exploited. Then we derive the objec-

tive function of the PCOM method and present an iteration

algorithm to solve it. The iteration process includes two ba-

sic steps: the outlier-free least squares regression and the

standard max-flow/min-cut algorithm. Finally, we develop

a generative tracker based on our PCOM method and a sim-

ple update scheme. Both qualitative and quantitative evalu-

ations show that the proposed tracker achieves accurate and

fast tracking performance. In the future, we will extend

the proposed representation model for solving other vision

problems (e.g., object recognition and motion estimation).

In addition, we plan to integrate multiple visual cues (e.g.,

color and depth) into our method for more effective object

tracking in different scenarios.
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