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Abstract

Current state-of-the-art systems for visual content anal-
ysis require large training sets for each class of interest,
and performance degrades rapidly with fewer examples. In
this paper, we present a general framework for the zero-
shot learning problem of performing high-level event de-
tection with no training exemplars, using only textual de-
scriptions. This task goes beyond the traditional zero-shot
framework of adapting a given set of classes with training
data to unseen classes. We leverage video and image collec-
tions with free-form text descriptions from widely available
web sources to learn a large bank of concepts, in addition
to using several off-the-shelf concept detectors, speech, and
video text for representing videos. We utilize natural lan-
guage processing technologies to generate event descrip-
tion features. The extracted features are then projected to a
common high-dimensional space using text expansion, and
similarity is computed in this space. We present extensive
experimental results on the large TRECVID MED [26] cor-
pus to demonstrate our approach. Our results show that the
proposed concept detection methods significantly outper-
form current attribute classifiers such as Classemes [34],
ObjectBank [21], and SUN attributes [28]. Further, we find
that fusion, both within as well as between modalities, is
crucial for optimal performance.

1. Introduction
Popular websites such as YouTube, Google images, and

Flickr contain large volumes of image and video data from
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a multitude of consumer devices such as digital and cell-
phone cameras. Technologies that can rapidly analyze
such content and detect salient concepts and events have
several compelling applications. Significant progress has
been made in developing such technologies and the core
of most state-of-the-art methods is based on the bag-of-
words model [7]. Here, we first extract low-level features
that capture salient gradient [22, 4], color [35], or motion
[20, 37] patterns, project them to a pre-trained codebook in
the same feature space, and then aggregate the projections
to get the final image or video level feature vector. Classi-
fiers, typically kernel support vector machines (SVM), are
then trained using labeled data. This approach requires a
large number of training examples for each class of interest
and performance decreases rapidly as the training set size
decreases.

In this paper, we study the problem of video classifica-
tion using only a textual description of the events of interest,
without exemplar videos pertaining to the events. This zero-
shot framework, where we perform video classification with
zero training samples, goes beyond traditional zero-shot
problems such as described in [27], where an existing set
of classes with training data is adapted to an unseen class.
We pose this difficult problem of video classification as a
retrieval task, where an event is described as a query de-
fined by a set of concepts, e.g. the event “driving a car”
described by the set of concepts “drive, car, road, person,
face.” We aim to retrieve videos that are most similar to the
query, where the similarity score is treated as the confidence
of the video belonging to that event.

Our approach to zero-shot learning is to first transform
both video and query text to a high-dimensional concept
space before computing similarity in that space. For the
query, we apply text processing techniques to obtain a vec-
tor of salient words and phrases describing the event. For
the video, we apply a bank of concept detectors to obtain a
textual representation of the video using a vector of detec-
tion scores. Since we have no prior knowledge of the events
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of interest, we need a very large set of generic concept de-
tectors in order to provide semantic coverage of all possi-
ble queries. To address this challenge, we utilize multiple
concept detectors from different modalities: visual features,
including video concepts and multiple query fusion [1] of
multiple features described in this paper, in addition to off-
the-shelf detectors such as Classemes [34], ObjectBank [21]
and SUN attributes [28]; audio information from concepts
learned on low-level MFCC features; and text from video
text and speech transcriptions.

Once we represent both query and videos as vectors of
concept scores, we can compute similarities to retrieve rele-
vant videos. A key challenge here is the mismatch between
query and video concept vocabularies. We utilize a text
expansion based method to project query and video con-
cept vectors to a common high-dimensional concept space
where they are compared, using the large text corpus Giga-
word [14] to learn this projection matrix. Finally, we fuse
retrievals from each of the features and modalities using a
simple linear combination to exploit the complementary na-
ture of the different modalities and concept vocabularies.

The paper is organized as follows: in Section 2, we dis-
cuss related approaches to similar problems. In Section 3,
we present an overview of our zero-shot learning frame-
work. Section 4 describes the features we extract from
video and Section 5 outlines the combination of these fea-
tures. We report experimental results in Section 6, and dis-
cuss our conclusions in Section 7.

2. Related Work
Extensive research has been performed in recent years

on effective representation and classification of images and
videos. The first step in most techniques is to extract low-
level features from local spatial or spatio-temporal patches.
Popular features include grayscale appearance features such
as SIFT [22] and SURF [4], color features such as Color
SIFT [35], and motion features such as STIP [20] and dense
trajectories [37]. These typically extract thousands to mil-
lions of feature vectors per image or video. They are ag-
gregated to a single fixed dimensional representation by
a sequence of coding and pooling steps. Possible coding
techniques include Hard Quantization [7], Soft Quantiza-
tion [36], Sparse Coding [5] and Fisher Vectors [32], using
a codebook trained in an unsupervised manner from a large
set of feature vectors. The coded features are then aggre-
gated, typically using average or max pooling, and classi-
fied typically using support vector machines (SVM).

While this approach has shown strong results given a
large training set, performance degrades rapidly as the
amount of training data decreases and the method does not
generalize to previously unseen events. Only limited atten-
tion has been paid to this challenging problem and most ex-
isting approaches introduce an intermediate layer of seman-

tic concepts, which are then used to describe novel classes.
Semantic output codes (SOC) are proposed in [27] to ex-
trapolate novel classes by utilizing a knowledge base of se-
mantic properties of known classes. A large scale ontology
is used in [31] to learn visual relationships between objects,
while [30] uses knowledge transfer between object classes.
An online incremental attribute based zero-shot learning ap-
proach is presented in [17], while a max-margin formulation
is proposed in [15] for zero-shot multi-label classification
where the label correlations on the training set differ sig-
nificantly from the test set. A constrained optimization for-
mulation that combines regression and knowledge transfer
based functions has recently been proposed in [12].

All of these techniques rely on extrapolating from an ex-
isting set of classes and training data. The more difficult
task of performing video retrieval and classification with no
prior event knowledge or training data has been addressed
only recently. In contrast to [8], we introduce several ways
to generate a large visual and audio concept lexicon without
prior knowledge of the event classes, and present a simple
unified framework for effectively combining visual, audio,
and textual information. While we are not able to bench-
mark our method against [8] since we do not have access
to their concept lexicon or data partitions, our results in the
TRECVID evaluation (Section 6.6) compare favorably to
systems using similar approaches.

Video retrieval using semantic similarity has previously
been explored in [2, 16]. However, these approaches fo-
cus on highly structured broadcast data, where a small 374
concept pool [2] can be adequate. In contrast, we focus on
more challenging unconstrained web data where leveraging
multiple modalities and larger concept banks is important to
build a robust system. While [2, 16] both use a pre-defined
concept ontology, we demonstrate the benefit of training in-
domain detectors in a data driven manner by discovering
concepts from free form text descriptions.

There has also been an increasing interest in joint mod-
eling of text and visual features [3], which can then poten-
tially be used to generate a text description of query im-
ages [13, 19, 38, 24] and videos [18, 9]. A large scale study
of the relationship between semantic similarity of classes
and confusion between them is presented in [11]. In [33],
a large text corpus is used to learn a semantic space using
word distributions and a separate model is trained for seen
and unseen classes. However, given the training data lim-
itations in our problem, we constrain our focus to attribute
mappings produced using off-the-shelf features [34, 28, 21],
novel concept banks developed with video-caption pairs
similar to [24], and speech and video text output.

3. Zero-shot Learning Framework
Figure 1 displays an overview of our multi-modal zero-

shot learning approach, which involves applyingC different
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Figure 1. Overview of the proposed multi-modal zero-shot learning approach.

concept banks on each video v. Let L = {cl1 , . . . , clK} be
a lexicon defined by K concepts cl,k for concept bank l ∈
[1, . . . , C]. Each concept bank provides a K-dimensional
vector of detection scores dv = [dl1 . . . dlK ]T for each
video v = 1 . . . V , that is `2-normalized; i.e., ‖dv‖2 = 1.
Given a query Q = {cq1 , ...cqN } defined by N concepts
cq,n, we aim to retrieve videos that are similar to the query.

3.1. Basic Similarity Computation

We first present a direct model to measure video-query
similarity. In this model, we compute the similarity score
SQ(v) between a query Q and a video v as a sum of the
concept scores of the lexicon that match the query concepts:

SQ(v) =
1

K

K∑
k=1

dlk1Q(clk) (1)

where 1Q(clk) is an indicator function of the presence of
concept clk in query Q.

This baseline system is very precise for efficient concept
detectors. We expect the system to perform well when there
is a large match between the query and video concepts, but
lexicon coverage of the query will limit recall while noise
in the video concept detections will degrade precision.

3.2. Expansion-based Similarity Computation

To address the issue of vocabulary mismatch between
query and video, we use an alternative model to measure
video-query similarity. In this model, concepts are ex-
panded and projected to a common global concept space
defined by the lexicon L. The goal is to propagate existing

confidence scores to semantically similar concepts using the
knowledge from a text corpus (like Gigaword) to estimate
similarity. Let G : (c1, c2) −→ s be a text model that mea-
sures the similarity s ∈ [0, 1] between two concepts c1 and
c2. Let an item I in the database be represented by a set of
triplets describing the concept name, its confidence score,
and its index in the lexicon L. The expansion-based projec-
tion method is given in Algorithm 1.

Algorithm 1 Expansion-based projection.
Given an item I = {(c1, s1, i1), . . . , (cN , sN , iN )}.
Let f ∈ RK be the projected feature vector of item I for L.
Initialization: fk = 0 for k = 1 . . .K.
for each (c, s, i) in I do

fi ← fi + s
Find the top T similar concepts of c in G, given as

IT = {(c1, s1, i1), . . . , (cT , sT , iT )},
where st = G(c, ct).
Update the feature for the similar concepts:
for each (ct, st, it) in IT do

fit ← fit + s · st
end for

end for
Normalize the feature vector ‖f‖2 = 1.

This algorithm obtains the projected vector f of an item I
in two steps for each concept. The first step finds the top T
similar concepts using the modelG. The second step boosts
the scores of the similar concepts for an item by the amount
of similarity between the concepts. The final feature vector
f is then normalized for comparison purposes.

Algorithm 1 is applied to expand both the query and
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database concepts to a common lexicon space. Query con-
cept confidences are given as 1, while database concept con-
fidences are given by the output of the concept detectors.
Once the expanded feature vectors fQ ∈ RK representing
the query Q and fv ∈ RK representing the video v have
been obtained, the similarity between the query Q and the
video v is computed as

SQ(v) = fTQ fv. (2)

Note that other similarity measures may also be consid-
ered (e.g., Laplacian or RBF kernels), although in our ex-
periments we find that (2) has the best performance.

4. Video Feature Extraction
Since existing concept banks are generally trained on out

of domain data and may not contain a large enough vocabu-
lary to cover possible queries, we propose multiple methods
to rapidly learn new concept detectors with easily collected
data from readily available in-domain and web sources.

4.1. Weakly Supervised Concepts (WSC)

We train a set of WSCs for concept detection in videos
using the following steps:

4.1.1 Data Collection and Concept Discovery

We collect a set of videos with free-form text descriptions
of their content. Such data is widely available online in
websites such as YouTube and also in the research set of
the considered TRECVID MED dataset. We apply standard
natural language processing (NLP) techniques to clean up
the annotations, including removal of common stop words
and stemming to normalize word inflections. The remaining
vocabulary is taken as our concept dictionary.

4.1.2 Low-level feature extraction

For each video in the collected corpus, we extract the fol-
lowing set of low-level visual and audio features:
D-SIFT [5]: This is a dense version of SIFT where, in-
stead of detecting interest points, the 128-dimensional fea-
ture vectors are extracted at uniformly-sampled locations
covering the whole image. D-SIFT typically generates 3×
the number of points produced by SIFT [22] and has been
shown to outperform SIFT for image classification [5].
Dense Trajectories (DT) [37]: This feature represents the
video using dense optical flow trajectories. Histogram of
oriented gradients (HoG) and motion boundary histograms
(MBH) are extracted from the local spatio-temporal neigh-
borhood of each track to capture salient appearance and mo-
tion patterns respectively.
MFCC [10]: These popular audio features are extracted
from overlapping 29 ms frames at a rate of 100 frames per

second. From each frame, we compute 14 mel-frequency
warped cepstral coefficients. The resulting 45-dimensional
feature vector captures the short-time spectral structure of
the audio stream.

For each of the above low-level features, we first apply
principal component analysis (PCA) to reduce the dimen-
sionality and whiten the feature vectors. For each video, we
then obtain a set X =

{
xt ∈ RD, t = 1 . . . T

}
of T low-

level low-dimensionality feature descriptors. We assume
that these features are distributed according to a Gaussian
mixture model (GMM) with diagonal covariance matrix:

p(xt|Λ) =

K∑
k=1

wkN (xt;µk,σ
2
k), for t = 1 . . . T. (3)

The GMM parameters

Λ =
{
wk ∈ [0, 1],µk ∈ RD,σk ∈ RD, k = 1 . . .K

}
are learned on a training set through maximum likelihood
estimation. We then consider the Fisher vector encoding
as proposed in [29] and represent each video by the nor-
malized gradients of the GMM log-likelihood Gµk

X ∈ RD

and Gσk

X ∈ RD with respect to the Gaussian mean µk

and standard deviation parameters σk, respectively. For
k = 1 . . .K, these D-dimensional normalized gradients are
defined as1

Gµk

X =
1

T
√
wk

T∑
t=1

γk(xt|Λ)

(
xt − µk

σk

)
(4)

Gσk

X =
1

T
√

2wk

T∑
t=1

γk(xt|Λ)

[
(xt − µk)

2

σ2
k

− 1

]
, (5)

where the posterior probability

γk(xt|Λ) =
wkN (xt;µk,Σk)∑K
l=1 wlN (xt;µl,Σl)

is the soft assignment of the feature descriptor xt to the k-th
Gaussian cluster. The final Fisher vector is the concatena-
tion of theK D-dimensional normalized gradients Gµk

X and
Gσk

X , and is thus of dimension 2KD.

4.1.3 Classifier Training

For each concept identified in Section 4.1.1, we collect all
videos for which that concept occurs in the text caption,
and utilize them as our positive training set, with the re-
maining videos considered as negatives. We then train RBF
kernel-based support vector machine (SVM) classifiers us-
ing the Fisher vectors representing the videos. We train a
set of concept detectors for each of the low-level features
(D-SIFT, DT, MFCC) described in Section 4.1.2.

1Vector multiplications and divisions are element-wise operations here.
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4.1.4 Weakly Supervised Concept Feature

Given a video, we produce a compact representation by con-
catenating the detection scores of our concept detectors. We
use this feature vector for event detection and refer to this
representation as WSC, for weakly-supervised concepts.

4.2. Concept Training using Web Data

In addition to the concept detectors trained using the re-
search set described in Section 4.1.1, we also train detec-
tors using data downloaded from the web. For each con-
cept identified in Section 4.1.1, we downloaded the top 100
retrievals from Google images and thumbnails for the top
50 retrievals from YouTube. We then train WSCs with this
data using the same approach as described in Section 4.1.
We call the WSCs trained using the TRECVID research set,
Google images and YouTube thumbnails as WSCTRECVID,
WSCGoogle and WSCYouTube respectively.

4.3. Concept Distance Features

We also introduce a novel concept distance (CD) based
feature. Let C denote the set of concepts identified from the
text annotations in Section 4.1.1. For each concept c ∈ C,
let Vc denote the set of videos in the research set contain-
ing the concept. Let xi denote the low-level feature based
vector extracted for video i. Then, we compute the feature
vector yc for the concept c as:

yc =
1

|Vc|
∑
i∈Vc

xi. (6)

Given a new video v and its low-level feature vector xv ,
we obtain the CD feature vector by computing the distance
to each yc in (6) and concatenating:

CDv =
[
‖xv − y1‖2 . . . ‖xv − y|C|‖2

]T
. (7)

In our experiments, we use D-SIFT, DT and MFCC low-
level feature vectors. The proposed feature vector builds
on multiple-queries (MQ) [1] and the query expansion [6]
based techniques proposed previously. While these ap-
proaches identify relevant videos at query time and use the
retrievals to expand the concept set or training set, we use
a static set of concept vectors yc and compute distances at
query time to these vectors.

4.4. Off-the-shelf Concept Detectors

We also test three off-the-shelf concept detectors that
have been used in recent literature:
Classemes [34]: This is a bank of concept detectors trained
on images. These were chosen using a large ontology of
visual concepts. Given an image or a video frame, the ap-
plication of all these detectors yields a 2,659-dimensional
vector of detection scores.

ObjectBank [21]: Here, we use a spatial pyramid represen-
tation of images and produce detection confidence scores at
different scales and spatial pyramids for each concept. The
concept detectors are trained using linear SVMs and an im-
age is represented by concatenating the detection scores of
different concepts at different scales and spatial pyramids.
SUN Attributes [28]: The SUN attribute set contains de-
tectors for 102 scene attributes that were specified using
crowd sourced human studies.

We apply each of these concept detectors on a set of
frames uniformly sampled from a video and then average
the detection scores across the video to get the final video-
level feature vector.

4.5. Automatic Speech Recognition (ASR)

We use GMM-based speech activity detection (SAD)
and a hidden Markov model (HMM) based multi-pass large
vocabulary ASR to obtain speech content in the video, and
encode the hypotheses in the form of word lattices.

We first extract MFCC features from the audio stream.
Then, the speech segments are identified by using a speech
activity detection (SAD) system that employs two GMMs,
for speech and non-speech observations respectively. The
SAD model incorporates video clips with music content to
enrich the non-speech model, in order to handle the hetero-
geneous audio in consumer video. Given the automatically
detected speech segments, we then apply a large-vocabulary
ASR system to the speech data to produce a transcript of the
spoken content. The system is adapted from an ASR sys-
tem trained on English Broadcast News, and updated with
MED 2011 descriptor files [25], relative web text data, and
the small set of annotated consumer video data. We evalu-
ated the ASR model on a held-out set of 100 video clips and
achieved a Word Error Rate (WER) of 35.8%. The system
outputs not only the 1-best transcripts but also word lattices
with acoustic and language model scores.

After basic processing to remove stop words and nor-
malize word inflections, the word lattice posteriors are used
to generate the concept score vectors used in the zero shot
projection system.

4.6. Optical Character Recognition (OCR)

Our OCR system recognizes text in bounding boxes from
a video text detector using an HMM-based multi-pass large
vocabulary OCR system. Similar to our ASR system, word
lattices are used to encode alternative hypotheses. We lever-
age a statistically trained video text detector based on SVM
to estimate video text bounding boxes.

Text candidate regions are first selected using Maxi-
mally Stable Extremal Regions (MSER) and filtered using
an SVM with rich shape descriptors such as Histogram of
Oriented Gradients (HoG), Gabor filter, corners and geo-
metrical features. Candidate regions are then grouped to

4325



form word boundaries, and detected words are binarized
and filtered before being passed to the HMM-based OCR
system for recognition. The OCR system finds a sequence
of characters that maximizes the posterior, by using glyph
models (similar to the acoustic models in ASR), a dictio-
nary and N-gram language models. The word precision and
recall of our system measured on a small consumer video
dataset is 14.7% and 37% respectively.

Since the video text content presents itself in various
forms, such as subtitles, markup titles and in-scene text, it
is much more challenging than conventional scanned doc-
ument OCR. To address these challenges, we consider two
versions of OCR: one which utilizes the dictionary and N-
gram language model, and one which is character-based.
While the language model corrects character-level tran-
scription errors, it also introduce errors when falsely cor-
recting out of vocabulary words. For the word model OCR
output, we generate a concept score vector from the word
lattice posteriors in the same way as ASR. For the charac-
ter based model, we estimate word posteriors by smoothing
character errors across adjacent video frames to produce a
concept score vector. In our experiments we find the char-
acter model to be slightly better for video than the word
model, as detailed in Section 6.

5. Fusion

State of the art systems for standard event detection with
training data have shown fusion of multiple features and
modalities to be crucial for improving performance [23].
Fusion is especially important for the zero-shot problem,
due to the sparse occurrence of speech and video text con-
tent, as well as the limited vocabulary intersection between
a given concept bank and query. While we do not have any
training data on which to learn parameters for more sophis-
ticated fusion methods, we find that simple score averag-
ing works well to exploit the complementary information
in various systems. We further see some benefit to manu-
ally increasing the weights of the higher precision ASR and
OCR systems in fusion, and use a linearly weighted score
combination for all fusion experiments below.

6. Experiments

We test our approach on the large collection of consumer
web videos from the TRECVID MED 13 [26] dataset. The
task is to retrieve videos containing one of 20 diverse high-
level multimedia events, each described by a short text doc-
ument of ∼250 words. The dataset provides a research set
that contains∼12,000 background videos and no exemplars
of the events of interest. We use this research set to learn our
WSCTRECVID and CD features. We report on the designated
MEDTest set containing ∼25,000 videos. More details of
the events and data partitions may be found in [26].

6.1. Comparison of Similarity Computation

Feature Basic (MAP) Expanded (MAP)

ASR 3.27% 3.66%
OCR (character) 4.43% 4.72%
CDMFCC 1.04% 1.04%
WSCD-SIFT

YouTube 3.42% 3.48%

Table 1. Mean average precision (MAP) comparison between ba-
sic (1) and expanded (2) query-video similarity computation for
our single best ASR, OCR, audio, and visual features.

Table 1 compares the two methods of query-video simi-
larity computation discussed in Section 3.1 and Section 3.2
for the best feature in each modality. We observe that ex-
pansion consistently improves over the simple approach.
We observed similar gains from using projection based fea-
tures in fusion, and thus we use the expansion-based ap-
proach in all experiments below.

6.2. Comparison of Visual Features

Feature MAP AUC

SUN [28] 0.48% 0.605
ObjectBank [21] 0.77% 0.592
Classemes [34] 0.84% 0.630

CDD-SIFT 1.71% 0.770
CDDT 2.28% 0.779

WSCD-SIFT
TRECVID 1.92% 0.735

WSCDT
TRECVID 2.76% 0.726

WSCD-SIFT
Google 1.21% 0.543

WSCD-SIFT
YouTube 3.48% 0.729

Table 2. Comparison of mean average precision (MAP) and area
under the curve (AUC) for visual features.

In these experiments, we compare our proposed WSC
and CD features to several off-the-shelf detectors. Table 2
summarizes our results. Here, WSCD-SIFT

YouTube refers to the
weakly supervised concept features trained using D-SIFT
features extracted on pre-downloaded YouTube thumbnails.
Overall, the WSCD-SIFT

YouTube feature has the strongest perfor-
mance, while the off-the-shelf detectors are significantly
weaker than our proposed approaches. A possible reason
for this is the large domain mismatch between the data used
for training them and the video data. The same issue could
explain the weaker performance of the WSCGoogle features
compared to WSCTRECVID and WSCYouTube due to the do-
main mismatch between images and videos. Moreover, the
CD features that are significantly faster to extract have com-
parable performance to the WSC features that require train-
ing expensive SVMs. Finally, the WSC and CD features
detected using DT are stronger than the ones using D-SIFT.
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6.3. Comparison of Audio Features

Feature MAP AUC

WSCMFCC
TRECVID 0.76% 0.507

CDMFCC 1.04% 0.604

Table 3. Comparison of mean average precision (MAP) and area
under the curve (AUC) for audio features.

We compare the performance of our WSC and CD fea-
tures trained using the audio MFCC features. Table 3 sum-
marizes the MAP and AUC results. As observed, both of
the audio features are weaker than the visual features.

6.4. Comparison of Language Features

Feature MAP AUC

ASR 3.66% 0.583
OCR (word) 4.30% 0.636
OCR (character) 4.72% 0.611

Table 4. Comparison of mean average precision (MAP) and area
under the curve (AUC) for language features.

Table 4 compares the performance of our OCR and ASR
systems. All the systems have higher MAP compared to the
visual and audio features from Tables 2 and 3. However,
note that the AUCs of many visual features outperform the
language features. This is because although language con-
tent, when present, is a highly accurate source of informa-
tion, its occurrence is sporadic, leading to low recall.

6.5. Comparison of Fusion Systems

Feature MAP AUC

ASR 3.66% 0.583
OCR 5.87% 0.642
Audio 1.04% 0.623
Visual (CD + WSC) 6.12% 0.853

Full 12.65% 0.733

Table 5. Comparison of mean average precision (MAP) and area
under the curve (AUC) for fusion systems.

We fused each of the individual systems described
above, both within each modality as well as across modali-
ties. Table 5 compares the performance of the different fu-
sion systems. Note that within the visual system, we found
that off-the-shelf visual features did not improve the fused
system, and only included our CD and WSC features. While
none of the individual visual features is stronger than ASR
or OCR, the visual system is the single strongest system
after fusion, gaining ∼75% relative improvement over the
single best visual system. The combined OCR system also

outperforms the individual OCR systems, and the full sys-
tem that combines all modalities more than doubles the per-
formance of any individual modality as measured by MAP.

6.6. TRECVID Performance

The zero-shot event detection task was introduced as
a pilot training condition as part of the TRECVID MED
13 evaluations. Independent evaluations were conducted
by NIST on a blind ∼100000 video dataset, both for the
same 20 events as in our previous experiments (prespeci-
fied), as well as for 10 new events given one week before the
evaluation (ad hoc). Our zero-shot system achieved highly
competitive scores for both prespecified and ad hoc condi-
tions, placing among the top three out of 9 submissions. In
particular, our consistent performance between prespecified
and ad hoc events demonstrate the robustness of our event-
independent approach to generalize to new queries.

7. Discussion and Conclusion
Only limited attention has been devoted to the task of

video retrieval using only text queries. We present a system-
atic evaluation of our zero-shot framework for performing
high-level multimedia event detection with no training data,
given only text descriptions of the events of interest. Our
findings and results on the large TRECVID MED dataset
can serve as an initial baseline for this challenging task.

We present a general framework for zero-shot learning,
that utilizes multiple multi-modal features to map a video
to an intermediate semantic attribute space, which are then
projected to a high-dimensional concept space using statis-
tics learned on a large text corpus. Similarity between the
attributes and a text query are computed in this space, and
the scores computed from different attribute sets are com-
bined to get the final score. We demonstrate the effective-
ness of this approach for aligning disjoint vocabularies be-
tween query and various modalities.

We describe two simple but effective methods for rapidly
training new concept detectors using in-domain as well as
web data in the form of image/video with associated text
descriptions. Detailed experimental results show that our
concept detectors significantly outperform off-the-shelf de-
tectors for zero-shot retrieval tasks. Exploiting the comple-
mentary nature of speech and video text as well as between
different concept banks, we perform multiple rounds of fu-
sion to produce a final system that is significantly better than
any individual feature or modality.
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