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Abstract robust estimation from single RGB images remain diffi-
cult. The recent emergence of low-cost depth sensors is
We present the first automatic method to remove shad-likely to overcome this bottleneck. This paper proposes the
ows from single RGB-D images. Using normal cues directly first shadow removal algorithm from single RGB-D images,
derived from depth, we can remove hard and soft shadowdeveraging depth cues so that a simple and fully automatic
while preserving surface texture and shading. Our key as- method suffices for robust shadow removal.
sumption is: pixels with similar normals, spatial locatfon
and chromaticity should have similar colors. A modified  Unfortunately, the problem still remains ill-posed since
nonlocal matching is used to compute a shadow confidencean RGB-D image is still formed by the complex interaction
map that localizes well hard shadow boundary, thus han- of unknown illumination, albedo and 3D geometry (depths
dling hard and soft shadows within the same framework. Weare not true 3D). However, given the same surface, its im-
compare our results produced using state-of-the-art shado age typically contains both shadowed and unshadowed pix-
removal on single RGB images, and intrinsic image decom-e€ls of the surface. Otherwise, we might not have perceived
position on standard RGB-D datasets. the surface as shadowed at all had it been completely under
shadow. Using this observation, we translate the shadow re-
moval problem into one of matching unshadowed samples
1. Introduction to their shadowed counterparts for ‘relighting’ the latter

Shadow removal from single images constitutes an ill- - Normals computed from depth makes a direct contribu-
posed problem with more unknowns than equations 10 jon 1o our matching problem: pixels with similar normals,

solve. State-of-the-art shadow removal methods operatingsaiial locations and chromaticity should have simila col
onRGB Images use custom capture (e.g., nar_row-bangl €aMgrs in the shadowless image as shown in FiglreThis
era [7]), user interaction €], specialized algorithms using  4qgymption has an inherent limitation: lack of unshadowed

texture and gradient similarityL[], chromaticity and Eu- g5 516 for removing attached shadows where all their nor-
clidean distanceq] but noneuses depth cues. With depth, 1,515 hoint away from light. Notwithstanding, while nor-

surface normals can be computed and occluding relation-, provide useful information for each pixel’s shading,
ship can be inferred, both of which are invaluable to robust y,o chromaticity level is strongly connected to the texture
shadow removal from single images. See Figier a  \yit no other assumptions used in this paper, both hard
comparison of shadow removal with and without depth cues 54 soft shadows with spatially varying intensity can be ex-
using the present algorithm. tracted, while the texture and shading under the shadow are
m preserved after shadow removal.
; i Inspired by the recent success of the nonlocal principle
in image denoisingd] and matting 0], we introduce a
modified nonlocal matching method that is normal-aware
(@) (b) (€) to sample relevant unshadowed and shadowed pixels. Us-
Figure 1. Shadow removal without and with depth cues. (a) is ing our feature similarity, a method is proposed to work in
the input, (b) is the result without depth consideration,résult  tandem with raw depth information to compute a shadow
with depth cues, where the spatially varying shadow is sessty  confidence map that localizes well hard shadow boundary,
removed and surface shading is preserved. thus handling hard and soft shadows within the same frame-
While depth and 3D information definitely help, their work. A standard energy minimization using the confidence

*The research is supported by the Research Grant Councit ¢fdhg map is then_ used to _aUtomatiPa”y produce the optimized
Kong Special Administrative Region under grant no. 619112, shadowless image. Figugreviews some of our results.
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Figure 2. From left to right: input shadowed image, shadew/ieage, depth information, shadow image, shadow coniédend shadow
boundary using our method.

2. Related Work 3. Shadow Removal with Depth Cues

In the absence of shadow removal with RGB-D im- We first present the image model, followed by presenting
ages, this section reviews recent and representative work®ur normal-aware nonlocal neighbor and feature matching,
on shadow removal from single images. Intrinsic images which will be used to define the shadow confidence map for
separation and pertinent works using single RGB and RGB-subsequent shadow removal.

D image input are also reviewed.

Shadow Removal. Shadow removal from a single im-
age [] uses entropy minimization to derive an illumina- We use the same image formation equatiorii# {vhich

tion invariant grayscale image for shadow removal without is derived from the image model used for intrinsic image
resorting to any calibration; an advancement over the lat-decomposition, but with a different interpretation:

ter has been made ][ These techniques on the other

hand make several assumptions, such as Planckian lighting I'=pF 1)
(e.g., sunlight) and narrow-band cameras. Recent wirk [

completed the earlier worlé] by introducing a new tech- ~ WhereZ is the shadowless image which includgeading
nique, quadratic entropy with fast Gauss Transform to min- @nd3 is the shadovonly, a three-channel fractional factor
imize the entropy. In16], the proposed interactive tech- €ach in[0, 1] for scaling the respective color channel. Since
nique allows users to mark up shadowed and unshadowed? can be different for different pixels, the equation can han-
samples with similar textures and then an energy minimiza-dle hard and soft shadows with spatially-varying intensity
tion process solves for the underlying shadow. The user- Without normals, in [€] their g cannot distinguish
interaction approach has been also followed ﬂJy] [and shadow and shading. Thanks to the use of normals from
[1]. More recently in [.] the problem of recognizing shad-  depth for feature matching, our shadgwexcludes shading,
ows from monochromatic images was addressed. Variantor equivalently, the shadowless imagepreserves shading
and invariant cues are applied to a number of classifiers foras shown in Figure.

shadow detection. 9], hard shadow portions located on
the ground are removed by training a decision tree classifier
based on sensitive/variant features around edges. Rgcentl  We assign at each pixel a shadow confidence ranged in
a region-based approacti as proposed where pair-wise [0, 1] to indicate the likelihood the pixel is shadowed. Sim-
classification of shadowed and unshadowed regions has ledar to nonlocal denoising and matting,[10], a nonlocal

to successful shadow removal results. neighborhood strategy is adopted to match shadowed and
Intrinsic Images. Shadow and shading removal are of- unshadowed pixels except that the region will adapt to the
ten addressed alongside with intrinsic image estimation. | surface normal orientation which is described next.

[15], intrinsic images were separated from a single image

by classifying ima_ge derivatives as changes due t_o either re 3.2.1 Normal-Aware Nonlocal Neighborhood

flectance or shading, followed by belief propagation to cor-

rect ambiguous regions. The recent commercialization of In nonlocal denoising and matting, a spatial and isotropic
low-cost RGB-D cameras (e.g., Microsoft Kinect) is likely window is used for matching nonlocal neighbors. In our
to make the problem more tractable. i} § complex, non-  case, we search within a sufficiently large window to in-
convex optimization was used to obtain a smoothed depthclude shadowed and unshadowed pixels which are similar
map and a spatially varying illumination model from which in normals, chromaticity and spatial locations. In patacu

the intrinsic images are decomposed. The same problenwe make the searching region normal-aware by orienting it
was addressed irl] with a simpler approach using nonlo- according to the surface normal thus making it anisotropic
cal regularizers for each decomposition component. in the screen space.

3.1. Image Model

3.2. Nonlocal Feature Matching



The bivariate normal distribution is defined as removal, our basic assumption is pixels with similar chro-
maticity, normals and spatial locations should have simila

el 22) = o (—%(x )T u)) @  colors:
ch(1,) — ch(1,)]|?
Suppose a pixg with image coordinategz,,, y,)" has a o, = exp( len(z,) 5 o)l ) (1)
. X 20
neighbor pixely of (x4, y,). Then ¢
n [n(p) —n(q)]?
X ~ NQ (H, E) (3) apq = GXp( 20,7% ) (8)
wherex = (z4,9,)7, p = E[(z4,94)] = (2p,9,)T andX ol —1— P —all ©)
is the covariance matrix. Consider the isotropic distitut P max P — 4l

in the image space,
where clfI,), n(p) andp denote respectively the chromatic-
S < r? 0 > @) ity, normal and spatial location of

150 Chromaticity. The chromaticity is adopted as a feature in
order to handle the texture parts of the image. The absolute
wherer is the sampling radius for including both shad- djstance is appliesvithout the normalization done in].
owed and unshadowed samples. While samples distributionn contrast to {] where the neighbors are sampled from
should be spatially isotropic, since most of the surfaces inthe whole image, our sample distribution is less global and
real scene are not facing the viewing direction, this will re - thys the chromaticity variation is likely to be smaller. The
sultin anisotropic distribution in image space. other reason lies on cases where extremely dark shadows
slightly corrupt the background’s chromaticity. This cesis
the difference in chromaticity to be magnified by such nor-
malization. We set. to be 0.15 for tolerating chromaticity
corruption error.

Normals. Surface normals are estimated based on the
depth information. Since the specific process is familiar
to computer vision community, all details are provided in

(b) the supplementary file for gaining space purposes. Nor-
Figure 3. The probability density function of bivariatetdisution mals help to distinguish shading and shadow, both of which
and the surface normal adaptive sampling are presentediama  exist in low frequency domain, since normals can indicate

(b), respectively. _ ) o ) whether the illumination change is caused by shading or
Suppose the samples are isotropically distributed in sur-jrradiance blocking. Significant illumination variatioorf

face tangent plane, then they are transformed to image spacgixe|s with the same normal is likely to be caused by occlu-

based on the following equation: sion. Theo,, parameter is set to 0.5 in our experiments.
, Spatial locationsUnlike a7, , normalization is done for
( x ; ® ) =M ( )8 ) (5) agq to account for scale variation. While such relative sim-

ilarity linearly penalizes neighbors away from the center,
where x’ denotes the coordinates in the surface tangentthe distribution radius can be increased to compensate the

plane.M represents the rotation matrix transforming from effect.

the tangent plane to the image plane, which can be easily

computed based on the surface normal. Tken p = 3.2.3 Shadow Confidence
M'x’, whereM’ is formed by extracting the first two rows

. - . The feature similarit between nonlocal neighbo
and columns fronM. The covariance matrix in the image Yopg ghiors

andq is
planeX is given by 1 _ ¢ n _d
Qpg = ApgPpgpg (10)
S=Elx—p)(x—p'= E[M’X’X’TM’] The confidence op being shadowed, denoted l6y(p), is
_Ms M (6) estimated based on the feature similarity between nonlocal
a 1o ' neighbors:
3.2.2 Feature Similarity my, = Z pgl, (11)

T . . . >gen, Ypg
Feature similarity is used to estimate the visual distance a€Np 9€EN,

between nonlocal neighbogsand ¢, denoted by; € N, max(m,, — I,,0)?
within the above-mentioned window support. For shadow Dp=1—exp 252 (12)




Z a (13) CP. For both dark and bright confidence we compute the
- windowed total variatiorD andwindowed inherent varia-
tion £, which are introduced inl[/]:

D
C(p) = =&
PN 2

wherem,, is the corresponding weighted average intensity

based on their similarity. There are three cases: DIEPYp) = Y 0p.gl02y CFP Y (16)
Both shadowed and unshadowed pixels exidtp is q€R(p)

shadowed, thed, will tend to be lower than the average (B.D}Y( .\ _ (B,D}

thus yielding high confidence. Otherwise the confidence Ly (p) = Z 9p.a(Oy g ) (17)

values will be clamped to 0 owing to theax function. _ 9€R(p) _

All neighbors are unshadowed pixel¥hen, will be ~ WhereR(p) is the rectangular region centeredpandg,,,
very close to the average leading to an extremely low confi- Fepresents a weighing function defined by a Gaussian fil-
dence. ter. Intuitively shadow boundary contributes more direc-

All neighbors are shadowed hen the confidence will be tional gradients than textures, leading to a larderThus
low either. However, the proposed sampling strategy with the overall shadow boundary confidence is defined as:

the right choice of- has inhibited this case. Moreover, if it 5D 5D

does happen, the tenlag}ﬂ > 4en, Qpq IN EQ. (13), which VABDY () — \//Jg{g Prpy2 4+ LB (p)2 8)
regulates the shadow confidence by the average similarity, \/DQ{CB’D}(p)Q + DéB’D}(p)Q +e

acts as the bootstrap when the estimated confidence is unre- ‘

liable due to only few similar neighbors being present (i.e. C;ound =\ JVB(p)VD(p) (19)

low average similarity). ) L .

The complex nature of real scenes imparts unavoidable¢ 'S Set to prevent zero division. The estimated boundary
error during the estimation of the confidence map, which is confidence will be used in the regularization of the smooth-
caused by depth inaccuracy along object boundary and darknd constraint during optimization.
textures. Such error can be ameliorated by the smoothing3.3. Shadow Removal

constraint in the optimization which will be introduced in ] ] o
Section3.3. The shadow confidence map is used to optimizezhe

(andF = I/p). The input RGB image is first transformed
to the logarithmic domain:

ip=bp+ fp (20)
The removal ohard shadow boundary over a textured area S o
constitutes one of the most challenging tasks in shadow re-The energy minimization formulation is:
moval. Background texture and shadow boundary details E(b) = Ep(b) + AsEs(b) + AaE4(b)  (21)

co-exist locally in the high frequency domain making it dif- ) o
ficult to identify the main cause for the irradiance change. Whereb is the set of all5 to be optimized £ (b), Es(b)
To deal with this complex situation, the prevailing ap- andE 4 (b) are respectively the shadowless constraint term,

proach is to isolate the boundary information from the tex- € Smoothing constraint term and the absolute scale con-
ture details intersecting in high frequency in order to-esti Straintterm.

mate the shadow limits. Segmentation-based methpd [

not general due to tha priori information provided clear 3.3.1 Shadowless Constraint Term

bounﬂanes,v(\':/md probability-based metr;]a@] [reI'TS Or? q Recalling our basic assumption that unshadowed pixels
user hints. © Propose a new approach, namely, SNadoWy iy, gimjjar features are likely to have the same color or
boundary confidence, which is based on the assumptiony | ination.  Two pixelsp and ¢ with a large similar-
that illumination change caused by shadows in afairlylargeity a,, tend to have same shadowless imagethat is

pq ’

scale s greater than the one caused by texture. b, — by = i, —iq. The shadowless constraint is defined
To make the boundary confidence bias to neither shadowas

nor non-shadow area, we compute a confidence measure

3.2.4 Shadow Boundary Confidence

called “nonlocal bright” confidence: Ep(b) =Y C(p) D> apgllb, — by — (i —ig)[I* (22)
) p qEN,
B,=1—exp (max(]p _Qm”’ 0 ) (14) Recall also that(p) contains thenax function to truncate
20 negative values to 0, which means that pixels brighter than
OB B, Z N (15) the mean value will be assigned with a confidence value
PN Pq equalto 0. In practice, a threshafd-c.. is applied, typically

4&Ny set as 0.1, in order to exclude pixels with low confidence.

Note that theC previously defined can be regarded as This significantly reduces the computational load when the
the corresponding “nonlocal dark” version, now denoted as majority of the pixels are unshadowed.



Figure 4. Indoor scenes. From left to right: input shadoweage, the albedo image by Chen and Koltdijp the shadowless image of Guo
et al. B], and the shadowless image of our method. Specific area®aneed for better visualization. Refer to supplemental neltéor
other results.

3.3.2 Smoothing Constraint Term 4. Experimental Results

Consider soft shadows whefevaries slowly, in contrast This is a first major attempt to demonstrate depth cues
with hard shadows where a rapid change exists across thean significantly improve shadow removal results with a
boundary. A smoothing constraint grthat is aware of hard  simple strategy as described, and we expect other state of
shadow boundary is needed. The smoothing regularizationthe art shadow removal algorithms to benefit when depth
should also ameliorate sparse errors in the confidence mapcues are taken into consideration. All softwares have been
which is defined as developed in the MATLAB 2012b environment, while all
experiments were executed on a laptop with an Intel Core
Bs(b)=>"(1—C%p) Y IIb,—bsl>  (23)  Duo 3.00GHz CPU with 8GB RAM. For an image of size

P qEN], 640 x 480 it typically takes 5 to 7 minutes, noting that the
processing time varies with the total number of unshadowed
whereNIQ denotes the local spatial neighbors. pixels and those that are uninvolved in the energy minimiza-
tion.
3.3.3 Absolute Scale Constraint Term Due to space limitation we highlight a subset of our re-

sults in the paper. Refer to the supplemental material for al
During the optimization process, there exist pixels that the results. A set of 30 images were collected from two dif-
should not participate in the process: they are neither highferent datasets commonly applied in RGB-D method eval-
confidence pixels¢ = {p|C(p) > thre.}) nor neighbors  uations. The NYU dataset {] comprises of indoor scenes
of high confidence pixelsNy = {U,cn.{dla € Np}}). while the Cornell dataset contains both outdod#] [and
Pixels not existing in the union of the two sets are the onessynthetic [LZ] RGB-D images. The goal here is to demon-
that should maintain their colors (i.3, = 1) and should  strate that the proposed algorithm constitutes a generic so
not be involved in the shadowless constraint. Since pix- lution independent of the scene nature (indoor, outdoor or
els involved in this term are usually located relatively-dis synthetic) as compared to the latest state of the &}@rd
tant from the shadow area and only smoothing regulariza-[4]. Chen and Koltun4] is the most recent state of the art
tion will be imposed on them, they have little impact to the for intrinsic image separation from single RGB-D images.

shadowless regularization. Their albedo image, which is supposed to be free of shading
and shadow, is compared while noting that this is not ex-
E4(b) = Z by — 1|2 (24) actly the shadowless image we optimize for. In the absence
PEN\(NcUNN) of shadow removal methods that use depth cues to the best
of our knowledge, Guo et al8] is compared since it is the
whereN represents the whole pixel set. state-of-the-art shadow removal focusing on outdoor scene

The absolute scale constraintis also essential because theith considerably high quality results. Moreover, since-Fi
shadowless constraint reconstruétsp to a scale, where in  layson et al. }, 7] results for outdoor images are state of the
Eq. @2 ||((by, — ) — (bg — 7)) — (i — iq)||* for any real art, comparison will be presented in supplementary mate-
and positivey can be used to produce the same effect. rial for gaining space. A comparison with interactive tech-
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Figure 5. Outdoor scenes. From left to right: the house-ytuelroad and the school-yard are depicted. For each scenespectively

show the input shadowed image, the shadowless image by Galo[&}], the albedo image by Chen and Koltufj,[and the shadowless
image by our method. Refer to supplemental material forragmsults.

niques [L6, 1] will also be presented based on the same usedmissing in indoor scenes and thus the shadow detection per-
images, since the high complexity of shadows and the scendormance is adversely affected. Conclusively, it should be
in the indoor/outdoorimages in{, 13] does not allow easy  noted that despite our high shadow removal performance,
user interaction. Although quantitative comparison igrar attached shadow areas (see bed sides in Fijuvbere nor-
for previous shadow removal works, we give one based onmals point away from light are better handled By4nd [4].
the synthetic images, by comparing the Mean Square Error
(MSE) and the Structural Similarity Index Method (SSIM) 4.2. Outdoor Scenes
between the corresponding ground truth shadowless images The complexity of outdoor scenes is widely known to the
and the shadowless results. shadow detection community raising the challenge level.
Since depth information is necessary in our method, the
dataset published by Saxena et al3][has been selected
Ten indoor images are selected from the NYU datasetfor this experiment. The specific dataset contains numerous
which was captured by both the RGB and depth camera us-outdoor images along with the corresponding depth maps,
ing the Microsoft Kinect. The corresponding aligned depth 10 of which are selected for evaluating the tested algo-
maps are also provided and used in our method @hd [ rithms.
Since B] does not take into consideration the depth infor-  The results depicted in Figugjustify the good perfor-
mation, only the RGB image is used as the algorithm’s in- mance of §], since the majority of the shadow portions are
put. Figure4 shows the most representative results. detected. However the chromaticity of the shadowless im-
The complexity of the selected indoor images is obvious ages seems to be locally affected. Ir], [even the most
with all multi-sized objects casting shadows to the rest of complex shadowed areas are detected but the removal pro-
the scene. The majority of soft or hard shadows are suc-cess is not satisfying. On the contrary, the proposed method
cessfully detected and removed by our method.4lnthe manages to detect and remove the majority of the shadowed
shadow portions of the images are also detected, a fact thaportions producing high quality results favorably compiare
also justifies the significance of depth. However, theretexis to [8]. However, for outdoor scenes under strong sun-
portions that have been missed basically due to its globallight, the chromaticity of shadow regions is usually cor-
nature. Specifically, a globally spatial smoothing conistra  rupted making it difficult to strike a good balance between
is imposed as regularization term of indirect illumination removing shadows and preserving texture. It should be also
Therefore, a locally rapid change of illumination cannot be noted though that raw outdoor depth information can be
handled successfully. In Guo et ak] the matching pair  often inaccurate affecting the algorithm’s performanee i.
approach considering the RGB average intensity or chro-missing depth information in distant areas like background
maticity features partially removes the shadowed portions trees, building’s facade and school building’s passageway
However, this method takes into consideration the environ- Figure5 leads to failure shadow removal cases. Although
mental light (reflections) and the direct light (sun), thitda [8] does not have to cope with this issue using only the RGB

4.1. Indoor Scenes
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Figure 6. Synthetic scenes. The plate, the mug and the rngless are depicted. For each scene, we respectively skawght shadowed
image, the albedo image by Chen and Koltdh fhe shadowless image by Guo et &, the shadowless image by Wu et alf] and the
shadowless image by our method. Refer to supplemental iadtarother results.

image, still our results are convincing in most cases. results.

4.3. Synthetic Scenes MSE MSE MSE SSIM
A dataset ted by S 4l i i Foreground| Background| F F
numer?)l?sseRgg?Desyn}tlhez)éei&aagesZi]ll[l?:t)r\gtirel; lsj|sn\g;v||e ob- | X[ - 2.791 4.667 | 0.9974
jects along with their corresponding shadows. Considerin (] 39.540 342.473 312.560 0.9846
J g poncing ' 9 ours| 32.630 | 1.139 3.675 | 0.9956

their shadow complexity, 10 images have been selected for
the experimental evaluation of our algorithm. Some sample
results are depicted in Figuée

Although the synthetic scenes are arguably simple, they
still present challenges to the state-of-the-art methdtls.  4.4. User-assisted Methods
absence of direct lighting condition seriously affectsrige
sults produced by Guo et ak][which is designed to oper-
ate mainly on outdoor images. On the contrary, Chen and
Koltun [4] successfully detects and partially removes the
shadow parts of the image. However, the boundary effect
cannot be properly smoothed the same a§].[Since []
is focused on distinguishing the reflectance variation from
shading, the aforementioned phenomenon is not considere
within the optimization process. In 1{], the boundary
effect is considerably better but still noticeable. On the

other hand, the shadow boundary confidence {Bpjin our . o :
method can alleviate the boundary artifact. |nherent.var|at|on in17]. Moreover, our rr_1ethod is fully
. . : automatic and can be applied to complex indoor or outdoor

Since the ground-truth images can be easily created forSCeneS
the synthetic images, a quantitative comparison is alse pre ‘
sented hereafter. The perceptual quality of the shadowless4
image F is assessed based on SSIM which takes the HVS
into consideration. In addition, the MSE measuring the in-  Using our shadow removal as preprocessing, we found
tensity distance betweef and the ground truth images is that intrinsic image separation can be significantly en-
calculated for: the local foreground object, the local back hanced. For instance, since the goaldhif to decompose
ground under the extracted shadow, and the complete im-a single RGBD image into the corresponding albedo and
age. The results indicate that our proposed algorithm-satis shading image, the use of the shadowless image produced
fies the perceptual requirement preserving also the error inby our algorithm contributes considerably in their final re-
low levels. Note that the foreground area irc[is masked  sults as shown in Figur@ We expect other state-of-the-art
off from any processing achieving slightly better perceptu  methods can directly benefit using our shadowless images.

Table 1. Quantitative results on synthetic images. Theaaeer
MSE and SSIM values oflf], [8] and our method.

Shadow removal using user-assisted methods are hard
to be applied in the outdoor images13 and indoor
scenes 14 due to their high complexity. Therefore, it
seems fair to have a comparison wit] pnd [L6] based
on their image results and in particular, on textured images
Since they do not use depth, we turn off the depth cue in
Qur algorithm for comparison. Figuiéshows that our al-
gorithm produces the shadowless images which are compa-
rable if not of higher quality, justifying our texture trea¢nt
using chromaticity, windowed total variation and windowed

5. Application
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(@) (b) (©) } ‘“(d) Figure 8. Albedo and shading images from intrinsic image de-

. . . . composition, without and with shadow removal preprocegsin
Figure 7. Comparison with user-assisted shadow removatxon t P preproces

tured surfaces. (a) is the input. (b), (c) and (d) are shaeksvl
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5. Conclusions and Limitations
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