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Abstract

This paper presents a new framework for human activity
recognition from video sequences captured by a depth cam-
era. We cluster hypersurface normals in a depth sequence
to form the polynormal which is used to jointly character-
ize the local motion and shape information. In order to
globally capture the spatial and temporal orders, an adap-
tive spatio-temporal pyramid is introduced to subdivide a
depth video into a set of space-time grids. We then propose
a novel scheme of aggregating the low-level polynormals
into the super normal vector (SNV) which can be seen as
a simplified version of the Fisher kernel representation. In
the extensive experiments, we achieve classification results
superior to all previous published results on the four pub-
lic benchmark datasets, i.e., MSRAction3D, MSRDailyAc-
tivity3D, MSRGesture3D, and MSRActionPairs3D.

1. Introduction
Activity recognition has been widely applied in a number

of real-world applications, e.g., video surveillance, human-
computer interaction, sign language recognition, and med-
ical health care. In the past decades, research on activ-
ity recognition mainly focused on recognizing actions from
videos captured by conventional visible light cameras. As
the imaging techniques advance, the recent emergence of
low-cost and easy-operation depth sensors such as Kinect
[15] facilitates a variety of visual recognition tasks includ-
ing activity recognition.

Depth maps have several advantages with respect to tra-
ditional color images in the context of activity recogni-
tion. First, they provide additional body shape and struc-
ture information, which has been successfully applied to
recover skeleton joints from a single depth map. Second,
color and texture are precluded in depth maps, which makes
the problems of human detection and segmentation eas-
ier. Third, depth sensors are insensitive to lighting change,
which brings great benefits to the system monitoring in the
dark environment.

It was recently shown in [12, 22] that conventional ap-
proaches based upon color sequences could not perform
well on depth maps due to a large amount of false point
detections fired on the spatio-temporally discontinuous re-
gions. On the other hand, depth maps and color sequences
have quite different properties. The descriptors based on
brightness, gradient, and optical flow in traditional color
sequences might be unsuited to represent depth maps. It
is therefore intuitive to design action features according to
the specific characteristics of depth sequences, e.g., cloud
points [20, 21] and surface normals [12].

In this paper, we propose a novel activity recognition
framework based upon the polynormal which is a group
of hypersurface normals in depth sequences. A polynor-
mal clusters the extended surface normals [12] from a local
space-time subvolume. It can be used to jointly capture the
local motion and geometry cues. A sparse coding approach
[11] is employed to compute the polynormal dictionary and
coefficients. We record the differences between polynor-
mals and visual words. The coefficient-weighted difference
vectors are aggregated through spatial average pooling and
temporal max pooling for each visual word. The vectors
of all visual words are in the end concatenated as a feature
vector, which can be viewed as a non-probabilistic simpli-
fication of the Fisher kernel representation [13]. We further
subdivide a depth video into a set of space-time grids. An
adaptive spatio-temporal pyramid is proposed to capture the
spatial layout and temporal order in a global way. We con-
catenate the vectors extracted from all the space-time grids
as the final representation of super normal vector (SNV).

3D Activity Dataset Best Results Our Results

MSRAction3D 91.70% [26] 93.09%
MSRGesture3D 92.45% [12] 94.72%
MSRActionPairs 96.67% [12] 98.89%

MSRDailyActivity3D 85.75% [21] 86.25%

Table 1. Our results compared to the best published results so far
on the four datasets (more detailed comparisons in Table 2-5).
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We evaluate our method according to the standard exper-
imental protocols on the four public benchmark datasets:
MSRAction3D [9], MSRDailyActivity3D [21], MSRGes-
ture3D [20], and MSRActionPairs3D [12]. Our results out-
perform all published ones as shown in Table 1.

The main contributions of this paper can be summarized
as follows. First, we group hypersurface normals from a lo-
cal space-time depth subvolume into polynormal which re-
serves the correlation between local normals and is more ro-
bust against noise than the individual normal [12]. Second,
a novel approach is proposed to aggregate low-level poly-
normals into the discriminative representation SNV. Third,
our adaptive spatial-temporal pyramid is better adapted to
retain the spatial and temporal orders than the widely used
uniform cells [7, 12, 19, 21]. Moreover, our framework is
flexible to combine with skeleton joints and compute SNV
for each joint trajectory.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the related work on activity recognition
using depth sequences. Section 3 describes the concept of
polynormal. In Section 4, we provide detailed procedures
of computing SNV. A variety of experimental results and
discussions are presented in Section 5. Finally, Section 6
summarizes the remarks of this paper.

2. Related Work
Research on activity recognition has explored a num-

ber of representations of depth sequences which range from
skeleton joints [26], cloud points [20], projected depth maps
[25], local interest points [22], to surface normals [12].

Biological observations have indicated human actions
can be modeled by the movements of skeleton joints. The
moving pose descriptor was recently proposed in [26] by us-
ing the configuration, speed, and acceleration of joints. To
reduce joint estimation errors, the pose set [18] selected the
best-k joint configurations by segmentation and temporal
constraints. The relative positions of pairwise joints were
also used in [21] as a complementary feature to characterize
the motion information. Compared to skeleton joints, cloud
points are more robust to noise and occlusion. Wang et al.
[20, 21] introduced local and random occupancy patterns
to describe depth appearance. In local occupancy patterns
[21], they subdivided the local 3D subvolumes associated
with skeleton joints into a set of spatial grids and counted
the number of cloud points falling into each grid. Similar
representation based on cloud points was also applied to the
4D subvolumes sampled by a weighted sampling scheme in
random occupancy patterns [20].

The approaches based on projected depth maps usually
transform the problem in 3D to 2D. Yang et al. [25] stacked
differences between projected depth maps as the depth mo-
tion maps where HOG was extracted as the global represen-
tation of a depth video. Several local interest point detectors

specifically designed for the depth data were recently pro-
posed. DSTIP was introduced in [22] to localize activity-
related interest points from depth videos by suppressing flip
noise. Hadfield et al. [4] extended the detection algorithms
of Harris corners, Hessian points, and separable filters to the
3.5D and 4D for depth sequences. As demonstrated in [16],
the surface normal provides most shape and structure infor-
mation of an object in 3D. HON4D [12] followed this ob-
servation to extend the surface normal to the 4D space and
quantized them by the regular and discriminative learned
polychorons.

Our method presented in this paper proceeds along with
this direction. It relies on the polynormal which is a local
cluster of extended surface normals. We propose a novel
approach to aggregate the low-level polynormals in each
adaptive spatio-temporal grid. The concatenation of feature
vectors extracted from all space-time grids forms the final
depth video representation.

3. Polynormal
The concept of a normal to a surface in 3-dimensional

space can be extended to a hypersurface in m-dimensional
space. The hypersurface can be viewed as a function
Rm−1 → R1 : xm = f (x1, . . . , xm−1), which is rep-
resented by a set of m-dimensional points that locally
satisfy F (x1, . . . , xm) = f (x1, . . . , xm−1) − xm =
0. The normal vectors to the hypersurface at these
points are computed by the gradient ∇F (x1, . . . , xm) =(

∂f
∂x1

, . . . , ∂f
∂xm−1

,−1
)

. In the context of depth sequences,
i.e., m = 4, each point satisfies F (x, y, t, z) = f(x, y, t)−
z = 0. We therefore obtain the extended surface normal by

n = ∇F =

(
∂f

∂x
,
∂f

∂y
,
∂f

∂t
,−1

)T

. (1)

The distribution of normal orientations is able to pro-
vide more informative geometric cues than the traditional
gradient orientations [12]. Moreover, the motion cues are
also embedded in the normal vector of Eq. (1). In order
to retain the correlation between neighboring normals and
make them more robust to noise, we propose polynormal to
cluster normals from a local spatio-temporal neighborhood.
Similar schemes have been validated in other fields. For ex-
ample, the spatial neighborhoods of low-level features are
jointly encoded in deep learning [8] and macrofeatures [1].

A polynormal p associated with each cloud point in a
depth video concatenates L normals in the local neighbor-
hood L of this point:

p =
(
nT

1 , . . . ,n
T
L

)T
, n1, . . . ,nL ∈ L. (2)

The neighborhood L is a spatio-temporal depth subvol-
ume determined by two parameters ns and nt, where ns
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Figure 1. Illustration of generating polynormal of the point pt.
(a) A depth sequence of tennis serve and normals associated with
cloud points. For figure clarity, only a few normals are visualized.
The three white squared regions correspond to the neighborhood
L. (b) The extended surface normal vector. (c) If ns = 9 and
nt = 3, the polynormal of pt is consisted of the 27 neighboring
normals.

denotes the number of neighboring points in spatial and nt
indicates the number of neighboring maps in temporal. Fig.
1 illustrates the concept of polynormal. A short sequence
of the tennis serve action is shown in Fig. 1(a). If we set
ns = 9 and nt = 3, then the polynormal of the white
point pt concatenates the 27 normals from the three adja-
cent depth maps as shown in Fig. 1(c).

4. Computing Super Normal Vector (SNV)
In this section, we describe the detailed procedures of

computing SNV based on the low-level polynormals. We
utilize the sparse coding to learn a dictionary and code
polynormals. Instead of directly pooling the coefficients
of coded polynormals, we aggregate the weighted differ-
ences between polynormals and visual words into a vector.
A depth video is subdivided into a set of space-time grids by
our proposed adaptive spatio-temporal pyramid. The fea-
ture vectors extracted from each grid are then concatenated
as the final SNV representation.

4.1. Aggregating Polynormals

In visual recognition, the global representation of an im-
age or a video is usually obtained by extracting low-level
features, coding them over a learned dictionary, and then
pooling the distribution of the codes in some well-chosen
support regions. After the coding step, low-level features
are discarded in the recognition pipeline. In our framework,
we keep the low-level features by recording the differences
between them and visual words. As shown in [5, 13, 27],
the relative displacements can provide the extra distribution
information of low-level features.

We employ sparse coding to learn the dictionary and
code polynormals. It is well known that the `1 penalty
yields a sparse solution. Given a training set of whitened
polynormals P = (p1, . . . ,pN ) in RM×N , the sparse cod-
ing problem can be solved by

min
D,α

1

N

N∑
i=1

(
1

2
‖pi −Dαi‖22 + λ‖αi‖1

)
, (3)

subject to dT
k dk ≤ 1,∀k = 1, . . . ,K,

where D in RM×K is the dictionary, each column (dk)
K
k=1

representing a visual word;α in RK×N is the coefficients of
sparse decomposition; λ is the sparsity inducing regularizer.

We `1-normalize each column (αi)
N
i=1 to obtain the soft

assignment αk,i of polynormal pi to the kth visual word.
The size of the volume (depth sequences) where we per-
form the aggregation is H ×W pixels and T frames. The
volume corresponds to either the entire video sequence or a
subsequence defined by a space-time grid. We denote byNt

the set of indices within the frame t. For each visual word,
the spatial average pooling is first applied to aggregate the
coefficient-weighted differences:

uk(t) =
1

|Nt|
∑
i∈Nt

αk,i (pi − dk) , (4)

where uk(t) represents the pooled difference vector of the
kth visual word in the tth frame. The temporal max pooling
is then used to aggregate the vectors from T frames:

uk,i = max
t=1,...,T

uk,i(t), for i = 1, . . . ,M, (5)

where uk is the vector representation of the kth visual word
in the whole volume; i indicates the ith component in cor-
responding vectors. The final vector representationU is the
concatenation of the uk vectors from the K visual words
and is therefore of KM dimensions:

U =
(
uT
1 , . . . ,u

T
K

)T
. (6)

In order to capture the global spatial layout and temporal
order, a depth sequence is subdivided into a set of space-
time grids. We extract a feature vector U from each grid
and concatenate them as SNV. This representation has sev-
eral remarkable properties. (1) The displacements to visual
words retain some information lost in feature quantization
process. (2) We can compute SNV upon a much smaller
dictionary (e.g., 100) which reduces computational cost.
(3) SNV performs quite well with simple linear classifiers
which are efficient in terms of both training and testing.
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4.2. Relationship with Fisher Kernel

We now demonstrate our proposed SNV is a simplified
non-probabilistic version of the Fisher kernel representation
which has been successfully applied in the image classifica-
tion tasks [13]. Fisher kernel assumes low-level features are
distributed according to a generative model, e.g., Gaussian
mixture model (GMM).

In the framework of Fisher kernel, each feature descrip-
tor is described by its deviations with respect to the GMM
parameters β = {πk,µk,σk, k = 1, . . . ,K}, where πk,
µk, and σk are the mixture weight, mean vector, and vari-
ance matrix (diagonal) of the kth Gaussian component ϕk.
The soft assignment of the descriptor pi to the component
ϕk is defined as:

γk,i =
πkϕk (pi)∑K
j=1 πjϕj (pi)

, (7)

We denote by pi a general descriptor and Nt a general
pooling region in this context. We focus on the gradient gk
with respect to the mean vector µk of the kth Gaussian:

gk =
1

|Nt|
√
πk

∑
i∈Nt

γk,iσ
−1
k (pi − µk) . (8)

If making the two hypotheses: (1) mixture weights are
equal, i.e., πk = 1/K and (2) covariance matrices are
isotropic, i.e., σk = εI with ε > 0, we can simplify Eq.
(8) to

gk ∝
1

|Nt|
∑
i∈Nt

γk,i (pi − µk) , (9)

where γk,i is simplified to ϕk (pi) /
∑K

j=1 ϕj (pi). The two
representations in Eq. (4) and Eq. (9) have the same form
except the ways to obtain the weight (αk,i and γk,i) and the
center (dk and µk). We utilize sparse coding to compute
the weight and center, while GMM clustering is used in the
Fisher kernel.

We choose sparse coding over GMM in our aggrega-
tion scheme because it is cheaper to compute the centers
(dictionary), especially it was recently shown in [2] that a
reasonably good dictionary can be created by some simple
methods, e.g., random sampling a training set. In addition,
our empirical evaluations show our method based on sparse
coding improves the recognition accuracy.

4.3. Adaptive Spatio-Temporal Pyramid

In the spatial dimensions, we use a nH × nW grid to
capture the geometry layout as shown in the top of Fig. 2.
As the depth information greatly facilitates human segmen-
tation, we enforce the spatial grid on the largest bounding
box of the human body, instead of on the entire frame as
widely used in [7, 12, 19].

Figure 2. Adaptive spatio-temporal pyramid. Top: a 4 × 3 spa-
tial grid. The spatial grid is implemented on the largest bounding
box of human body rather than on the entire frame. Bottom: the
frame index and associate motion energy used to build the adap-
tive temporal pyramid. The temporal segments are obtained by
repeatedly and evenly subdividing the normalized motion energy
vector instead of the time axis.

The temporal pyramid was introduced by Laptev et al.
[7] to take into account the rough temporal order of a video.
It was also employed in depth sequences [12, 21] to incor-
porate cues from the temporal context. In these methods,
a video sequence (either color or depth) is repeatedly and
evenly subdivided into a set of temporal segments where
descriptor-level statistics are pooled. However, different
people could have varied motion speed or frequency when
they are performing the same activity. It is therefore inflex-
ible to handle this variance by evenly subdividing a video
along the time axis. In addition, it is more desirable to pool
low-level features within the similar activity status, e.g.,
neutral, onset, apex, and offset. In order to handle these dif-
ficulties, we propose an adaptive temporal pyramid based
on the motion energy.

Given a depth sequence, we first project the ith frame Ii

onto three orthogonal planes to obtain the projected maps
Iiv, v ∈ {1, 2, 3}. The difference between two consecu-
tive maps is then thresholded to generate a binary map. We
compute the motion energy by accumulating summations of
non-zero elements of binary maps as:

ε(i) =

3∑
v=1

i−1∑
j=1

sum
(∣∣Ij+1

v − Ijv
∣∣ > ε

)
, (10)

where ε(i) is the motion energy of the ith frame; ε is the
threshold; sum(·) returns the number of non-zero elements
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Algorithm 1: Computation of SNV
Input: a depth sequence

a dictionary D = (dk)
K
k=1

a set of space-time grids V = {vi}
Output: SNV

1 compute polynormals {pi} from the depth sequence
2 compute coefficients {αi} of {pi} by sparse coding
3 for grid i = 1 to |V | do
4 for visual word k = 1 to K do
5 uk

i := spatial average pooling and temporal
max pooling of αk,i (pi − dk), where pi ∈ vi

6 end
7 U i :=

(
u1
i , . . . ,u

K
i

)
8 end
9 SNV :=

(
U1, . . . ,U |V |

)

in a binary map. The motion energy of a frame reflects its
relative motion status with respect to the entire activity.

Our proposed adaptive temporal pyramid is built on this
measurement as shown in the bottom of Fig. 2. We evenly
subdivide the normalized motion energy vector into a set of
segments, whose corresponding frame indices are used to
partition a video. In this paper, we use a 3-level temporal
pyramid as illustrated in this figure: {t0t4}, {t0t2, t2t4},
and {t0t1, t1t2, t2t3, t3t4}. In together with the spatial
grid, our adaptive spatio-temporal pyramid in total gener-
ates nH × nW × 7 space-time cells.

We summarize the outline of computing SNV of a depth
video in Algorithm 1. The set of space-time grids V are
chosen by the proposed adaptive spatio-temporal pyramid.

4.4. Joint Trajectory Aligned SNV

While the framework discussed above operates on the
entire depth sequence, our method is flexible to combine
with skeleton joints [15] to compute SNV based on each
joint trajectory. This is useful in the scenarios where peo-
ple significantly change their spatial locations in a depth
video. The aggregation process is the same as the ear-
lier discussion, except the pooling region is based on the
space-time volume aligned around each joint trajectory. It
was also shown in dense trajectories [19] that descriptors
aligned with trajectories were superior to those computed
from straight cuboids.

As shown in Fig. 3, the volume aligned with a joint
trajectory can be viewed as a single video sequence with
H ×W pixels and T frames. We apply the adaptive spatio-
temporal pyramid on this volume to obtain nH × nW × 7
space-time cells. In each cell, we use the same aggrega-
tion scheme, i.e., spatial average pooling and temporal max
pooling of the coefficient-weighted difference vectors as in
Eq. (4-5). The vectors from all the space-time cells are con-

Figure 3. SNV based on the skeleton joint trajectory. The
trajectory-aligned volume is subdivided into a set of space-time
grids according to the adaptive spatio-temporal pyramid. Each cell
generates a feature vector by the spatial average pooling and tem-
poral max pooling.

catenated as the joint trajectory aligned SNV. We in the end
combine the SNVs aligned with all the joint trajectories as
the final representation of a depth sequence.

5. Experiments

In this section we extensively evaluate our proposed
method on four public benchmark datasets: MSRAction3D
[9], MSRGesture3D [20], MSRActionPairs3D [12], and
MSRDailyActivity3D [21]. In all experiments, we set a
9 × 3 neighborhood for each cloud point to form the poly-
normal. We use 100 visual words in the sparse coding. The
adaptive spatio-temporal pyramid is typically of 4 × 3 × 7
space-time grids in height, width, and time, respectively.
We employ LIBLINEAR [3] as the linear SVM solver. Our
method is extensively compared to the existing depth-based
approaches. The methods designed for color videos are not
included in our comparisons because they have been widely
shown to be unsuited for depth maps [12, 21, 22]. Experi-
mental results show that our algorithm significantly outper-
forms the state-of-the-art methods on these datasets. Our
source code for computing SNV is available online.1

5.1. MSRAction3D Dataset

The MSRAction3D [9] is an action dataset of depth se-
quences captured by a depth camera. It contains 20 actions
performed by 10 subjects facing the camera. Each action
is performed 2 or 3 times by each subject. The 20 actions

1http://yangxd.org/code
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Method Accuracy

Bag of 3D Points [9] 74.70%
HOJ3D [23] 79.00%
EigenJoints [24] 82.30%
STOP [17] 84.80%
Random Occupancy Pattern [20] 86.50%
Actionlet Ensemble [21] 88.20%
Depth Motion Maps [25] 88.73%
HON4D [12] 88.89%
DSTIP [22] 89.30%
Pose Set [18] 90.00%
Moving Pose [26] 91.70%
Ours 93.09%

Table 2. Recognition accuracy comparison of our method and pre-
vious approaches on the MSRAction3D dataset.

are chosen in the context of gaming and cover a variety of
movements related to arms, legs, torso, etc.

In order to facilitate a fair comparison, we follow the
same experimental setting as [21]. SNV achieves an accu-
racy of 93.09% which significantly outperforms the exist-
ing methods. If we only keep the first level (i.e., {t0t4} in
Fig. 2) of the temporal pyramid, the accuracy goes down
to 91.64%. This shows the recognition benefits from the
cues in the global temporal context. We also compare to the
polynormal based Fisher kernel representation which ob-
tains 92.00% accuracy, 1.09% inferior to SNV. The confu-
sion matrix of our method is demonstrated in the left of Fig.
4. Our method works very well on most actions. The recog-
nition errors concentrate on quite similar actions, e.g., hand
catch to high throw and draw circle to draw tick.

We compare the performance of SNV with other results
in Table 2. The methods based on joints are vulnerable to
joint errors due to severe self-occlusions. So the model in
[18] selects the best-k joint configurations which largely
remove inaccurate joints. The approach in [26] utilizes
pose, speed, and acceleration of joints. While still infe-
rior to our method, the approaches in [17, 20, 21] improve
the results in [23, 24] because cloud points are more resis-
tant to occlusions and provide additional shape cues com-
pared to skeleton joints. SNV outperforms HON4D [12]
by 4.20%, though both methods are based upon hypersur-
face normals. This is probably because (1) polynormals
obtain more discriminative local motion and shape infor-
mation than individual normals; (2) sparse coding is more
robust than the polychoron and learned projectors; (3) our
aggregation scheme, i.e., spatial average pooling and tem-
poral max pooling of weighted difference vectors, is more
representative than the sum pooling of inner production val-
ues; (4) the adaptive pyramid is more flexible than the uni-
form cells to capture the global spatio-temporal cues.

Method Accuracy

Action Graph on Occupancy [6] 80.50%
Action Graph on Silhouette [6] 87.70%
Random Occupancy Pattern [20] 88.50%
Depth Motion Maps [25] 89.20%
HON4D [12] 92.45%
Ours 94.74%

Table 3. Recognition accuracy comparison of our method and pre-
vious approaches on the MSRGesture3D dataset.

5.2. MSRGesture3D Dataset

The MSRGesture3D [20] is a dynamic hand gesture
dataset of depth sequences captured by a depth camera. It
contains 12 dynamic hand gestures defined by the Ameri-
can Sign Language (ASL). There are 10 subjects, each one
performing each dynamic gesture 2 or 3 times. This dataset
presents more self-occlusions than MSRAction3D.

The leave-one-out cross-validation scheme as [20] is
used in our evaluation. SNV obtains the state-of-the-art
accuracy of 94.74% which outperforms all previous meth-
ods as shown in Table 3. The confusion matrix of SNV is
shown in the middle of Fig. 4. Our method performs pretty
well on most dynamic gestures. The most confusion occurs
in recognizing the gestures green which shares similar mo-
tion to j but with different fingers. As the joint estimation
is not available for human hands, the joint-based methods
[18, 21, 23, 24, 26] cannot be used in this application.

5.3. MSRActionPairs3D Dataset

The MSRActionPairs3D [12] is a paired-activity dataset
of depth sequences captured by a depth camera. It contains
12 activities (i.e., 6 pairs) of 10 subjects with each subject
performing each activity 3 times. This dataset is collected
to investigate how the temporal order affects activity recog-
nitions.

The same evaluation setup as [12] is used in our ex-
periment. SNV achieve the state-of-the-art accuracy of
98.89%. The detailed comparison to other approaches is
demonstrated in Table 4. The skeleton feature [21] only
involves pair-wise difference of joint positions within each
frame. The LOP feature [21] is used to characterize the
depth appearance. It counts the number of cloud points
falling into each spatial grid of a depth subvolume. There
is no temporal information encoded in the two features. In
the depth motion maps [25], depth sequences are collapsed
onto three projected maps where temporal orders are elimi-
nated. These methods therefore suffer the inner-paired con-
fusion. The skeleton and LOP features equipped with a uni-
form temporal pyramid improves the recognition result as
the global temporal order is incorporated. However, this re-
sult is still significantly inferior to ours.
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Figure 4. Confusion matrices of our method on the MSRAction3D (left), MSRGesture3D (middle), and MSRDailyActivity3D (right)
datasets. This figure is better viewed on screen.

Method Accuracy

Skeleton + LOP [21] 63.33%
Depth Motion Maps [25] 66.11%
Skeleton + LOP + Pyramid [21] 82.22%
HON4D [12] 96.67%
Ours 98.89%

Table 4. Recognition accuracy comparison of our method and pre-
vious approaches on the MSRActionPairs3D dataset.

It is therefore crucial to capture the spatio-temporal or-
ders to distinguish the activities with similar motion and
shape cues. In our method, the space-time orders are em-
bedded in two levels, i.e., polynormals and the adaptive
pyramid, which characterize the local and global spatio-
temporal orders, respectively. It is interesting to observe
that SNV achieves an accuracy of 97.78% if no temporal
pyramid is used. This promising result demonstrates the lo-
cal motion cues enclosed in the polynormals reflect the tem-
poral orders pretty well. Because of the high recognition
accuracy, the confusion matrix on this dataset is omitted in
Fig. 4.

5.4. MSRDailyActivity3D Dataset

The MSRDailyActivity3D [21] is a daily activity dataset
of depth sequences captured by a depth camera. There are
16 daily activities which are performed by 10 subjects. Each
subject performs each activity twice, one in standing posi-
tion and the other in sitting position. Compared to the other
three datasets, actors in this dataset present large spatial and
scaling changes. Moreover, most activities involve human-
object interactions.

In order to handle the significant spatial and scaling
changes, we employ the joint trajectory aligned SNV on this
dataset. Each joint is tracked through the entire depth se-
quence. A patch is associated with each joint in each frame.

Method Accuracy

LOP [21] 42.50%
Depth Motion Maps [25] 43.13%
EigenJoints [24] 58.10%
Joint Position [21] 68.00%
NBNN + Parts + Time [14] 70.00%
RGGP [10] 72.10%
Moving Pose [26] 73.80%
Local HON4D [12] 80.00%
Actionlet Ensemble [21] 85.75%
Ours 86.25%

Table 5. Recognition accuracy comparison of our method and pre-
vious approaches on the MSRDailyActivity3D dataset.

Because depth values inversely vary with an object size, we
set an adaptive size s/z to each patch, where s = 300K is a
scale factor and z is the depth value of a joint in the current
frame. Unlike the fixed patch size used in [12], the adap-
tive size is more robust to handle the scaling change. So the
patch size in Fig. 3 is not necessary to be consistent. We
compute SNV and joint position difference feature for each
joint trajectory. The actionlet ensemble model [21] is then
used to combine the features from multiple joints.

We follow the same experimental setting as [21] and ob-
tain the accuracy of 86.25%. The confusion matrix is shown
in the right of Fig. 4. Most recognition errors occur in the
almost still activities, e.g., read book, write, and use laptop.
Since most activities involve human-object interactions, this
dataset can be used to evaluate how the motion and shape
information are correlated. It could be insufficient to cap-
ture motion and shape independently because some activ-
ities share quite similar motion cues but present distinct
shape properties. SNV jointly encodes local motion and
shape information in polynormals which in the high level
reflect the co-occurrence of hand motion and object shape.
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Table 5 shows the performance of our method compared
to the previous approaches. Note: an accuracy of 88.20%
was reported in [22], however, four activities with less mo-
tion (i.e., sit still, read books, write on paper, and use lap-
top) were removed in their experiment. The holistic ap-
proach [25] suffers the non-aligned sequences. The meth-
ods [10, 14, 21, 24, 26] based on either motion or shape
information alone are significantly inferior to our method
and the ones [12, 21] that jointly model the two cues.

6. Conclusion
We have presented a novel framework to recognize hu-

man activities from depth sequences. The polynormal based
on extended surface normals jointly encodes local motion
and shape cues. A new aggregation scheme is proposed by
sparse coding polynormals, and spatial average pooling and
temporal max pooling of coefficient-weighted difference
vectors between polynormals and visual words. We have
introduced the adaptive spatial-temporal pyramid which is
shown to be better adapted to retain the spatial and tempo-
ral orders. Our proposed framework is flexible to be used
in the joint trajectory aligned depth sequence, which is well
suited in the scenarios where significant spatial and scaling
changes present. Our method is extensively evaluated on
four public benchmark datasets and compared to a number
of state-of-the-art approaches. Experimental results demon-
strate that our method outperforms all previous approaches
on these datasets.
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