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Abstract

In this paper we propose novel methods for comple-
tion (from limited samples) and de-noising of multilinear
(tensor) data and as an application consider 3-D and 4-
D (color) video data completion and de-noising. We ex-
ploit the recently proposed tensor-Singular Value Decom-
position (t-SVD)[11]. Based on t-SVD, the notion of mul-
tilinear rank and a related tensor nuclear norm was pro-
posed in [11] to characterize informational and structural
complexity of multilinear data. We first show that videos
with linear camera motion can be represented more effi-
ciently using t-SVD compared to the approaches based on
vectorizing or flattening of the tensors. Since efficiency in
representation implies efficiency in recovery, we outline a
tensor nuclear norm penalized algorithm for video comple-
tion from missing entries. Application of the proposed al-
gorithm for video recovery from missing entries is shown
to yield a superior performance over existing methods. We
also consider the problem of tensor robust Principal Com-
ponent Analysis (PCA) for de-noising 3-D video data from
sparse random corruptions. We show superior performance
of our method compared to the matrix robust PCA adapted
to this setting as proposed in [4].

1. Introduction
This paper focuses on several novel methods for ro-

bust recovery of multilinear signals or tensors (essentially
viewed as 2-D, 3-D,..., N-D data) under limited sampling
and measurements. Signal recovery from partial measure-
ments, sometimes also referred to as the problem of data
completion for specific choice of measurement operator be-
ing a simple downsampling operation, has been an impor-
tant area of research, not only for statistical signal process-
ing problems related to inversion, [6, 20, 15], but also in

machine learning for online prediction of ratings, [9]. All of
these applications exploit low structural and informational
complexity of the data, expressed either as low rank for
the 2-D matrices [6, 20], which can be extended to higher
order data via flattening or vectorizing of the tensor data
such as tensor N-rank [7], or other more general tensor-rank
measures based on particular tensor decompositions such
as higher oder SVD (HOSVD) or Tucker-3 and Canonical
Decomposition (CANDECOMP). See [13] for a survey of
these decompositions.

The key idea behind these methods is that under the as-
sumption of low-rank of the underlying data thereby con-
straining the complexity of the hypothesis space, it should
be feasible to recover data (or equivalently predict the miss-
ing entries) from number of measurements in proportion
to the rank. Such analysis and the corresponding identifi-
ability results are obtained by considering an appropriate
complexity penalized recovery algorithm under observation
constraints, where the measure of complexity, related to the
notion of rank, comes from a particular factorization of the
data. Such algorithms are inherently combinatorial and to
alleviate this difficulty one looks for the tightest convex re-
laxations of the complexity measure, following which the
well developed machinery of convex optimization as well
as convex analysis can be employed to study the related
problem. For example, rank of the 2-D matrix being re-
laxed to the Schatten 1-norm, [19] and tensor N -rank for
order N > 2 tensors being relaxed to overlapped Schatten
p-norms, [7].

Note that all of the current approaches to handle multi-
linear data extend the nearly optimal 2-D SVD1 based vec-
tor space approach to the higher order (N > 2) case. This
results in loss of optimality in the representation. In con-
trast, our approach is based upon recent results on decom-

1Optimality of 2-D SVD is based on the optimality of truncated SVD
as the best k-dimensional `2 approximation.



position/factorization of tensors in [2, 12, 11] in which the
authors refer to as tensor-SVD or t-SVD for short. Essen-
tially the t-SVD is based on an operator theoretic interpre-
tation of third-order tensors as linear operators on the space
of oriented matrices [2]. This notion can be extended re-
cursively to higher order tensors [16]. In this paper we will
exploit this decomposition, the associated notion of tensor
multi-rank and its convex relaxation to the corresponding
Tensor Nuclear Norm (TNN) (see[18]) for completion and
recovery of multilinear data.

This paper is organized as follows. Section 2 presents
the notations and provide an overview and key results on t-
SVD from [2, 12, 11] and illustrates the key differences and
advantages over other tensor decomposition methods. We
will then provide an over-view of the related structural com-
plexity measures. In Section 3 we study the compression
performance of the t-SVD based representation on several
video data sets. Following that, in Section 4 we propose
a tensor nuclear norm (TNN) penalized algorithm for 3-D
and 4-D (color) video completion from randomly sampled
data cube. In Section 5 we consider a tensor robust Prin-
cipal Component Analysis (PCA) problem for videos with
sparse data corruption and propose an algorithm to separate
low multi-rank video from sparse corruptions. Finally we
conclude in Section 6.

2. Brief overview of t-SVD
In this section, we describe the tensor decomposition as

proposed in [2, 12, 11] and the notations used throughout
the paper.
2.1. Notation and Indexing

A Slice of an N-dimensional tensor is a 2-D section
defined by fixing all but two indices. A Fiber of an N-
dimensional tensor is a 1-D section defined by fixing all
indices but one [13]. For a third order tensor A, we will use
the Matlab notation A(k, :, :) , A(:, k, :) and A(:, :, k) to
denote the kth horizontal, lateral and frontal slices, and A(:
, i, j), A(i, :, j) and A(i, j, :) to denote the (i, j)th mode-
1, mode-2 and mode-3 fiber. In particular, we use A(k) to
represent A(:, :, k).

One can view a 3-D tensor of size n1 × n2 × n3 as an
n1 × n2 matrix of tubes. By introducing a commutative
operation ∗ between the tubes a,b ∈ R1×1×n3 via a ∗ b =
a◦b, where ◦ denotes the circular convolution between the
two vectors, one defines the t-product between two tensors
as follows.

Definition 2.1.1. t-product. The t-product C = A ∗B
of A ∈ Rn1×n2×n3 and B ∈ Rn2×n4×n3 is a tensor of size
n1×n4×n3 where the (i, j)th tube denoted by C(i, j, :) for
i = 1, 2, ..., n1 and j = 1, 2, ..., n4 of the tensor C is given
by
∑n2

k=1 A(i, k, :) ∗B(k, j, :).

The t-product is analogous to the matrix multiplication

except that circular convolution replaces the multiplication
operation between the elements, which are now tubes. Next
we define related notions of tensor transpose and identity
tensor.

Definition 2.1.2. Tensor Transpose. Let A be a tensor
of size n1 × n2 × n3, then AT is the n2 × n1 × n3 tensor
obtained by transposing each of the frontal slices and then
reversing the order of transposed frontal slices 2 through
n3.

Definition 2.1.3. Identity Tensor. The identity tensor
I ∈ Rn1×n1×n3 is a tensor whose first frontal slice is the
n1×n1 identity matrix and all other frontal slices are zero.

Definition 2.1.4. f-diagonal Tensor. A tensor is called
f-diagonal if each frontal slice of the tensor is a diagonal
matrix.

The t-product of A and B can be computed efficiently
by performing the fast Fourier transformation (FFT) along
the tube fibers of A and B to get Â and B̂, multiplying the
each pair of the frontal slices of Â and B̂ to obtain Ĉ, and
then taking the inverse FFT along the third mode to get the
result. For details about the computation, see [12, 11].

Definition 2.1.5. Orthogonal Tensor. A tensor Q ∈
Rn1×n1×n3 is orthogonal if

QT ∗Q = Q ∗QT = I (1)

where ∗ is the t-product.

2.2. Tensor Singular Value Decomposition (t-SVD)
The new t-product allows us to define a tensor Singular

Value Decomposition (t-SVD).

Theorem 2.2.1. For M ∈ Rn1×n2×n3 , the t-SVD of M is
given by

M = U ∗ S ∗VT (2)

where U and V are orthogonal tensors of size n1×n1×n3
and n2×n2×n3 respectively. S is a rectangular f -diagonal
tensor of size n1 × n2 × n3, and ∗ denotes the t-product.

One can obtain this decomposition by computing matrix
SVDs in the Fourier domain, see Algorithm 1. The notation
in the algorithm can be found in [16]. Figure 1 illustrates
the decomposition for the 3-D case.

Figure 1. The t-SVD of an n1 × n2 × n3 tensor.



Algorithm 1 t-SVD
Input: M ∈ Rn1×n2...×nN

ρ = n3n4...nN
for i = 3 to N do
D← fft(M, [ ], i);

end for
for i = 1 to ρ do

[U,S,V] = SV D(D(:, :, i))

Û(:, :, i) = U; Ŝ(:, :, i) = S; V̂(:, :, i) = V;
end for
for i = 3 to ρ do
U ← ifft(Û, [ ], i); S ← ifft(Ŝ, [ ], i); V ←
ifft(V̂, [ ], )i;

end for

2.3. t-SVD: Fundamental theorems and key results
The two widely used tensor decompositions, Tucker and

PARAFAC[13] are usually seen as a higher order SVD for
tensors. Both of these decompositions have several dis-
advantages. In particular, one cannot easily determine the
rank-one components of the PARAFAC decomposition and
given a fixed rank, calculation of an approximation can be
numerically unstable. The tensor-train form of the Tucker
decomposition is studied in [10] as an alternative form.
Tucker decomposition can be seen as a generalization of
PARAFAC decomposition, and the truncated decomposi-
tion doesn’t yield the best fit of the original tensor. In con-
trast, the t-SVD can be easily computed by solving several
SVDs in the Fourier domain. More importantly, it gives an
optimal approximation of a tensor measured by the Frobe-
nious norm of the difference, as stated in the following
theorem[12, 11, 8].

Theorem 2.3.1. Let the t-SVD of M ∈ Rn1×n2×n3 be given
by M = U∗S∗VT and for k < min(n1, n2) define Mk =∑k
i=1 U(:, i, :) ∗ S(i, i, :) ∗V(:, i, :)T , Then

Mk = arg min
M̃∈M

‖M− M̃‖F

where M = {C = X ∗Y|X ∈ Rn1×k×n3 ,Y ∈ Rk×n2×n3}.

2.4. Measures of tensor complexity using t-SVD
We now define two measures of tensor complexity based

on the proposed t-SVD: the tensor multi-rank, proposed in
[11], and the novel tensor tubal rank.

Definition 2.4.1. Tensor multi-rank. The multi-rank of
A ∈ Rn1×n2×n3 is a vector p ∈ Rn3×1 with the ith element
equal to the rank of the ith frontal slice of Â obtained by
taking the Fourier transform along the third dimension of
the tensor.

One can obtain a scalar measure of complexity as the
`1 norm of the tensor multi-rank. We now define another
measure motivated by the matrix SVD.

Definition 2.4.2. Tensor tubal-rank. The tensor tubal
rank of a 3-D tensor is defined to be the number of non-zero
tubes of S in the t-SVD factorization.

As in the matrix case, practical applications of these
complexity measures require adequate convex relaxations.
To this end we have the following result for the Tensor
multi-rank.

Theorem 2.4.1. The tensor-nuclear-norm (TNN) denoted
by ||A||TNN and defined as the sum of the singular values
of all the frontal slices of Â is a norm and is the tightest
convex relaxation to `1 norm of the tensor multi-rank.
Proof. The proof that TNN is a valid norm can be found
in [18]. The `1 norm of the tensor multi-rank is equal to
rank(blkdiag(Â)), for which the tightest convex relaxation
is the the nuclear norm of blkdiag(Â) which is TNN of A
by definition. Here blkdiag(Â) is a block diagonal matrix
defined as follows:

blkdiag(Â) =


Â

(1)

Â
(2)

. . .

Â
(n3)

 (3)

where Â
(i)

is the ith frontal slice of Â, i = 1, 2, ..., n3.

Unlike the TNN is a relaxation for the tensor-nuclear-
norm, there is no clear convex relaxation for the tensor
tubal-rank. In the next section we will undertake a com-
pressibility study for tensor data using two types of trun-
cation strategies based on t-SVD and compare them with
matrix SVD based approach on several video data sets.

3. Multilinear data compression using t-SVD
We outline two methods for compression based on t-

SVD and compare them with the traditional truncated SVD
based approach in this section. Note that we don’t compare
with truncated HOSVD or other tensor decompositions as
there is no notion of optimality for these decompositions in
contrast to truncated t-SVD and truncated SVD.

The use of SVD in matrix compression has been widely
studied in [17]. For a matrix A ∈ Rm×n with its SVD
A = USV T , the rank r approximation of A is the matrix
Ar = UrSrV

T
r , where Sr is a r × r diagonal matrix with

Sr(i, i) = S(i, i), i = 1, 2, ..., r. Ur consists of the first r
columns of U and V T

r consists of the first r rows of V T
r . The

compression is measured by the ratio of the total number of
entries in A, which is mn, to the total number of entries in
Ur, Sr and V T

r , which is equal to (m+ n+ 1)r. Extending
this approach to a third-order tensor M of size n1×n2×n3,
we vectorize each frontal slice and save it as a column, so



we get an n1n2 × n3 matrix. Then the compression ratio of
rank k1 SVD approximation is

ratioSVD =
n1n2n3

n1n2k1 + k1 + n3k1
=

n1n2n3
k1(n1n2 + n3 + 1)

(4)

where 1 ≤ k1 ≤ min(n1n2, n3). Generally even with small
k1, the approximation Mk1

gets most of the information of
M.

Method 1 : Based on t-SVD our first method for com-
pression, which we call t-SVD compression, basically fol-
lows the same idea of truncated SVD but in the Fourier
domain. For an n1 × n2 × n3 tensor M, we use Algo-
rithm 1 to get M̂, Û, Ŝ and V̂

T
. It is known that Ŝ is

a f-diagonal tensor with each frontal slice is a diagonal
matrix. So the total number of f-diagonal entries of Ŝ is
n0n3 where n0 = min(n1, n2). We choose an integer k2,
1 ≤ k2 ≤ n0n3 and keep the k2 largest f-diagonal entries of
Ŝ then set the rest to be 0. If Ŝ(i, i, j) is set to be 0, then let

the corresponding columns Û(:, i, j) and V̂
T
(:, i, j) also be

0. We then call the resulting tensors Ûk2
, Ŝk2

and V̂
T
k2

. So
the approximation is Mk2

= Uk2
∗ Sk2

∗ VT
k2

where Uk2
,

Sk2 and VT
k2 are the inverse Fourier transforms of Ûk2 , Ŝk2

and V̂
T
k2

along the third dimension. The compression ratio
rate for this method is

ratiot-SVD =
n1n2n3

k2(n1 + n2 + 1)

where 1 ≤ k2 ≤ n0n3.
Method 2: Our second method for compressing is called

t-SVD-tubal compression and is also similar to truncated
SVD but in the t-product domain. As in Theorem 2.3.1,
we take the first k3 tubes (1 ≤ k3 ≤ n0) in S and get the
approximation Mk3

=
∑k3

i=1 U(:, i, :)∗S(i, i, :)∗V(:, i, :)T.
Compression ratio rate for the second method is

ratiot-SVD-tubal =
n1n2

k3(n1 + n2 + 1)

where 1 ≤ k3 ≤ n0.
Video data representation and compression using t-

SVD: We now illustrate the performance of SVD based
compression, t-SVD compression and t-SVD tubal com-
pression on 3 video datasets shown in Figure 2-(a).

1. The first video, referred to as the Escalator
video, (source: http://www.ugcs.caltech.edu/ sr-
becker/rpca.shtml#2 ) of size 130 × 160 × 50 (length
× width × frames) from a stationary camera.

2. The second video, referred to as the MERL video,
is a time lapse video of size 192 × 256 × 38 also
from a stationary camera (data courtesy: Dr. Amit
Agrawal, Mitsubishi Electric Research Labs (MERL),
Cambridge, MA).

(a)

(b)

(c)

(d)
Figure 2. (a) Three testing videos: escalator video, MERL video
and basketball video. (b) (c) (d) are compression results under
compression ratio 5. For (b) (c) (d) from left to right: SVD com-
pression, t-SVD-tubal compression and t-SVD compression

Figure 3. Compression ratio and RSE comparison for 3 videos.

3. The third video, referred to as the Basketball video is a
144× 256× 80 video (source: YouTube) with a non-
stationary panning camera moving from left to right
horizontally following the running players.

Figure 2 (b) to (d) show the compression results for the 3
videos when truncated according to vectorized SVD and
t-SVD compression (method 1) and t-SVD tensor tubal
compression (method 2). In Figure 3 we show the rel-
ative square error (RSE) comparison for different com-
pression ratio where RSE is defined in dB as RSE =
20 log10(‖Xrec − X‖F/‖X‖F). In all of the 3 results, the
performance of t-SVD compression (method 1) is the best.
This implies that tensor multi-rank fits very well for video
datasets from both stationary and non-stationary cameras.



SVD compression method (based on vectorization) has a
better performance over the t-SVD-tubal compression on
the Escalator and MERL video. However, t-SVD tubal
compression (method 2) works much better than SVD com-
pression on the Basketball video. This is because in the
videos where the camera is panning or in motion, one
frontal slice of the tensor to the next frontal slice can be ef-
fectively represented as a shift and scaling operation which
in turn is captured by a convolution type operation and t-
SVD is based on such an operation along the third dimen-
sion.

4. Tensor completion from limited samples

We will show the case when the tensor data is sim-
ply decimated randomly or down sampled in this section.
Specifically we consider the problem of data completion
from missing entries for multilinear signals. Suppose there
is an unknown tensor M of size n1 × n2 × n3 which is as-
sumed to have a low tubal-rank and we are given a subset
of entries {Mijk : (i, j, k) ∈ Ω} where Ω is an indicator
tensor of size n1 × n2 × n3. Our objective is to recover
the entire M. This section develops an algorithm for ad-
dressing this problem via solving the following complexity
penalized algorithm:

min ‖X‖TNN
subject to PΩ(X) = PΩ(M)

(5)

where PΩ is the orthogonal projector onto the span of ten-
sors vanishing outside of Ω. So the (i, j, k)th component of
PΩ(X) is equal to Mijk if (i, j, k) ∈ Ω and zero otherwise.
Let Y be the available (sampled) data: Y = PΩM. Define
G = F3PΩF

−1
3 where F3 and F−13 are the operators repre-

senting the Fourier and inverse Fourier transform along the
third dimension of tensors. Then we have Ŷ = G(M̂) where
Ŷ and M̂ are the Fourier transforms of Y and M along the
third mode. So (5) is equivalent with the following:

min ||blkdiag(X̂)||∗
subject to Ŷ = G(X̂)

(6)

where X̂ is the Fourier transform of X along the third di-
mension and blkdiag(X̂) is defined in (3). Noting that
‖X‖TNN = ||blkdiag(X̂)||∗. To solve the optimization
problem, one can re-write (6) equivalently as follows:

min ||blkdiag(Ẑ)||∗ + 1
Ŷ=G(X̂)

subject to X̂− Ẑ = 0
(7)

where 1 denotes the indicator function. Then using the
general framework of Alternating Direction Method of

Multipliers(ADMM)[1] we have the following recursion,

Xk+1

= arg min
X

{
1Y=PΩ(X) + X(:)TQk(:) +

1

2
||X−Zk||2F

}
= arg min

X:Y=PΩ(X)

{
||X− (Zk −Qk)||2F

}
(8)

Ẑ
k+1

= arg min
Ẑ

{
1

ρ
||blkdiag(Ẑ)||∗ +

1

2
||Ẑ− (X̂

k+1
+ Q̂

k
)||2F

}
(9)

Qk+1 = Qk +
(
Xk+1 −Zk+1

)
(10)

where Equation (8) is least-squares projection onto the con-
straint and the solution to Equation (9) is given by the sin-
gular value thresholding[19, 3]. The X(:) and Qk(:) means
vectorizing the tensors which is Matlab notation.

4.1. Equivalence of the algorithm to iterative
singular-tubal shrinkage via convolution

We will now show that the proposed algorithm for tensor
completion has a very nice interpretation as an iterative
singular tubal shrinkage using a convolution operation
between the singular tubes and a tube of threshold vectors.

According to the particular format that (9) has, we can
break it up into n3 independent minimization problems. Let

Ẑ
k+1,(i)

denotes the ith frontal slice of Ẑ
k+1

. Similarly

define X̂
k+1,(i)

and Q̂
k,(i)

. Then (9) can be separated as:

Ẑ
k+1,(i)

= arg min
W

{
1

ρ
||W ||∗ +

1

2
||W − (X̂

k+1,(i)
+ Q̂

k,(i)
)||2F

}
(11)

for i = 1, 2, ..., n3. This means each ith frontal slice of
Ẑ
k+1

can be calculated through (11).
In order to solve (11), we give out the following lemma.

Lemma 4.1.1. Consider the singular value decomposition
(SVD) of a matrix X ∈ Cn1×n2 of rank r.

X = UΣV ∗, Σ = diag({σi}1≤i≤r), (12)

where U and V are respectively n1 × r and n2 × r unitary
matrices with orthonormal columns, and the singular val-
ues σi are real and positive. Then for all τ ≥ 0 , define the
soft-thresholding operator Dτ as follows [3] :

Dτ (X) := UDτ (Σ)V ∗, Dτ (Σ) = diag{(σi − τ)+},
(13)



where t+ is the positive part of t, namely, t+ = max(0, t).
Then, for each τ ≥ 0 and Y ∈ Cn1×n2 , the singular value
shrinkage operator (13) obeys

Dτ (Y ) = arg min
X∈C

{
1

2
‖X − Y ‖2F + τ‖X‖∗

}
(14)

The proof can be found in [3] for the case when the ma-
trix is real valued. However, it can be easily extended to
matrices with complex entries using the result on gradients
of unitarily invariant norms in [14].

Now note that, if USV T = (X̂
k+1,(i)

+ Q̂
k,(i)

) is the

SVD of (X̂
k+1,(i)

+ Q̂
k,(i)

), then the solution to (11) is
UDτ (S)V T, where Dτ (S) = diag(Si,i − τ)+ for some
positive constant τ and “ + ” means keeping the positive
part. This is equivalent to multiplying (1 − τ

Si,i
)+ to the

ith singular value of S. So each frontal slice of Ẑ
k+1

can be calculated using this shrinkage on each frontal slice

of (X̂
k+1

+ Q̂
k
). Let U ∗ S ∗ VT = (Xk+1 + Qk) be

the t-SVD of (Xk+1 + Qk) and Ŝ be the Fourier trans-
form of S along the third dimension. Then each element

of the singular tubes of Ẑ
k+1

is the result of multiply-
ing every entry Ŝ(i, i, j) with (1 − τ

Ŝ(i,i,j)
)+ for some

τ > 0. Since this process is carried out in the Fourier
domain, in the original domain it is equivalent to convolv-
ing each tube S(i, i, :) of S with a real valued tubal vec-
tor ~τi which is the inverse Fourier transform of the vec-
tor [(1 − τi(1)

Ŝ(i,i,1)
)+, (1 − τi(2)

Ŝ(i,i,2)
)+, ..., (1 − τi(n3)

Ŝ(i,i,n3)
)+].

This operation can be captured by S ∗ T, where T is an
f-diagonal tensor with ith diagonal tube to be ~τi. Then
Zk+1 = U ∗ (S ∗ T) ∗ VT. In summary, the shrinkage
operation in the Fourier domain on the singular values of
each of the frontal faces is equivalent to performing a tubal
shrinkage via convolution in the original domain.

Application to Video data completion - For experi-
ments we test 3 algorithms for video data completion from
randomly missing entries: TNN minimization of Section 4,
Low Rank Tensor Completion (LRTC) algorithm in [15],
which uses the notion of tensor-n-rank [7], and the nuclear
norm minimization on the vectorized video data using the
algorithm in [3]. As an application of the t-SVD to higher
order tensor we also show performance on a 4-D color Bas-
ketball video data of size 144× 256× 3× 80.

Figures 5 and 6 show the results of recovery using the 3
algorithms. Figure 7 shows the RSE (dB) plots for sampling
rates ranging from 10% to 90% where the sampling rate
is defined to be the percentage of pixels which are known.
Results from the figures show that the TNN minimization
algorithm gives excellent reconstruction over the LRTC and
Nuclear norm minimization. These results are in line with
the compressibility results in Section 3.

Figure 4. Tensor completion results for MERL video. Upper left:
Sampled video(20%). Upper right: Nuclear norm minimization
(vectorization and SVD based) result. Lower left: LRTC result.
Lower right: TNN minimization result.

Figure 5. Tensor completion results for basketball video. Up-
per left: Sampled video(20%). Upper right: Nuclear norm mini-
mization (vectorization and SVD based) result. Lower left: LRTC
result. Lower right: TNN minimization result.

5. Tensor robust PCA
In this section we consider a “tensor robust principal

component analysis” problem of recovering a low tensor-
multi rank tensor L from a sparsely corrupted observation
tensor. Similar to the matrix robust PCA case [4], suppose
we have a third-order tensor M such that it can be decom-
posed as

M = L + S (15)

where L has low tensor-multi-rank and S is sparse tensor.
Here we focus on a case where the sparse tensor S is tube-



Figure 6. Recovery for color basketball video: Left: Sampled
Video(10%). Middle: LRTC recovery. Right: Tensor-nuclear-
norm minimization recovery

Figure 7. RSE (dB) plot against sampling rate Left: MERL video.
Right: Basketball video

wise sparse as shown in Figure 8. To resolve the low rank
and the sparse components given the observation M we
consider the following optimization problem.

min ‖L‖TNN + λ‖S‖1,1,2
subject to M = L + S

(16)

where λ > 0 and the ‖S‖1,1,2 for 3-D tensors is defined as∑
i,j ||S(i, j, :)||F .
An application where this is useful arises in multilinear

imaging scenarios where some pixels have heavy noise on
them and the task is to automatically locate such pixels and
recover the video. Although this may be done by processing
each frame but if the noise artifacts and video features are
aligned, one needs to both detect the noise and estimate the
corrupted video feature.

In order to solve the convex optimization problem of
Equation (16) we use ADMM. Then we have the following
recursion,

Lk+1 = arg min
L
‖L‖TNN +

ρ

2
‖L + Sk −M + Wk‖2F

(17)

Sk+1 = arg min
S
λ‖S‖1,1,2 +

ρ

2
‖Lk+1 + S−M + Wk‖2F

(18)

Wk+1 = Wk + Lk+1 + Sk+1 −M (19)

where W = ρY. From section 4 we already have the solu-
tion to (17) if we transform this equation into the Fourier do-
main then the tensor-nuclear-norm of L will be the nuclear

norm of blkdiag(L̂). The closed form solution to Equa-
tion (18) is given by,

Sk+1(i, j, :) =

(
1− λ

ρ‖Sk(i, j, :)‖F

)
+

Sk(i, j, :) (20)

where i = 1, 2, ..., n3.
For experiment we consider a video, which is compress-

ible in the t-SVD. We randomly corrupt video data by cor-
rupting some pixels with heavy additive noise. We want
to estimate the locations of such pixels using tensor ro-
bust PCA. The video used in this application is the basket-
ball video with randomly chosen sparse pixels tubes along
the third dimension. For each selected pixel we add ran-
dom Gaussian noise on it. Figure (8) shows the original
video(tensor) and the noise tensor. The size of each frame
is 72× 128 and the total number of frames is 80. The noisy
pixel tubes within every 10 frames are consistent. We use
the above ADMM algorithm to separate the original video
and the noise. Our analysis (to be reported in a future paper)
shows that the optimal choice of λ for tensor robust PCA is

1√
max(n1,n2)

. We also perform matrix robust PCA on this

noisy video data by vectorizing each frame, saving it as a
column vector and then get a n1n2×n3 matrix. In this case
the choice of λ is 1√

max(n1n2,n3)
[4].

Figure 8. Upper left: Original video. Upper right: Noisy tensor.
For 10 consecutive frames the locations of noisy pixels are the
same and then selected randomly for the next 10 frames. Lower
left 21st frame of the original video. Lower right 21st frame of
the noisy video.

The result of both tensor robust PCA and matrix robust
PCA is shown in Figure 9. From the results we can see that
tensor robust PCA works very well on separating the noisy
pixels from the video. However, the matrix robust PCA re-
sults in an almost fixed blurred background as the low rank
part while some structure of the playground, moving people
and the noise are recovered as the sparse part.



Figure 9. (21st frame shown) Upper Left: Low tensor multi-rank
part recovered from tensor robust PCA. Upper Right: Sparse re-
construction from tensor robust PCA. Lower left: Low matrix
rank part recovered from matrix robust PCA. Lower right: Sparse
reconstruction from matrix robust PCA.

6. Conclusion and Future work
In this paper we presented novel methods for comple-

tion and de-noising (tensor robust PCA) of multilinear data
using the recently proposed notion of tensor-SVD (t-SVD).
As an application we considered the problem of video com-
pletion and de-noising from random sparse corruptions, and
showed significant performance gains compared to the ex-
isting methods. The t-SVD based tensor analysis and meth-
ods can handle more general multilinear data as long as the
data is shown to be compressible in the t-SVD based rep-
resentation, as has been recently shown for pre-stack seis-
mic data completion in [5]. Finding the necessary and suf-
ficient conditions for recovery of low (multi)rank tensors
using TNN from incomplete tensor data is an important the-
oretical problem and is an important area of future research.
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