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Abstract

Parallax handling is a challenging task for image stitch-
ing. This paper presents a local stitching method to handle
parallax based on the observation that input images do not
need to be perfectly aligned over the whole overlapping re-
gion for stitching. Instead, they only need to be aligned in a
way that there exists a local region where they can be seam-
lessly blended together. We adopt a hybrid alignment model
that combines homography and content-preserving warp-
ing to provide flexibility for handling parallax and avoiding
objectionable local distortion. We then develop an efficient
randomized algorithm to search for a homography, which,
combined with content-preserving warping, allows for op-
timal stitching. We predict how well a homography enables
plausible stitching by finding a plausible seam and using the
seam cost as the quality metric. We develop a seam finding
method that estimates a plausible seam from only roughly
aligned images by considering both geometric alignment
and image content. We then pre-align input images using
the optimal homography and further use content-preserving
warping to locally refine the alignment. We finally compose
aligned images together using a standard seam-cutting al-
gorithm and a multi-band blending algorithm. Our exper-
iments show that our method can effectively stitch images
with large parallax that are difficult for existing methods.

1. Introduction

Image stitching is a well-studied topic [22]. Its first step
is to align input images. Early methods estimate a 2D trans-
formation, typically a homography, between two images
and use it to align them [23, 3]. Since a homography can-
not account for parallax, these methods require that the in-
put images should be taken from the same viewpoint or the
scene should be roughly planar. Otherwise, no homogra-
phy exists that can be used to align these images, resulting
in artifacts like ghosting or broken image structures. While
advanced image composition techniques, such as seam cut-
ting [2, 12] and blending [4, 17], can relieve these artifacts,
they cannot address significant misalignment.

Recent image stitching methods use spatially-varying
warping algorithms to align input images [13, 27]. While
spatially-varying warping can better handle parallax than
homography, it still cannot work well on images with large
parallax. Figure 1 shows a challenging example with a sig-
nificant amount of parallax in input images. Notice the hor-
izontal spatial order of the car, the tree, and the chimney
in the input images shown in Figure 1(a). In the left input
image, the chimney is in the middle of the car and the tree
while in the right image, the tree is in the middle of the
car and the chimney. For this example, one image actually
needs to be folded over in order to align with the other. This
is a fundamentally difficult task for the warping methods as
they either cannot fold over an image or will bring in objec-
tionable distortion, as shown in Figure 1(c).

In this paper, we present a parallax-tolerant image stitch-
ing method. Our method is built upon an observation that
aligning images perfectly over the whole overlapping area
is not necessary for image stitching. Instead, we only
need to align them in such a way that there exists a lo-
cal region in the overlapping area where these images can
be stitched together. We call this local stitching and de-
velop an efficient method to find such a local alignment that
allows for optimal stitching. Our local stitching method
adopts a hybrid alignment model that uses both homogra-
phy and content-preserving warping. Homography can pre-
serve global image structures but cannot handle parallax. In
contrast, content-preserving warping can better handle par-
allax than homography, but cannot preserve global image
structures as well as homography. Moreover, local stitch-
ing still prefers a well aligned, large local common region.
However, when homography is used to align images with
large parallax, the local region size and alignment quality
are often two conflicting goals. We address this problem
by using homography to only roughly align images and em-
ploying content-preserving warping to refine the alignment.

We develop an efficient randomized algorithm to search
for a homography for inexact local alignment first. Therein,
we predict how well a homography enables local stitching
by finding a plausible seam from the roughly aligned im-
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(a) Input images

(b) AutoStitch

(c) APAP [27]

(d) Our result
Figure 1. Parallax problem in image stitching. All the results are
partially cropped for the sake of layout. For input images with
large parallax, homography-based methods, such as AutoStitch,
cannot align input images and suffer from ghosting artifacts (b).
Spatially-varying warping methods, such as [27], can align im-
ages but introduce apparent visual distortion (c). Our method can
produce an artifacts-free stitching result (d).

ages and using the seam cost to score the homography. We
develop a graph-cut based seam finding method that can es-
timate a plausible seam from only roughly aligned images
by considering both geometric alignment and image con-
tent. Once we find the optimal homography, we use it to
pre-align the input images and then use content-preserving
warping to refine the alignment.

The main contribution of this paper is an efficient and
robust stitching method that handles images with large par-

allax well. The power of our method comes from local
stitching, which, enhanced by content-preserving warping
and seam cutting, explores both image content and geomet-
ric alignment and finds an optimal local region to stitch im-
ages together. As shown in our experiments, our method
can stitch images with a significant amount of parallax.

2. Related Work

Image stitching has been well studied in the fields of
computer vision and graphics. A good survey can be found
in [22]. This section only gives a brief overview and fo-
cuses on parallax handling.

Most existing image stitching methods estimate a 2D
transformation, typically a homography, between two input
images and use it to align them [23, 3]. These homography-
based methods can work well only when the input images
have little parallax as homography cannot account for par-
allax. When input images have large parallax, artifacts like
ghosting occur. Local warping guided by motion estima-
tion can be used to reduce the ghosting artifacts [21]. Image
composition techniques, such as seam cutting [12, 2, 7] and
blending [4, 17], have also been employed to reduce the arti-
facts. However, these methods alone still cannot handle sig-
nificant parallax. We also use seam cutting and blending as
the final steps in our method. The recent dual-homography
warping method can stitch images with parallax, but it re-
quires the scene content can be modeled by two planes [8].

Multi-perspective panorama techniques can handle par-
allax well [20, 28, 16, 6, 19, 1, 26, 18]. These techniques
require 3D reconstruction and/or dense sampling of a scene.
They are either time-consuming or cannot work well with
only a sparse set of input images, as typically provided by
users to make a panorama. The idea behind some of these
multi-perspective panorama techniques inspired our work.
That is, input images do not need to be perfectly aligned
over the whole overlapping image region. As long as we
can piece them together in a visually plausible way, a visu-
ally pleasing panoramic image can be created.

A relevant observation has also been made in a recent
work that the best-fitting homography does not necessar-
ily enable optimal image stitching [9]. They estimate a set
of homographies, each representing a planar structure, cre-
ate multiple stitching results using these homographies, and
find the one with the best stitching quality. This method
can successfully handle parallax for some images and also
inspired our work; however, it is slow as it needs to cre-
ate and score multiple stitching results. More importantly,
sometimes none of the homographies that represent some
planar structures can enable visually plausible stitching.
In contrast, our method evaluates the alignment quality
without creating the stitching results and is more efficient.
Also, our method integrates content-preservingwarping and
loosens the alignment requirement for homography estima-
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tion, thus providing more alignment candidates. Moreover,
our method, considering both image content and geometric
alignment in searching for a local alignment, can obtain an
alignment that suits image stitching better.

Recently, spatially-varying warping methods have been
extended to image stitching. Lin et al. developed a smoothly
varying affine stitching method to handle parallax [13].
Zaragoza et al. developed a technique to compute an as-
projective-as-possible warping that aims to be globally pro-
jective while allowing local non-projective deviations to ac-
count for parallax [27]. These methods have been shown
to work well on images with parallax that are difficult for
homography-based methods. However, they still cannot
handle images with large parallax, as shown in Figure 1.
Our method also employs a variation of spatially-varying
warping method, but only uses it to align input images over
a local overlapping region.

3. Parallax-tolerant Image Stitching

Our method uses a common image stitching pipeline.
Specifically, we first align input images, then use a seam
cutting algorithm to find a seam to piece aligned images to-
gether [12], and finally employ a multi-band blending algo-
rithm to create the final stitching result [4]. Our contribution
is a novel image alignment method which can align images
in such a way that allows for optimal image stitching.

Our observation is that we do not need to perfectly align
images over their whole overlapping area. In fact, for im-
ages with large parallax, it is very difficult, if not impossi-
ble, to align them perfectly. Our goal is to align images in
a local region where we can find a seam to piece them to-
gether. We employ a randomized algorithm to search for a
good alignment. Specifically, we first detect SIFT feature
points and match them between two images [15]. We then
randomly select a seed feature point and group its neigh-
boring feature points to estimate an alignment as our goal
is to estimate an alignment that aligns images over a local
region with a compact feature distribution. We evaluate the
stitching quality of this alignment. If this alignment is de-
termined good enough for stitching, we stop; otherwise we
repeat the alignment estimation and quality evaluation. Be-
low we first discuss some key components of this algorithm
and then provide a detailed algorithm description.

3.1. Alignment Model Selection

The first question is what alignment model to use. There
are two popular options: global 2D transformation, typi-
cally homography, and spatially-varying warping, such as
content-preserving warping [14, 24]. Most existing meth-
ods use a global 2D transformation to align two images. A
global 2D transformation has an important advantage in that
it warps an image globally and avoids some objectionable
local distortions. For example, homography can preserve

lines and similarity transformation can preserve the object
shape. But they are too rigid to handle parallax. For image
stitching, while we argue that it is not necessary to align
images exactly in their whole overlapping area, it is still
preferable to align images well over an as large as possible
common region. However, for images with large parallax,
a 2D transformation, even a homography, can often only
align images over a small local region. In contrast, content-
preserving warping is more flexible and can better align im-
ages, but it often introduces objectionable local distortion.

Our solution is to combine these two alignment mod-
els to align images well over a large common region with
minimal distortion. Given a seed feature point, our method
incrementally groups its neighboring feature points to fit
a 2D transformation (a homography by default). Here we
use a slightly large fitness threshold in order to group as
many feature points as possible although this makes the ho-
mography unable to fit these feature correspondences ex-
actly. Loosing the fitness of the homography can be com-
pensated by applying content-preserving warping later on,
as content-preserving warping is well suited to local warp-
ing refinement without introducing noticeable distortion.

3.2. Alignment Quality Assessment

A straightforward way to evaluate the stitching quality
of the above mentioned hybrid alignment is to first warp an
image using the homography and apply content-preserving
warping. We can then compare the warped image and the
reference image to examine how well these two images are
aligned. This approach, however, cannot reliably predict
whether a good seam can be found in the overlapping re-
gion. Furthermore, this approach does not consider the ef-
fect of image content on stitching. For stitching, salient im-
age features, such as edges, should be well aligned while
image regions like the sky do not necessarily need to be per-
fectly aligned. Finally, this approach is slow as it needs to
run content-preserving warping whenever we evaluate the
alignment quality inside the randomized algorithm.

We address the above problems as follows. First, we
examine the alignment quality based on the image edges in-
stead of the raw image directly. Second, we only evaluate
how the homography supports stitching. This simplifica-
tion can be justified by the fact that content-aware warp-
ing is very effective if only minor adjustment to the global
warping is required. But it also brings in a challenge: the
homography in our method is designed to be loose and does
not align two images exactly. Then we need to predict how
well the alignment enables seamlessly stitching from only
roughly aligned images. We address this challenge by find-
ing a plausible seam from the roughly aligned images and
using the seam cost to score the alignment.

We first down-sample the input images to both improve
speed and tolerate the small misalignment. We then com-
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(a) Input images (b) Optimal local homography alignment (c) Content-preserving warping (d) Stitching result

Figure 2. Stitching pipeline. Please zoom in this figure to better examine the alignment results at (b) and (c). Given input images with large
parallax (a), our method first estimates an optimal homography that roughly aligns images locally (b) and is predicted to allow for optimal
stitching as described in Section 3.2. In (b) and (c), we only blend aligned images by intensity averaging to illustrate alignment. The
red and green points are the SIFT feature points in the warped image and the reference image, respectively. When two feature points are
aligned, they appear olive green. Only a subset of feature points, indicated by blue circles, are selected to fit a homography loosely. Our
method then locally refines alignment using content-preserving warping (c), and finally employs seam-cutting and multi-band blending to
create the final stitching result (d).

pute the edge maps for the input images using the Canny
edge detection method [5]. The edge maps are low-pass fil-
tered to tolerate the small misalignment. We compute the
difference between the warped edge map and the reference
image’s edge map and obtain the difference map Ed. A
plausible seam should avoid passing pixels with large values
in the difference map in order to obtain a seamless stitching
result. We extend the graph-cut seam finding method [12]
to find a plausible seam. Briefly, we consider each pixel in
the overlapping region as a graph node. We define the edge
cost between two neighboring nodes s and t as follows,

e(s, t) = fc(s)|Ed(s)|+ fc(t)|Ed(t)| (1)

where we use an alignment confidence function fc(s) to
weight the edge cost. fc(s) is computed to further account
for the fact that the homography can only align two im-
ages roughly and content-preserving warping will be used
to refine the alignment. Specifically, if a local region has
a SIFT feature point, the alignment there can very likely
be improved by content-preserving warping and thus the
misalignment from only using the homography should be
deemphasized. We compute fc(s) to deemphasize the mis-
alignment according to the SIFT distribution as follows,

fc(s) =
1∑

Pi
g(‖Ps − Pi‖) + δ

(2)

wherePi is the position of a SIFT feature point andPs is the
position of pixel s. g is a Gaussian function and is used to
propagate the effect of a SIFT feature to its neighborhood.
δ is a small constant with a default value 0.01.

Based on the edge cost defined in Equation 1, the seam
finding problem can be formulated and solved as a graph-
cut problem [12]. Once we obtain this seam, we use the cost
associated with this seam to score the alignment quality.

3.2.1 Homography Screening

While some homographies can allow for seamless stitch-
ing, they sometimes severely distort the images and lead to

visually unpleasant stitching results. We detect such homo-
graphies and discard them before evaluating their alignment
quality. We measure the perspective distortion from apply-
ing a homography H to an image I by computing how H
deviates from its best-fitting similarity transformation. De-
note Ci as one of the four corner points of the input image
I and C̄i is the corresponding point transformed by H. We
find the best-fitting similarity transformation Ĥs as follows,

Ĥs = argmin
Hs

∑
Ci

‖HsCi − C̄i‖2,where Hs =

[
a −b c
b a d

]
(3)

Once we obtain Ĥs, we sum up the distances between the
corner points transformed by H and Ĥs to measure the per-
spective distortion. If the sum of the distances normalized
by the image size is larger than a threshold (with default
value 0.01), we discard that homography.

3.3. Alignment Algorithm Summary

We now describe our randomized algorithm to estimate
a good alignment for stitching.

1. Detect and match SIFT features between input im-
ages [15] and estimate edge maps for input images [5].

2. Randomly select a seed feature point and group its spa-
tially nearest neighbors one by one until the selected
feature set cannot be fitted by a homography with a
pre-defined threshold. We maintain a penalty value for
each feature point to identify the times that it has been
selected during the iteration process. When a feature
point is selected, we increase its penalty value by one.
In each iteration, to be selected as a valid seed, a fea-
ture point should not have been selected as a seed be-
fore and its penalty score is below the average penalty
value of all the feature points.

3. Evaluate the alignment quality of the best-fitting ho-
mography from Step 2 using the algorithm described in
Section 3.2. If the homography meets the pre-defined
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quality threshold, go to Step 4. Otherwise, if the av-
erage penalty value is low, go to Step 2; otherwise se-
lect the best homography estimated during the iteration
process and go to Step 4.

4. Employ the optimal homography to pre-align images
and use content-preserving warping guided by the set
of selected feature points to refine the alignment, as
described in Section 3.3.1.

Figure 2 shows the pipeline of our method. Given input
images (a), our method first finds an optimal local homog-
raphy and a subset of feature points that are loosely fit by
this homography as shown in (b). We illustrate the selected
feature pairs using blue circles. Notice that the homography
does not align these features exactly. We then use content
preservingwarping to refine the alignment. As shown in (c),
the selected feature pairs are now well aligned. Our method
finally composes the aligned images together (d).

3.3.1 Content-preserving warping

Various content-preserving warping methods have been
used in applications, such as video stabilization [14] and
image and video retargeting [25, 24]. While content-
preserving warping alone cannot always be used to align
images over their whole overlapping area, it is well suited
for small local adjustment. Therefore, we use it to further
align the pre-warping result from the optimal homography
to the reference image as shown in Figure 2 (b) and (c).

We use I , Ī , and Î to denote the input image, the pre-
warping result, and the final warping result, respectively.
We divide the input image I into an m × n uniform grid
mesh. The vertices in I , Ī , and Î are denoted using Vi, V̄i,
and V̂i. We then formulate the image warping problem as
a mesh warping problem, where the unknowns are V̂i. V̄i

is known from pre-warping. This mesh warping problem is
defined as an optimization problem that aims to align Ī to
the reference image while avoiding noticeable distortions.
We now describe the energy terms in detail below.

Local alignment term. The feature points in image I
and Ī should be moved to match their corresponding posi-
tions in the reference image so that they can be well aligned.
Since a feature point Pj is not usually coincident with any
mesh vertex, we find the mesh cell that contains Pj . We
then represent P̄j , the corresponding point of Pj in Ī , using
a linear combination of the four cell vertices of the corre-
sponding cell in image Ī . The linear combination coeffi-
cients are computed using the inverse bilinear interpolation
method [10]. These coefficients are used to combine the
vertices in the output image Î to compute P̂j . We can then
define the alignment term as follows.

Ep =

n∑
j=1

‖
∑

αj,kV̂j,k − P̃j‖2, (4)

where n is the size of the selected feature set from the align-
ment optimization step (Section 3.3), αj,k is the bilinear
combination coefficient, and V̂j,k is a vertex of the mesh
cell that contains P̂j , and P̃j is the corresponding feature
point in the reference image.

Global alignment term. The alignment term above only
directly constrains warping of the overlapping image region
with selected feature points. For other regions, content-
preserving warping often distorts them. As the pre-warping
result Ī has already provided a good approximation, our
method encourages the regions without feature points to be
close to the pre-warping result as much as possible. We
therefore define the following global alignment term,

Eg =
∑
i

τi‖V̂i − V̄i‖2, (5)

where V̂i and V̄i are the corresponding vertex in the content-
preserving warping result and in the pre-warping result. τi
is a binary value. We set it 1 if there is a feature point in
the neighborhood of Vi; otherwise it is 0. This use of τi
provides flexibility for local alignment.

Smoothness term. To further minimize the local distor-
tion during warping, we encourage each mesh cell in the
pre-warping result to undergo a similarity transformation.
We use the quadratic energy term from [11] to encode the
similarity transformation constraint. Specifically, consider
a triangle �V̄1V̄2V̄3. Its vertex V̄1 can be represented by the
other two vertices as follows,

V̄1 = V̄2+u(V̄3− V̄2)+vR(V̄3− V̄2), R =

[
0 1
−1 0

]
, (6)

where u and v are the coordinates of V̄1 in the local coordi-
nate system defined by V̄2 and V̄3. If this triangle undergoes
a similarity transformation, its coordinates in the local coor-
dinate system will not be changed. Therefore, the similarity
transformation term can be defined as follows,

Es(V̂i) = ws‖V̂1−(V̂2+u(V̂3−V̂2)+vR(V̂3−V̂2))‖2, (7)

where u and v are computed from Equation 6. We sum
Es(V̂i) over all the vertices and obtain the full smoothness
energy term Es. Here ws measures the saliency value of
the triangle �V̄1V̄2V̄3 using the same method as [14]. We
use this saliency weight to distribute more distortion to less
salient regions than those salient ones.

Optimization. We combine the above three energy
terms into the following energy minimization problem,

E = Ep + αEg + βEs, (8)

where α and β are the weight of each term with default val-
ues 0.01 and 0.001, respectively. The above minimization
problem is quadratic and is solved using a standard sparse
linear solver. Once we obtain the output mesh, we use tex-
ture mapping to render the final result.
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4. Experiments

We experimented with our method on a range of
challenging images with large parallax. We also com-
pared our method to the state-of-the-art methods, including
Photoshop, AutoStitch, as-projective-as-possible stitching
(APAP) [27], and our implementation of seam-driven stitch-
ing (SEAM) [9]. For APAP, we used the code shared by the
authors. Since that code only aligns images, we applied the
same seam-cutting and multi-band blending algorithm used
in our method to the APAP alignment results to produce the
final stitching results. This paper only shows some repre-
sentative stitching results that are partially cropped for the
sake of layout. Please refer to the project website for more
results that are not cropped and more intermediate results1.

Figure 3(a) shows two input images with a significant
amount of parallax. Photoshop failed to produce any re-
sult. AutoStitch could not align two images well using a
global 2D transformation, therefore the stitching result suf-
fers from ghosting, as indicated by the red circle in Fig-
ure 3(b). The traffic light is duplicated in the final result.
The SEAM method did not find a local plane represented
by a homography that allows for seamless stitching, and
duplicated the traffic light too as shown in Figure 3(c). The
APAP method creates a reasonable stitching result as shown
in Figure 3(d); however, as APAP tries to align two images
over the whole overlapping region, it distorts the salient im-
age structure, such as the pillar indicated by the red rect-
angle. Our method can handle this challenging example by
aligning the input images locally in a way that allows for
optimal stitching, as shown in Figure 3(e). We also show
the stitching seam in red.

Figure 4(a) shows another challenging example. The two
input images have a large amount of parallax, and there is
no global transformation that can align them well over the
whole overlapping region. As shown in Figure 4(b) , the
AutoStitch result suffers from significant ghosting artifacts.
While blending can relieve misalignment, it causes severe
blurring artifacts as indicated by the red circle. Both Pho-
toshop and SEAM duplicated the red structure, as shown in
Figure 4(c) and (d). APAP bends the straight line as shown
in Figure 4(e). Our result in (f) is free from these artifacts.

4.1. Discussion

Our method only needs to align input images locally
and fit a homography loosely, as described in Section 3.2.
Therefore our method can sometimes use a more restric-
tive global transformation than a homography to remove the
perspective distortion from homography. Figure 5(a) shows
a stitching result from our method using homography for
initial alignment, which suffers from noticeable perspective
distortion. Once we replace homography with similarity

1http://graphics.cs.pdx.edu/project/stitch

(a) Input images

(b) AutoStitch

(c) SEAM [9]

(d) APAP [27]

(e) Our result with seam
Figure 3. Comparisons among various stitching methods.

transformation for initial alignment, the stitching result suf-
fers from less distortion, as shown in Figure 5(b).

We also tested how the homographies selected by our
method differ from the best-fitting ones by computing the
distances between the transformed image corner positions
with our homographies and the best-fitting ones. Over 75%
of the examples shared in our project website has the av-
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(a) Input images (b) AutoStitch

(c) Photoshop (d) SEAM [9]

(e) APAP [27] (f) Our result
Figure 4. Comparisons among various stitching methods.

erage corner position distance larger than 36 pixels (given
an image with width 1000 pixels) . The median distance is
around 60 pixels. This confirms that our method uses dif-
ferent homographies than the best-fitting ones.

Our method works well on a range of examples with
large parallax as well as all the examples reported in the
recent APAP paper [27]. Meanwhile, we also found some
failure cases as shown in the project website. One was that
input images have very large parallax and are full of salient
structures. For stitching, images must be aligned so that
there at least exists a local common region where a good
seam can be found. In images with large parallax, there is
often no such a local region that can be aligned. Our method
explores the fact that non-salient areas often need not be
well aligned and considers this in searching for a good local
region alignment. But if an image has large parallax and
is full of salient structures, our method sometimes cannot
work as no non-salient region exists.

Our method adopts a common image stitching pipeline.
Its major novelty is in its step to align images such that op-

timal stitching can be achieved. This step, including op-
timal local homography estimation and content-preserving
warping, typically takes from 20 to 40 seconds on a desk-
top machine with Intel i7 CPU and 8 GB memory to align
two images with width 1000 pixels. All the other steps are
shared by off-the-shelf image stitching methods.

5. Conclusion

This paper presented a parallax-tolerant image stitching
method. We observed that images with significant parallax
often cannot be aligned well over the whole overlapping re-
gion without suffering artifacts like folding-over and these
images actually do not need to be aligned perfectly over the
whole overlapping region for image stitching. We then de-
veloped a method that aligns input images locally in such
a way that allows for optimal stitching. We designed an
efficient algorithm to estimate how an alignment result en-
ables seamless stitching without actual stitching. Our ex-
periments on challenging stitching tasks showed the effec-
tiveness of our method.
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(a) Homography (b) Similarity transformation

Figure 5. Homography vs. Similarity transformation. Our method is flexible in choosing a 2D global transformation for initial alignment.
Sometimes we can replace the commonly used homography with a similarity transformation to reduce distortion.
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