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Abstract

Computer vision systems today fail frequently. They also
fail abruptly without warning or explanation. Alleviating
the former has been the primary focus of the community. In
this work, we hope to draw the community’s attention to the
latter, which is arguably equally problematic for real appli-
cations. We promote two metrics to evaluate failure predic-
tion. We show that a surprisingly straightforward and gen-
eral approach, that we call ALERT, can predict the likely
accuracy (or failure) of a variety of computer vision sys-
tems — semantic segmentation, vanishing point and camera
parameter estimation, and image memorability prediction —
on individual input images. We also explore attribute pre-
diction, where classifiers are typically meant to generalize
to new unseen categories. We show that ALERT can be use-
ful in predicting failures of this transfer. Finally, we lever-
age ALERT to improve the performance of a downstream
application of attribute prediction: zero-shot learning. We
show that ALERT can outperform several strong baselines
for zero-shot learning on four datasets.

1. Introduction

Computer vision systems today are not perfect. Unfor-
tunately, given the ambiguous nature of many vision prob-
lems, they will never be perfect. Our community’s primary
focus has been on making these systems — let’s call them
BASESYS' — more and more accurate. To encourage sys-
tematic progress, we have established benchmarks like Cal-
tech 101 [16], PASCAL [14], SUN [60], etc. and we strive
to minimize the failures of BASESYS on these benchmarks.

Computer vision as part of a system: It is crucial to
keep in mind that in the real world, many applications in-
volve pipelines, where the output of one system is fed into
another as input. For instance, models trained to classify lo-
cal image patches may be fed into probabilistic models for
semantic segmentation [51]. Semantic segmentation may
be fed to a robot’s path planning algorithm for navigat-
ing through its environment [41]. Estimates of vanishing
points in an image may be fed into a 3D layout estima-
tion algorithm [23, 46]. Attribute predictions may be fed

'BASESYS may be a segmentation engine, an attribute predictor, a van-
ishing point estimator, an iPhone app that predicts aesthetic quality, etc.
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Figure 1: Qualitative results of our proposed approach (ALERT) on two
segmentation datasets: (a) and (c) show images predicted by ALERT as un-
reliable poor performing images; (b) and (d) show images predicted to be
the best performing. For a ground robot (a,b), ALERT correctly flagged the
images that are corrupted with strong shadows and over/under-exposure
while retaining the images with good contrast. For PASCAL segmentation
(c,d), the images for which BASESYS [7] generated poor segmentations
are marked by a red border. ALERT clearly favored images with easy to
segment isolated objects over complex images containing a large number
of small regions. See author’s webpage for example segmentations.

to recognition systems to classify previously unseen object
categories [15, 31]. The subsequent “system” may even be
a user: an image memorability predictor [25] may be used
by a graphics designer.

In all these cases, it is of course desirable for BASESYS
to fail infrequently. But arguably, it is equally desirable
for BASESYS to fail gracefully, instead of failing abruptly
without warning. While minimizing failures has been the
primary focus of the community, embracing and effectively
dealing with the failures has been mostly ignored. For a
variety of reasons such as verifiable safety standards for au-
tonomous systems, there is a recent push towards BASESYS
that can explain their outputs and are interpretable. In this
paper we take a small step in this direction.

We push for a capability where BASESYS can generate
a warning “I am unable to make a reliable decision for this
input”. Not all applications may have the luxury of taking
advantage of such a warning. We argue that many do. For
instance, if BASESYS issues a warning that it is unlikely
to be able to accurately predict the presence of certain at-
tributes in an image, the recognition system downstream
can choose to ignore these unreliable attributes, and only
use the reliable ones. This will make the overall recogni-
tion pipeline more robust as compared to one that accepts
all attribute predictions from BASESYS at face value and
propagates the errors. Consider a robot segmenting every
frame in the video feed during a field experiment, where



it often encounters poor quality images. If BASESYS can
identify such frames where the segmentation output is likely
to be inaccurate (See Figure 1(a)), the robot can choose to
skip those frames all together, thus saving computational
time, and simply wait for a later, more reliable frame. De-
pending on the application, a delayed but accurate decision
may be preferred over a timely inaccurate decision, which
may be catastrophic. If the user of an app can be warned
that the output cannot be trusted for a particular input, (s)he
can make an informed decision. In image search if a user
is looking for “black high-heeled shiny shoes”, it might be
better to not return images where the “high-heel” predictor
can not be trusted, and only return images where all three
attributes can be reliably detected. Generally, the resultant
higher precision may be worth the possibly lower recall.

How to detect failures? There are two ways to equip a
BASESYS with such a warning capability. First, we could
analyze the output of the vision system to assess its confi-
dence on any given input. In this case, the confidence eval-
uation has to be designed specifically for each system. In-
stead, we explore the alternative approach of evaluating the
input itself in order to assess BASESYS’s confidence. The
main thesis of our approach is that while BASESYS may
not be able to reliably predict the correct output for a cer-
tain input, predicting the difficulty or ambiguity of the input
may still be feasible. A benefit of this approach is that it is
applicable to any vision system because the reliability es-
timate is generated based on the input alone, without ever
looking at the inner workings of BASESYS. This approach
has the added benefit of not having to run BASESYS — typ-
ically computationally expensive — to assess its confidence.
Instead it can quickly reject inputs that are not reliable to
begin with. Finally, failure patterns may be different across
domains. Designers of BASESYS can not foresee all do-
mains in which it will be used. Hence, any confidence esti-
mation or early-rejection mechanisms built into BASESYS
may not generalize. Our approach, that we call ALERT, pro-
vides a simple tool for the consumer of BASESYS to train a
failure predictor catered to his domain.

Why is it feasible? The idea of analyzing the input
to classification and detection algorithms to assess its suit-
ability is not new and has been around in a variety of
application-driven communities such as Automatic Target
Recognition (ATR) [32, 59] and biometrics [20, 53]. In
these signal and image processing fields, the distinction
between errors due to inherent ambiguities in the feature
space and errors due to corrupted input becomes critical.
While both may be difficult to recover from, the latter can at
least be detected. As the vision community inches closer to
having real-world applications and away from hand-curated
datasets such as Caltech 101 [16] or PASCAL [14], we ar-
gue that recognizing this distinction becomes critical in our
community too. Note that, while analyzing performances
of algorithms as a function of biases in these datasets has

been addressed [28, 54], we are advocating the distinct task
of predicting the performance of a system on a given input.
With this work we hope to bring the community’s attention
to building self-evaluating systems that can reliably predict
their own failures.

A valid concern a reader may have is that if a system that
can reliably predict failures of BASESYS can be trained,
does that not mean BASESYS could have already been
trained to be better? Assuming BASESYS has been trained
well, should it not be impossible to train ALERT with accu-
racy better than chance?” We argue that this reasoning is not
applicable to a wide range of vision systems. First, many
BASESYS are not learning-based approaches in the first
place (e.g., vanishing point estimation as in [33]). Among
those that are, applications where the output space is very
large (e.g., exponential for segmentation or any structured
output task), ALERT identifying that the label predicted
by BASESYS is incorrect provides little information about
what the correct label in fact is. Further, the features used
to train BASESYS (e.g., local image patches for segmenta-
tion) may be complementary to the features used to train
ALERT (e.g., image-level gist). It is not trivial to incorpo-
rate these features (e.g., gist) into BASESYS itself (e.g., van-
ishing point estimation or segmentation). Hence, generally
speaking, research efforts towards systems such as ALERT
are orthogonal to efforts towards improving BASESYS. For
applications such as attribute-predictors where BASESYS
has a small label-space (binary) ALERT may boil down to
identifying images where the response can not be trusted
(e.g., gray-scale images for predicting the attribute red), and
not images where the response can be confidently classified
as being wrong. This is a subtle but important difference.
While a “good” classifier should ideally have reliable con-
fidence estimates, most existing training procedures do not
explicitly enforce this. They optimize for assigning correct
labels to training images, and not for the classifier’s con-
fidence being correlated with likelihood of failure. ALERT
provides a way to deal with the fact that discriminative clas-
sifiers tend to be overconfident.

In order to demonstrate the broad applicability of our
simple but surprisingly effective approach we evaluate it
on four diverse state-of-the-art BASESYS: attribute pre-
dictors (4 datasets), semantic segmentors (2 datasets), van-
ishing point estimators (2 datasets) and image memorabil-
ity predictor (1 dataset). In all these cases, we show that
ALERT can predict the accuracy of these diverse systems
with significant reliability: ALERT improves the accuracy
of BASESYS by allowing it to make fewer, but more ac-
curate decisions. We introduce two metrics for evaluating
failure prediction approaches, and show that ALERT out-
performs state-of-the-art systems in terms of these metrics.
Finally, we use ALERT on attribute-predictors on 4 datasets
and outperform strong baselines at conventional classifica-

2See [43] for a formal argument on “biometric-completeness”.



tion accuracies on a downstream task: zero-shot learning.

2. Related Work

Our work addresses an issue that is critical for real appli-
cations and has received attention in various communities.
Meta-recognition: Inspired by meta-cognition ‘“know-
ing about knowing” [18], Scheirer et al. [50] coined the
term “meta-recognition” for performance prediction meth-
ods that analyze post-recognition scores [56]. These meth-
ods have mainly been explored in biometrics with the recent
exception of [50]. The analysis proceeds by examining the
output of a matching system on a test instance. This out-
put often consists of the test instance’s similarity score to
all instances in the dataset. The analysis can be used to
automatically determine thresholds to make match / non-
match decisions [50], intelligent fusion schemes [47, 48],
etc. ALERT differs from this line of work in two prominent
ways (1) ALERT does not require the output of BASESYS
on a test instance to predict its performance — it only uses
the input test instance itself. This is particularly desirable
when BASESYS is computationally expensive. (2) Methods
such as [49, 50] are only applicable to BASESYS that rely
on similarity scores for recognition. Many computer vision
systems (such as segmentation, vanishing point estimation,
etc.) do not fall in this category. ALERT is broadly appli-
cable to all such applications. In computer vision, Welin-
der et al. [58] and Aghazadeh and Carslsson [1] predict the
global performance of a classifier on a corpus of test in-
stances. ALERT instead provides an instance-specific relia-
bility measure.

Image quality assessment: The biometrics community has
been using image quality measures as predictors for match-
ing performance [20, 53]. In this context, the concept of
input “quality” is closely tied to BASESYS — poor quality
simply refers to the inability of BASESYS to provide accu-
rate results for that input. Our work follows the same phi-
losophy. Such methods, as do we, only analyze the input
instance (e.g., fingerprint scan) to assess the likely quality
of match. We argue that a similar level of self-evaluation
should be part of all computer vision systems as they are
involved in a variety of real-world applications.

Predicting failures: Optimization algorithms can often de-
tect when they have found the global optimum [52] or can
indicate for which variables they are failing to find opti-
mal assignments [22, 44]. In computer vision, Jammala-
madaka et al. [26] recently introduced evaluator algorithms
for human pose estimators (HPE). They used features spe-
cific to this application; ALERT on the other hand uses
generic image appearance features for a wide variety of
applications. While application-specific features can only
boost ALERT’s performance, in this paper we hope to pro-
mote this line of work by demonstrating the ease with which
one can build self-evaluating systems. Aodha et al. [37]
trained a classifier that can select one of several optical flow

algorithms for a given input video sequence, which resulted
in improved performance over any one algorithm alone.
Liao et al. [36] use application-specific features to train a
classifier that can predict whether their region proposal al-
gorithm would fail on an image or not. Hoiem et al. [24]
focus on analyzing the different sources of error in object
detectors, and do not predict failure. Methods that predict
performance by analyzing statistics of the training and test
data [4, 57] are not applicable to our goal of predicting the
reliability of individual test instances. Detecting errors has
received a lot of attention in speech recognition [8, 45].
Recovering from these errors in spoken dialogue systems
is often interactive [17]. In a similar spirit, a system like
ALERT can be used to actively elicit labels for instances
likely to be misclassified as in [3] to improve performance.
KWIK “Knows What It Knows” frameworks [35] allow for
active exploration which is beneficial in reinforcement- and
active-learning problems.

Estimating confidence of classifiers: The confidence of
a classifier in its decision is often correlated to the like-
lihood of it being correct. Reliably estimating the confi-
dence of classifiers has received a lot of attention in the pat-
tern recognition community [13, 29, 39]. Applications such
as spam-filtering [9], natural language processing [2, 12],
speech [27] and even computer vision [61] have leveraged
these ideas. However, different classifiers require different
methods to estimate their confidences, making their general
applicability limited. Moreover, many computer vision sys-
tems (e.g., vanishing point estimators) are not classifiers.
Hence, system- and application-specific means of estimat-
ing the confidence of BASESYS would be required. For in-
stance, Haeusler ef al. [21] use an ensemble of classifiers
to combine different stereo matching confidence estimates.
ALERT is BASESYS independent, making it broadly appli-
cable. Methods that use cross-validation to select a robust
model from a pool of models [5] completely discard unre-
liable models from being used in the future. ALERT makes
local instance-level decisions about whether BASESYS can
be trusted for that instance or not.

Rejection (“none-of-the-above”): Refusing to make a de-
cision on an instance is related to systems that identify an
instance as belonging to none of the classes seen during
training [ | |, 34]. The scenario we consider is not concerned
with unfamiliar instances arising from discrepancies in the
distributions of the training and test data. It is concerned
with familiar but difficult instances. Gao and Koller [19]
learn a relaxed hierarchy of binary classifiers, where the dif-
ficult categories may be ignored early on and are dealt with
further down in the hierarchy. This allows them to trade-
off speed for accuracy. The work of Deng et al. [10] makes
decisions in a hierarchical fashion. Given a semantic hierar-
chy on the categories of interest (e.g., WordNet [38]), their
approach trades off specificity for accuracy. They output
the most specific label they can while being confident about



it. ALERT is complementary to these approaches and trades
off the declaration rate of BASESYS for its accuracy.

3. Approach Overview

Given a vision system BASESYS, we wish to learn
ALERT: a model that will detect with some reliability
whether BASESYS is likely to fail on a given test instance.

As training data, we are given N instances
{x1,...,@;,...,xn} and the corresponding accuracies
(or measure of error) {y1,...,¥i,...,yn} of BASESYS on
these instances. These instances x; may be images, video
frames, entire videos or outputs of any sensing modality —
whatever it is that BASESYS takes as input. The accuracy
(or error) {y;} may be any metric that is appropriate to
evaluate the output of BASESYS for a given input instance
x;. In this work we only consider scenarios where y; is
a scalar, but extensions to vector y; are conceivable. If
BASESYS is a classifier that predicts a binary label for a
given input instance, y; may be the 0-1 loss. If BASESYS
produces a semantic segmentation for an image x;, y; may
be the proportion of pixels in x; correctly assigned to their
ground truth label. We represent each instance x; with
d—dimensional appearance features: x; € R? (overloading
notation). These appearance features may be any features
that are appropriate for the modality of x;. We experiment
with ALERT simply being a discriminatively trained classi-
fier (SVM) when y; is binary (for instance when BASESYS
produces binary labels for x;), or a regressor (Support
Vector Regressor) when y; is a continuous scalar. Note
that any sophisticated image descriptors, machine learning
techniques and application- or BASESYS-specific features
can be incorporated in ALERT. If one anticipates specific
failure modes of BASESYS given knowledge about its
inner workings, one could design features that specifically
represent these failure modes.

BASESCORE: BASESYS often produce indicators of
their confidence in their output e.g., the energy of a con-
ditional random field model for semantic segmentation or
the number of lines detected in an image that are poorly
explained by the estimated vanishing points. We call
such measures BASESCORE. Not only is BASESCORE
BASESYS-specific (unlike ALERT), it also requires us to
run BASESYS at test time — which may be computationally
expensive — and obtain its output before we can estimate
the confidence. Our approach needs to run BASESYS only
to compute y; to train ALERT. At test time, ALERT does
not need to run BASESYS to estimate reliability of the in-
put instance. BASESCORE may be quite reliable since it is
aware of the inner workings of BASESYS. ALERT on the
other hand has the benefit of capturing potentially orthog-
onal image features. Which one performs better may de-
pend on the application. But note that BASESCORE is less
general than ALERT and not preemptive — it does not allow
for early rejection of unreliable input instances. If early re-

jection is not critical for an application, combining ALERT
with BASESCORE (which involves running BASESYS) can
yield a better failure predictor than both.

In Section 4 we describe how we use ALERT to avoid
failures in a variety of applications. In Section 5 we use
ALERT to predict the failure of attribute predictors at trans-
ferring knowledge to previously unseen categories. This al-
lows us to improve the performance of a downstream appli-
cation (zero-shot learning [31]).

4. Avoiding Failures

We applied our approach to three diverse applications.
For all three, ALERT was trained by combining multiple
kernels for 14 generic image features such as dense SIFT,
color, texton, gist, HOG, line histograms, local binary pat-
terns, self-similarity and so on, using the implementation
of [60]. In other words, the feature representation for x;
is the same for all three applications. Note that these can
capture image quality [20, 53] in addition to other visual
properties. We use half the images to train ALERT and
the other half to test. We now provide the specific details
of BASESYS, y; and BASESCORE. Quantitative results on
these applications are in Section 4.4.

4.1. Semantic Segmentation

We explored semantic segmentation in two domains.

Robot: This first dataset contains images collected by
a robot. The original 1278x958 images were scaled and
rectified to 320x240. Each pixel was assigned to one of 8
semantic labels (sky, tree, asphalt, grass, building, object,
concrete and gravel) using the semantic segmentation algo-
rithm of Munoz et al. [40] as BASESYS, which constructs
a hierarchical segmentation of the image and predicts a dis-
tribution of labels for each segment by combining, at each
level of the hierarchy, image features with the distribution
of labels predicted at the previous level. We experimented
with two different accuracy measures y;. The first is the
proportion of pixels assigned to their correct labels and the
second is the proportion of pixels from each class assigned
to their correct labels averaged across the classes. While
the first measure favors classes that occur more frequently
in images, this second measure normalizes for the class dis-
tribution. BASESYS provides a distribution over all the la-
bels for each pixel in the input image. For BASESCORE,
we compute the entropy of this distribution, and averaged it
across all pixels in an image.

PASCAL: The second scenario is the PASCAL VOC
2012 segmentation challenge where each pixel in a diverse
set of indoor and outdoor images is to be assigned to one of
20 semantic categories (person, chair, etc.) or background.
As BASESYS we use the state-of-the-art approach of Car-
reira and Sminchisescu [6, 7]. It involves generating a large
number of plausible object segment hypotheses using con-
strained parametric min-cuts and bottom up cues, followed
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Figure 2: Qualitative examples for the camera rotation matrix estimation
task. Left: images predicted as poor performing images by ALERT. We see
that the three dominant directions are often not clearly visible (e.g., ceiling
cropped out of the picture). Right: images predicted as best performing
images by ALERT. The 3D orientation of the room is clearly evident.
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by re-ranking them using mid-level cues. This re-ranking is
done by training class-specific regressors which provide a
high score if a segment is a good match for the category.
In addition to the two accuracy metrics described above
we also experiment with the standard PASCAL %
metric. As BASESCORE, we average the score assigned to
each segment in an image by the class-specific regressor of
BASESYS corresponding to the label that the segment took

in the segmentation. Figure 1 shows qualitative results.

4.2. Vanishing Point Estimation

We explored vanishing point estimation (VP) on 301 in-
door scene images in Hedau et al. [23]’s dataset, and camera
parameter (focal length and rotation) estimation on Satkin et
al. [46]’s dataset containing 353 bedroom and 166 living
room images from the SUN [60] dataset. BASESYS in-
volves detecting lines in image x; and clustering them in
3 directions (and outliers) [33] to estimate the VPs. Under
the Manhattan world assumption, the VP estimates and the
orthogonality constraint are used to compute the intrinsic
camera parameters and the camera rotation matrix. The er-
ror e in each VP estimated in image «; is measured as its
distance from the lines associated with the corresponding
ground truth VP. We used several measures for ;: the min-
imum of the three e’s, their mean, the sum of the two small-
est errors, the difference between the estimated and ground
truth focal length relative to the true focal length, and the er-
ror between the ground truth camera rotation matrix R(x;)
and that estimated by BASESYS is R(x;) measured as the
geodesic distance on the 3D manifold of rotation matrices:

1 T~
yi = —=—[|log(R(x:)" E(x;))|| - (1)
V(2

As BASESCORE for VP estimation, we use the propor-
tion of lines detected in the image that were assigned to the
“outliers” cluster when estimating VPs. There is no natural
BASESCORE for camera rotation and focal length estima-
tion. See Figure 2 for qualitative results.

4.3. Image Memorability Prediction

We explored image memorability prediction, where the
task is to predict how memorable an input image is [25] in
the [0, 1] range. We use the dataset of Isola et al. [25] con-
taining 2222 images. As BASESYS we use their approach
that trains a Support Vector Regressor using state-of-the-art

image features such as HOG, gist, SIFT, self-similarity and
pixel histograms. We computed the error y; in the predic-
tion as the relative difference between the score predicted by
BASESYS and the ground truth memorability score.® Since
BASESYS is a regressor, there is no natural definition of
BASESCORE for this application.

4.4. Evaluation

We evaluate ALERT using two different metrics.

ADR: The first is an Accuracy of BASESYS vs. Declara-
tion Rate (ADR) curve. Declaration Rate is the proportion
of test images on which BASESYS does not output a deci-
sion, in fear of providing an incorrect decision. This curve
is computed by sorting the test images in descending order
of their reliability as estimated by ALERT. We then retain
only a DR proportion of the test images (DR € [0, 1]), and
discard the rest. We compute the accuracy of BASESYS on
these retained images and plot accuracy vs. DR. For some
applications like vanishing point estimation, it is more natu-
ral to use error instead of accuracy. If ALERT were perfect,
it would discard the worst performing images. Accuracy
would be very high at low DR and then fall gracefully as DR
approached 1. If ALERT performed at chance level, on aver-
age, the accuracy would remain constant with varying DR.
We compare the performance of ALERT to these upper and
lower bounds (Figure 3). We see that even an approach as
straightforward as ALERT can perform significantly better
than chance. As expected, BASESYS-specific BASESCORE
often performs better. See author’s webpage for examples
where ALERT outperforms BASESCORE. A simple sum-
mation of ALERT and BASESCORE improves performance
of both. Clearly, ALERT captures information orthogonal to
BASESYS’s beliefs. Some BASESYS may have more sys-
tematic failure modes than others, hence ALERT helps in
some cases more than others. BASESYS for image memo-
rability prediction included many of the same features that
ALERT was trained on. ALERT still predicts its failures re-
liably, but not as dramatically as in other applications.

RAM: Our second metric evaluates ALERT’s ability to
trade-off the risk of making an incorrect decision with not
making a decision at all. This Risk-Averse Metric (RAM)
gives BASESYS +1.0 points for a correct answer, -0.5 points
for an incorrect answer and O points if it makes no decision.*
We believe such a metric is crucial when dealing with real
applications. By refusing to make a decision when ALERT
raises a warning, we expect BASESYS to gain more points
by trading off incorrect decisions for no decisions. In appli-
cations where y; is a continuous scalar accuracy measure,

3 ALERT regresses to this error. This can be thought of as analogous
to one round of L2 boosting, which involves regressing to the error of a
regressor. Also relevant is the notion of twicing in statistics [55].

“In fact, the ImageClef Robot Vision Challenge http://www.
imageclef.org/2013/robot uses such a Risk-Averse Metric for
recognition. This is similar to, but distinct from applications where false
positives are less expensive than false negatives e.g., pedestrian detection.
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Figure 3: Accuracy or Error of BASESYS vs. Declaration Rate Curves. We used accuracy and intersection/union for evaluating segmentation (robot and
PASCAL respectively), and the mean of three errors for vanishing point estimation. Results for other choices of y; described in Section 3 can be found on
author’s webpage. Results are averaged over 10 random train/test splits. BASESCORE is not shown for focal length, rotation and memorability prediction
because the first two are direct products of vanishing point estimates, and the inner workings of BASESYS for the latter do not lead to an obvious definition
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Figure 4: Risk-averse Metric: Points achieved by BASESYS when
equipped with ALERT at varying declaration rates (DR). ALERT can help
earn more points than the default strategy of always making a decision (DR
= 1) or the other extreme of always refusing to make decisions (DR = 0).

how high does y; have to be for a decision to be consid-
ered to be “correct”? E.g., how good does a segmentation
have to be for it to be “correct”? Different applications may
place different thresholds 7" on y; to define “good enough”
(correct) vs. incorrect. If 7' is high (i.e. most images are in-
correct), we would expect ALERT to help a lot. If T" is low
(i.e. most images are correct), ALERT will not be beneficial
and BASESYS may as well make decisions on all images
because it is likely to get them right anyway. Across the dif-
ferent applications, we pick a value of 7" such that 65% of
the images are considered to be correctly processed. This is
an (perhaps optimistic) assessment of how well current vi-
sion systems work. In Figure 4, we plot the average points
(per test image) gained by BASESYS when equipped with
ALERT. We see in all cases, ALERT can help BASESYS
gain more points than it would if it did not use ALERT (i.e.
DR = 1.0). Operating at the optimum DR (determined via
cross validation) can allow BASESYS to gain as many as 7x
the points it would without ALERT (Figure 5).

To understand the intervals in which ALERT is more
helpful, let us consider the cost of an incorrect decision
(—C) relative to that of a correct decision (1.0). In our ex-
periments so far, we used C' = 0.5 as described earlier. If C'
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Figure 5: Risk-averse Metric: Summary of Figure 4. Points achieved by
ALERT by picking the appropriate DR as compared to BASESYS.

is very low or very high, ALERT would have to be very ac-
curate in predicting failures for BASESYS to benefit from it.
Otherwise, DR = 1 and DR = 0 would be optimum for low
C and high C respectively. For instance, if C is very high,
even one mistake undetected by ALERT can reduce the total
points earned by BASESYS to a large negative value, and
BASESYS would be better off not making any decisions at
all (DR = 0). The quality of ALERT can be assessed by the
range in values of C' for which it is still beneficial. In our ex-
periments, we find that ALERT can help BASESYS for C' in
[0.14,9], [0.14,2.34], [0.41,0.67], [0.12,0.82], [0.16, 1.86]
and [0.16, 1.5] for the 6 applications in Figure 5. Since the
optimum DR is to be determined via cross validation, while
unable to boost performance outside these ranges, ALERT
would default to DR = 0 or 1 and not hurt performance.

5. Benefiting A Downstream Application

Visual attributes are mid-level semantic image proper-
ties that are considered to be shareable across categories.
Hence, attribute predictors are often used to transfer infor-
mation from one set of categories to a previously unseen set.
This involves transfer of knowledge. ALERT can be used
to predict the potential failure of BASESYS in transferring
knowledge. This can in turn be used to benefit downstream
applications, such as zero-shot learning [31].

We experimented with attribute predictors in four do-
mains: animals, faces, scenes and objects. We use the An-
imals With Attributes (AWA) dataset of Lampert et al. [31]
containing 8609 images, the Public Figures Face Database
(PubFig) of Kumar et al. [30] containing 42461 images,



Figure 6: Qualitative results for the “wearing sunglasses” attribute on Pub-
Fig. Left: Images predicted by ALERT as poor performing. Many of these
have poor lighting and shadows especially in the eye region. Right: images
predicted by ALERT as high performing. These are all taken under good
lighting conditions. The images for which the BASESYS attribute predictor
generated the incorrect output are marked by a red border.

7160 images from the SUN Attribute Database (SUN) of
Patterson and Hays [42] and the aPascal+aYahoo (UIUC)
dataset of Farhadi et al. [15] containing 8999 images. They
contain 85, 73, 102 and 64 attributes respectively. We col-
lected ground truth attribute annotations for PubFig (not
available with dataset) using Amazon Mechanical Turk.

As BASESYS we use the attribute predictors provided by
the authors for AWA, PubFig and UIUC. For SUN, we use
the authors’ code to train the predictors. Each predictor is a
binary classifier converted to a probabilistic estimate 7(x;).
We use the 0-1 loss as y;. If the attribute predictor is sure of
the attribute presence/absence, but is wrong, its decision is
considered to be a mistake. If it is sure and right, or unsure
of its decision, its decision is not a mistake:

0, ifl(x;)=1(x;)
y; = <0, if 7T(:IZZ) S [771, 772] 2)
1, otherwise

where [ (x;) is the true binary label of a; and [ (a;) is

the label predicted by BASESYS. We set 17 and 75 to 0.25
and 0.75 respectively in all our experiments. We train one
ALERT for every attribute. The threshold on the score be-
yond which ALERT raises a warning was chosen via cross
validation. Since we already have trained attribute predic-
tors, we use their outputs as image features to train ALERT.
We train ALERT on a held out set of unseen categories,
and test it on a disjoint set of categories.’ Qualitative re-
sults are in Figure 6. ADR curves similar to Figure 3 are
shown on author’s webpage. ALERT significantly outper-
forms BASESCORE in most datasets, because ALERT is ex-
plicitly trained to detect attribute classifiers’ failures to gen-
eralize to unseen categories — which BASESCORE is typi-
cally not aware of. We now demonstrate how a downstream
application that uses outputs of attribute predictors as input
can benefit from such an ALERT.
Zero-shot Learning: Zero-shot learning [31] involves
learning novel categories from their binary attributes-based
descriptions (e.g., zebras are stripped, black and white, have
four legs, etc.). Each category c is described with a list of
M attributes [a1, . .., an], am € {0, 1}. The probability of
an instance x belonging to class c is

M
plee) o T] plam|m), 3)
m=1

5See author’s webpage for details on train/val/test splits.

Il L ampert et al. 2009
[IBaseScore
[]Global Crossval
HlAlet

AWA PUBFIG SUN uluc
Figure 7: Zero-shot learning results.

where p(a,, = l|&) = m,,(x). These attribute predic-
tors are trained on a set of previously seen categories, which
are disjoint from the set of unseen test categories. The at-
tribute predictors are expected to generalize across this do-
main transfer. The test instance « is assigned the unseen
class with the highest probability. The standard approach
[31] uses all M attributes in Equation 3 ignoring the vari-
ability in the reliability of each attribute across input im-
ages. Instead, when using ALERT, for each test image we
ignore the attributes for which ALERT raises a warning.’
The same set of attributes is ignored for all classes, so the
probabilities p(c|x) are comparable. Note that different at-
tributes are ignored for different test images.

We report zero-shot learning results in Figure 7. In addi-
tion to comparing to the standard approach of using all at-
tributes [3 1], we compare to two other baselines. They both
ignore attributes as needed, but by using other strategies
than ALERT. We set the parameters of both baselines so that
they ignore on average the same number of attributes per
image as ALERT’ making comparisons fair. The first base-
line (BASESCORE) ignores attributes that are not confident
(i.e. mm(x;) is close to 0.5). The second baseline (cross-
validation) computes the accuracies of all attributes on a
validation set, and ignores the least accurate ones (similar
in spirit to how poselets are selected in [5]). Note that this
baseline ignores the same attributes for all images, while
ALERT adapts its decisions to individual input instances.

We see that ALERT outperforms all three baselines.
Since the zero-shot model is probabilistic, its decision is not
significantly influenced by under-confident attribute pre-
dictions anyway, making BASESCORE less effective. The
cross-validation baseline also fails to improve performance
consistently (except for AWA) due to its global nature.
However, ALERT makes image-specific decisions regarding
which attributes to ignore and consistently improves perfor-
mance across all four datasets. PubFig has the largest num-
ber of unseen test categories making knowledge transfer and
ZSL harder. Here ALERT shows the most improvement.
Note that ALERT here uses attribute predictions themselves
as features. So the improvement in performance is not be-
cause of access to additional visual information — it is be-

Notice that in this zero-shot learning application, ALERT is used on
images from categories not seen by BASESYS during its training, making
the “if you can train ALERT, you could have trained a better BASESYS in
the first place” reasoning discussed in the introduction further inapplicable.

7 ALERT ignores 12 out of 85 attributes per test image for AWA, 12 out
of 73 for PubFig, 32 out of 102 for SUN and 7 out of 64 for UIUC.



cause of explicitly reasoning about failures.

6. Conclusion

We take a step in the direction of building self-evaluating

vision systems that fail gracefully, making them more us-
able in real world applications even with their existing im-
perfections. We introduce ALERT, a straightforward warn-
ing system that analyzes the input instance and predicts if
a vision system is likely to produce an unreliable response.
We demonstrate its generality by applying it to four diverse
applications ranging from segmentation and 3D layout es-
timation to image memorability prediction and attributes-
based scene and object recognition. We show that an ap-
proach as simple as ALERT can predict failure surprisingly
reliably, and can help improve the performance of a down-
stream application. We advocate the use of two metrics (ac-
curacy vs. declaration rate curves and risk-averse metrics)
to facilitate further progress in failure predicting systems.
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