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Abstract

Many prevalent multi-class classification approaches
can be unified and generalized by the output coding frame-
work [1, 7] which usually consists of three phases:(1) cod-
ing, (2) learning binary classifiers, and(3) decoding. Most
of these approaches focus on the first two phases and pre-
defined distance function is used for decoding. In this paper,
however, we propose to perform learning in coding space
for more adaptive decoding, thereby improving overall per-
formance. Ramp loss is exploited for measuring multi-class
decoding error. The proposed algorithm has uniform stabil-
ity. It is insensitive to data noises and scalable with large
scale datasets. Generalization error bound and numerical
results are given with promising outcomes.

1. Introduction

Multi-class classification is a fundamental machine
learning task as which many real-world problems can be
casted. For instance, categorization of Internet resources,
such as document, image and video, plays a critical role for
online information retrieval. Robot vision, auto-driving car
and augmented reality application require robust categoriza-
tion module for distinguishing different visual categories.

Despite its popularity in real-world applications, multi-
class classification has received relatively less attention
compared with its binary counterpart. Therefore, many
state-of-the-art multi-class classification approaches take
advantage of the developments for binary problem by re-
ducing a multi-class problem into a collection of binary
problems. For instance, one-versus-one and one-versus-
all [15] strategies are widely used in practice with good per-
formances.

Output coding [1, 7] is a general framework that unifies
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and generalizes such type of approaches. It usually decom-
poses the learning process into three phases:(1) coding
matrix design, which converts a multi-class classification
problem into a set of binary problems,(2) training binary
classifiers, which tackles the converted binary problems,(3)
decoding, which makes multi-class classification decisions
based on binary classification outputs with the aid of a de-
coding scheme.

Many efforts have been spent on either how to achieve
optimal coding [7, 17] or how to optimize coding and bi-
nary learning simultaneously [13, 23, 22]. Very few efforts
have been spent on decoding phase. Pre-defined similarity
or distance functions are usually applied directly to multi-
class decoding.

In this work, we propose a learning-based adaptive de-
coding method. There are several practical advantages for
conducting problem-dependent learning in coding space.

Firstly, learning-based adaptive decoding helps to refine
coding for better generalization performance. Most of the
existing coding schemes are pre-defined and only generate
binary or ternary codes. It constrains the coding space in
which later binary learning works. Hence, the learnability
is restrained. The adaptive decoding presented in this work
learns continuous codes which refine coding based on bi-
nary learning outcomes.

Secondly, one of the main drawbacks of pre-defined de-
coding schemes is that binary classifiers are trained on dif-
ferent tasks separately. There is no guarantee that their real-
valued outcomes are properly scaled for pre-defined decod-
ing. Moreover, nonlinear relationships between binary clas-
sifiers are usually neglected [24], which can be crucial for
better generalization performance. As elaborated later, the
proposed method can tackle these via learning and kernel-
ization technique.

Thirdly, learning in coding space in turn helps to improve
binary classifier. This is beneficial to tackling some diffi-
cult machine learning problems. As an extension, we show
that our learning-based decoding method benefits multi-
class hypothesis transfer learning (HTL) [10, 11, 19]. HTL
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is a transfer learning framework that only utilizes source
hypotheses trained on a source domain for enhancing tar-
get domain learning. It assumes that neither source do-
main examples nor the relationship between target domain
and source domain is accessible. Such settings mimic real
world situations in which legacy binary classifiers exist but
the datasets on which they are trained have already become
unavailable.

By performing learning in coding space, auxiliary source
domain hypotheses can be readily incorporated into learn-
ing process. The knowledge can be transferred from mul-
tiple source domains to multiple target domains by alterna-
tively refining coding and target domain classifiers. Unlike
previous HTL approaches, the proposed method considers
the relationship between domains by adopting the output
coding framework. It helps to discover related target do-
main and source hypothesis. It also prevents negative trans-
ferring from unrelated source hypothesis.

Additional to the aforementioned virtues, the proposed
approach extends ramp loss [5, 4] to measure multi-class
decoding error. Unlike hinge loss which is prone to out-
liers, ramp loss provides a clipped error measurement cap-
ping the linear penalty increment, the source of the outlier
sensitivity. Besides, it helps to reduce the number of support
vectors, which are critical to scalability. Uniform stability
and a tight generalization bound are held by the proposed
algorithm.

In order to optimize ramp loss, a non-convex loss,
ConCave-Convex Procedure (CCCP) [21] which is closely
related to Difference of Convex (DC) programming [18] is
utilized.

The rest of the paper is organized as follows. Related
work is reviewed in Section2. Section3 describes the pro-
posed method and gives its generalization error bound. The
multi-class HTL is given in Section4. Experiments are con-
ducted in Section5. Finally, the work is concluded by Sec-
tion 6.

2. Related Work

Output coding framework [1, 7] converts a multi-class
classification problem into a set of binary problems which
can be readily solved by existing binary classification ap-
proaches. The quality of the coding matrix plays a criti-
cal role for the performance of the final solution. In early
works [1], the error-correcting ability is the main measure-
ment for the quality of the coding matrix. In other words,
the codewords for different classes need to be as distin-
guishable as possible for a good performance. But later,
it is realized that such coding strategy does not lead to su-
perior performance comparing with simple strategies, such
as random-half, one-versus-one and one-versus-all. It is be-
cause the most distinguishable coding matrix may not be
learnable for binary classification algorithms [13, 22]. The

optimal coding should be both distinguishable and learn-
able [25]. In order to find a balance between them, ap-
proaches have been developed for considering binary learn-
ing and coding simultaneously [13, 23, 22].

However, all of these approaches work on binary cod-
ing or ternary coding [1]. Decoding is achieved by simply
applying a pre-defined similarity function. The work in [8]
provides a good summary for decoding methods. As men-
tioned before, the coding space is dramatically constrained
by current approaches. So in this paper, we propose to per-
form learning in coding space with continuous codes.

Several methods [10, 11, 19] have been developed for
HTL. Specifically, [19] developed a multi-model knowl-
edge transfer approach (Multi-KT) based on least square
SVM. It can properly select and weight prior knowledge
coming from different source domains. [10] proposed a
multiple kernel transfer learning algorithm (MKTL). By
adopting multiple kernel learning framework, it takes ad-
vantage of priors built over different features and with
different learning methods. [11] developed a MULticlass
Transfer Incremental LEarning (MULTIpLE) method. It
also adopted least square SVM. It seeks for a balance be-
tween transferring to the new class and preserving what has
already been learned on the source models.

3. Stable Learning for Multi-class Decoding

We review the output coding framework first. LetS =
{zi}m

i=1 denote a set ofm training examples, wherezi =
(xi, yi), xi ∈ X is a feature vector andyi ∈ Y is a class
label. We usually haveX = Rd andY = {1, ∙ ∙ ∙ , k}.
The learning task is to learn a classifier:G(x) : X → Y
which can accurately assign a class label to an unseen ex-
ample. In output coding framework, the classifierG is
obtained from an ensemble of binary classifiersH(x) =
[h1(x), ∙ ∙ ∙ , hl(x)] with the aid of a coding matrixM which
hask rows andl columns. Each row of the coding matrix,
My, represents a code word for the corresponding classy.
Each column of the coding matrix represents a binary par-
tition over all the classes. It defines a binary classification
problem over the training examples, for which a binary clas-
sifier of the ensemble is trained. The length of codes equals
to the number of binary classifiers and is denoted byl. The
decoding process performs via a similarity metric function
f(H(x),My) : Rl×Rl → R. ThenG can be represented as:
y∗ = arg maxy′ f(H(x),My′). y′ ∈ {1, ∙ ∙ ∙ , k} denotes a
class label. The class whose code word is the closest to the
ensemble output is predicted as the label of the input.

Traditional decoding process is conducted by directly ap-
plying a predefined similarity or distance measure on binary
classifiers’ outputs and code words. For example, Ham-
ming distance is widely adopted for multi-class decoding:
∑l

j=1

1−My′,jhj(x)

2 , whereMy′,j represents the element in
y′-th row andj-th column of the coding matrixM .



Alternatively, we suggest that a problem-dependent de-
coding metric function can be learned from examples. For
instance, a general inner product function can be used:

f(H, My′) = HT Wy′My′ =

l∑

j=1

wjhj(x)My′,j , (1)

where Wy′ is a diagonal weighting matrix with
{w1, ∙ ∙ ∙ , wl} as its elements. Wy′ is the function pa-
rameter that needs to be learned from examples. It is noted
that, with each classy′ having a weighting matrixWy′ , the
original coding matrixM is not necessary to be known for
learning or applying such decoding function. The learning
for decoding process can be regarded as to refine the coding
matrix by learning an adaptive decoding matrix for the
obtained binary classifier ensemble without necessarily
knowing the coding matrix. Thus, the decoding problem
becomes to learn an adaptive decoding matrixW ∈ Rk×l

for the decoding metric function;

f(H, Wy′) = HT Wy′ , (2)

whereWy′ now represents they′-th row of W . It can be
shown that such metric function is equivalent to Hamming
distance when the elements ofH andW are in{−1, +1}.
Other options for designing decoding metric function cer-
tainly exist and are worth for further study,e.g., Maha-
lanobis distance and manifold distance. However, an ob-
vious and crucial advantage of using inner product is that
it allows us to make use of kernel trick readily. By doing
so, the lack of the consideration of the nonlinear relation-
ships between binary classifiers in traditional output coding
framework can be easily tackled. It provides us the possi-
bility to design proper kernels for modeling the correlations
of binary classifiers.

It is also worth noting that, unlike traditional binary [1]
or ternary [8] coding matrix, the decoding matrix in Eq.2
can have real-valued codes [6]. For binary coding, confus-
ing classes, which can not be confidently colored into any
of the two classes, often appears and degrades the perfor-
mance. Therefore, neutral value0 is introduced into the par-
tition scheme of ternary coding to ignore confusing classes.
Continuous coding goes one step further. It provides the
flexibility to fine partition classes with weights. Besides, it
helps to scale binary classifiers properly for decoding. For
instance, despite its advantages, the outputs of the binary
classifiers learned from one-versus-all strategy are not guar-
anteed to be properly scaled.

3.1. The Proposed Method

We now describe the proposed decoding algorithm.
Given an ensemble of binary classifiersH(x) =
[h1(x), ∙ ∙ ∙ , hl(x)] and a set of training examplesS =
{(xi, yi)}m

i=1
1, the goal is to design an algorithmA which

1We keep using the same symbols to denote training examples. But it is
worth noting that the data set used for learning a decoding metric function
can differ from the data set used for training binary classifiers.

can learn an effective decoding metric functionf(x, y′) :
X × Y → R from S:

f(x, y′) = H(x)T Wy′ =
l∑

j=1

Wy′,jhj(x). (3)

Decoding matrixW ∈ Rk×l is the function parameter need
to be learned. The final decision is made viaG(x) : y∗ =
arg maxy′ f(x, y′). The margin of an example(x, y) for
classy′ with respect tof can be defined as:

ρf (x, y′) = f(x, y) − f(x, y′), (4)

wherey is the true label ofx. It is noted thatρf (x, y) = 0.

We useε(AS , z) to represent the loss ofAS , which de-
notes the solution ofA on S, with respect to an example
z = {x, y} in the domainZ = {X ,Y}. Such loss is usu-
ally measured by a loss function`(f, z) : F × Z → R+. It
represents the loss of a decoding metric functionf , which
is generated byA onS, with respect to an examplez. F is
generally a linear space.

As an estimation of generalization error, the empirical
error of algorithmA onS is usually measured by0-1 loss:

Remp(A, S) =
1

m

m∑

i=1

ε(AS , zi) =
1

m

m∑

i=1

`0−1(f, zi)

=
1

m

m∑

i=1

δ(G(xi) 6= yi),

(5)

whereδ(π) equals to1 when the predicateπ is true and0
otherwise. From the study on classification and regression
problems, we know that minimising0-1 loss is computa-
tional expensive due to its combinatorial nature. Thus, with
the consideration of a trade-off between statistical and nu-
merical properties of learning loss, a surrogate loss is usu-
ally adopted as a substitute of0-1 loss. A popular surrogate
loss is hinge loss̀1

hinge(ρ) = max(0, 1 − ρ) whereρ de-
notes margin. Although hinge loss has a nice numerical
property: convexity, which leads to efficient optimization,
its statistical property has flaws. Its loss penalty is linear
proportional to margin. This makes hinge loss prone to out-
liers. Moreover, hinge loss treats any training examples
within margin or misclassified as support vectors (SVs).
This usually leads to a large number of SVs, which makes
both training and testing expensive. It becomes worse when
large scale data set is involved, since the number of SVs
increases linearly with respect to the number of training ex-
amples.

In order to avert the drawbacks of hinge loss, we pro-
pose to extend ramp loss [5] as a surrogate for measuring



empirical multi-class decoding error:

`(sl,sr)
ramp (f, z) = min(1 −

sl

sr
, max

y′
{b1

y,y′ −
ρf (x, y′)

sr
})

= `sr
hinge 1(f, z) − `sr

hinge
sl
sr

(f, z)

= max
y′

{b1
y,y′ −

ρf (x, y′)

sr
}

− max
y′

{b
sl
sr
y,y′ −

ρf (x, y′)

sr
},

(6)

whereb1
y,y′ equals to 0 ify = y′, 1 otherwise, and similarly

b
sl
sr

y,y′ equals to 0 ify = y′, sl

sr
otherwise.sl andsr represent

left and right hinge points of ramp loss respectively. Its
piece-wise form can be written as:

`(sl,sr)
ramp (f, z) =






B if ρf (x, y∗) ≤ sl

b1
y,y∗ −

ρf (x,y∗)

sr
if sl ≤ ρf (x, y∗) ≤ sr,

0 if ρf (x, y∗) ≥ sr

(7)

whereB = 1− sl

sr is the maximum output value of`(sl,sr)
ramp .

With empirical error measured by the extended ramp
loss, the proposed algorithmA can be defined as a regu-
larized empirical error minimizer:

AS = arg minf∈F

{
1

m

m∑

i=1

`(sl,sr)
ramp (f, zi) +

λ

2
N(f)

}

(8)

= arg minW∈Rk×l

{
λ

2
|W |2F +

1

m

m∑

i=1

`sr
hinge 1(f, z)

︸ ︷︷ ︸
JS

convex(W )

−
1

m

m∑

i=1

`sr

hinge
sl
sr

(f, z)

︸ ︷︷ ︸

}

,

JS
concave(W ) (9)

whereN(f) is a regularizer that measures the complexity
of f and | ∙ |F represents Frobenius norm. It is noted that
the learning objective can be decomposed to the summation
of a convex componentJS

convex(W ) and a concave compo-
nentJS

concave(W ). Thus, the optimization problem defined
by Eq.9 can be solved by an iterative learning procedure:
Concave-Convex procedure (CCCP) [21] which is closely
related to Difference of Convex (DC) programming [18].
At each learning iteration, a convex upper bound can be
found for the learning objective by replacing the concave
component with its first order Taylor expansion at the cur-
rent state. Then the learning problem reduces to a convex
problem on which existing kernelization and optimization
techniques can be applied. The learning procedure stops
when convergence is reached.

3.2. Generalization Error Bound

Following the work in [3], we utilize concentration in-
equality (McDiarmid inequality [14] specifically) and algo-

rithmic stability [3] to give a generalization error bound for
the proposed decoding method.

We keep usingAS to denote the decoding metric that is
learned by the proposed algorithmA from data setS. The
generalization error is a random variable depending onS. It
can be written as:

R(A, S) = Ez[ε(AS , z)], (10)

whereε(AS , z) denotes the loss of a decoding metricf
with respect to an examplez = {x, y}. However, theEz

can not be calculated because the underlying distribution of
z is unknown. Thus, empirical error on available data setS
is usually utilized as an estimator for generalization error:

Remp(A, S) =
1

m

m∑

i=1

ε(AS , zi). (11)

For the proposed method, multi-class ramp loss`
(sl,sr)
ramp , as

defined in Eq.7, is used to measureε(AS , z). The goal
of our analysis here is to give a bound for the difference
betweenR(A, S) andRemp(A, S), more precisely, a bound
for: PS [|Remp(A, S) − R(A, S)| > η], whereη > 0.

In the following, we briefly review the the analysis in [3]
for generalization error bound given uniform stability. Then
the uniform stability is shown to be hold by the proposed
decoding algorithm.

Theorem 1 (McDiarmid Inequality [14]) Given a set of
examplesS = {zi = (xi, yi)}m

i=1, a modified setSi defined
asSi = {z1, ∙ ∙ ∙ , zi−1, z

′

i, zi+1, ∙ ∙ ∙ , zm} and a measurable
functionF : Zm → R, if the following condition is satis-
fied:

sup
S∈Zm,z

′
i∈Z

|F (S) − F (Si)| ≤ ci,

then

PS [F (S) − ES [F (S)] ≥ η] ≤ exp(
−2η2

∑m
i=1 c2

i

).

Definition 1 (Uniform Stability [3]) An algorithmA has
uniform stabilityβ if the following condition holds:

∀S ∈ Zm, ∀i ∈ {1, ∙ ∙ ∙ ,m}, sup |ε(AS , ∙)−ε(AS\i , ∙)| ≤ β.

S\i denotes the dataset which excludes thei-th element
from S.

With theorem 1 and the uniform stability defined as the
above, the following theorem about generalization error
bound has been given in [3].

Theorem 2 (Exponential Bounds with Uniform Stabil-
ity [3]) Given an algorithmA having uniform stability
β with respect to a loss functioǹ which satisfies0 ≤
`(AS , z) ≤ B for all setsS, then for anym ≥ 1 and any
δ ∈ (0, 1), the following bound holds with probability at
least1 − δ over the random draw of the sampleS:

R ≤ Remp + 2β + (4mβ + B)

√
ln(1/δ)

2m
.



Now we derive the following theorem about the uniform
stability for ramp loss.

Theorem 3Given(1) a reproducing kernel Hilbert space
E with kernel K : X × X → R satisfying ∀x ∈
X ,K(x, x) ≤ κ2 < ∞, (2) a loss function`(f, z) :
F × Z → [0,∞) which is monotonic and1/sr-Lipschitz
in its first argument,(3) A is a symmetric algorithm gener-
ating a solutionfS ∈ F on training setS by optimizing:

fS = arg min
f∈F

{

R`
emp(A, S) +

λ

2
‖f‖2

K

}

,

whereR`
emp = 1

m

∑m
i=1 `(f, zi) andλ > 0, thenA has

uniform stabilityβ(m) = 8κ2

sr
2λm .

The proof for theorem3 is deferred to supplementary
material. The direct application of theorem2 and theorem
3 can provides us the following generalization error bound
for the proposed decoding algorithm.

Example 1 Given the conditions of theorem 3, the fol-
lowing generalization error bound holds for algorithmA:

R(A, S) ≤ Rramp
emp (A, S) +

16κ2

sr
2λm

+

(
32κ2

sr
2λ

+ B

)√
ln 1/δ

2m
.

Remark 1 The above gives a tight bound for the al-
gorithm defined by Eq.12 since β scales as1

m . From
this bound, we can see that a largersr leads to a faster
learning rate. Similar conclusions for structured estimation
and clipped regularized risk minimizers are obtained in [4].
However, largersr also leads to a denser classifier which
has more SVs [5]. For B = 1− sl

sr
andsl < sr, we can see

that largersl leads to a smallerB which indicates a better
bound. It is possible to setsl in [0, sr). It gives a smaller
B and a shorter SVs interval. However, miss-classified ex-
amples will never become SVs. And this will degrade the
generalization performance. The later empirical study ver-
ifies this. Note that SVM with ramp loss does not have the
above bound because of the bias item in its predict func-
tion. There is no explicitB for hinge loss to have the above
bound.

4. Extension for Multi-class Hypothesis Trans-
fer Learning

Given target domain examplesS = {zi}m
i=1 and a col-

lection of auxiliary source domain hypothesesΔH(x) =
[hl+1, . . . , hl+nsh

], where nsh denotes the number of
source hypotheses, the aim of the multi-class HTL is to
learn a set of binary hypothesesH(x) = [h1(x), ∙ ∙ ∙ , hl(x)]
in target domains and an adaptive decoding metric function
f(x, y′) = H′T Wy′ , whereH′ = [h1(x), . . . , hl+nsh

(x)],
so that the classification performance for target domains is
improved by transferring the knowledge inΔH(x).

It is noted that the decoding metric functionf(x, y′) is
now parameterized by bothW andH(x). If we assume

H(x) is a set of binary hypotheses in the form ofhj(x) =
wjx + bj , wherej ∈ [1, l], then the extended multi-class
HTL algorithm becomes:

AS,ΔH = arg minf∈F

{
1

m

m∑

i=1

`(sl,sr)
ramp (f, zi) +

λ

2
N(f)

}

= arg min
W∈Rk×(l+nsh),H

{
1

m

m∑

i=1

`(sl,sr)
ramp (f, zi)

+
λ

2
(|W |2F +

l∑

j=1

‖wj‖
2)

}

. (12)

The global optimal solution is difficult to be obtained if it
is not impossible, since bothW andH(x) need to be op-
timized. So we propose to adopt an alternative optimiza-
tion strategy:(i) for fixedH(x) optimizeW , (ii) for fixed
W optimizeH(x). The two steps alternate until conver-
gence or the maximum number of iterations is reached. Al-
though there is no guarantee that the global optimum could
be achieved, each optimization step decreases the overall
objective function.

Step(i) can be readily solved by the proposed learning-
based decoding method. For step(ii), simultaneously op-
timizing all the binary hypotheses is difficult. Inspired by
random coordinate descent approach, we propose to opti-
mize binary hypotheses cyclically in a random order until
convergence or maximum number of iterations is reached.

Any existing coding scheme can be used for initializing
the algorithm. Target domain classifiers are firstly learned
based on the initial coding. Learning-based decoding is then
conducted with the support of auxiliary source hypotheses.
Subsequently, target domain classifiers are updated. The
alternative optimization continues until convergence or the
maximum number of iterations is reached.

5. Experiments

We perform3 experiments to evaluate the performance
of the proposed method. The first experiment is conducted
for comparing our learning-based decoding method with the
state-of-the-art decoding approaches. The second experi-
ment is to evaluate the impact of ramp loss with different pa-
rameter settings for verifying our theoretical analysis. The
last experiment is performed for comparing our multi-class
HTL method with the state-of-the-art HTL algorithms.

Unless otherwise mentioned, the following methodol-
ogy is adopted for the experiments. The model parameters
are selected via cross-validation for the best generalization
performance. For the compared state-of-the-art techniques,
default and optimized parameters given by the authors are
used.10-fold cross-validation is applied to acquire average
accuracy and standard deviation for performance measure-
ment.



Glass Vowel Balance Satimage Letter Vehicle

HD SVM 55.75 ± 3.60 65.73 ± 2.62 85.57 ± 4.18 83.36 ± 2.02 85.11 ± 0.97 76.12 ± 2.40
Boost 66.69 ± 3.16 61.30 ± 2.67 78.97 ± 5.02 83.25 ± 2.23 88.31 ± 1.58 72.34 ± 3.34

PD SVM 57.04 ± 3.59 66.37 ± 2.69 83.36 ± 4.09 80.90 ± 1.74 77.82 ± 1.01 76.00 ± 1.45
Boost 64.35 ± 2.72 58.48 ± 3.02 82.22 ± 4.19 83.90 ± 1.82 87.65 ± 2.01 72.58 ± 2.95

LAP SVM 57.73 ± 3.14 68.40 ± 2.94 85.57 ± 4.18 83.36 ± 2.02 88.89 ± 1.05 76.12 ± 2.40
Boost 66.69 ± 3.16 65.36 ± 2.17 80.15 ± 4.01 84.15 ± 2.22 90.12 ± 1.81 72.34 ± 3.34

ELW SVM 59.30 ± 3.16 71.44 ± 3.16 85.57 ± 4.18 84.07 ± 2.00 89.44 ± 0.97 76.95 ± 1.76
Boost 66.69 ± 3.16 71.77 ± 3.02 77.55 ± 4.46 85.37 ± 1.87 91.92 ± 1.58 73.15 ± 3.16

Prpsd. SVM 63.06 ± 2.67 74.59 ± 2.39 88.76 ± 1.56 90.22 ± 1.02 95.32 ± 1.20 79.87 ± 1.49
Boost 68.89 ± 2.71 74.33 ± 2.78 83.09 ± 2.78 91.08 ± 2.27 96.77 ± 1.26 76.29 ± 2.80

Table 1. Average performances (in percentage) of the state-of-the-art and the proposed decoding methods on six multi-class data sets from
UCI. The best results are shown in bold.

5.1. Comparison with Previous Decoding Methods

We firstly conduct the comparison experiment between
the state-of-the-art decoding methods and the proposed
learning-based decoding algorithm. As shown in Table1,
six multi-class datasets from UCI Machine Learning Repos-
itory database [2] are used for the comparison. The
compared decoding methods include Hamming decoding,
probabilistic-based decoding [8], Laplacian decoding [8],
exponential loss-weighted decoding [8] with continuous
classifiers’ outputs. Similar to the settings in [8], SVM
and Adaboost (40 runs of decision stumps) are used as bi-
nary classifiers. RBF kernel is used for the proposed de-
coding method. Seven popular coding schemes are consid-
ered, including one-versus-one, one-versus-all, dense ran-
dom, sparse random, DECOC [17] and ECOC-ONE [16].
For each decoding method, only the best coding result is
reported. The comparison results are shown in Table1.
We can see that the proposed decoding method outperforms
other decoding methods. Large improvements are gained
for datasetsLetter and Satimage which have a larger
number of training examples compared with the others.

5.2. The Impact of Ramp Loss Settings

The second experiment is conducted to evaluate the im-
pact of ramp loss with different parameter settings. The
data used for this experiments is15-scene image recogni-
tion data set [12]. There are4485 images in total. 100
images are selected from each category for training. The
remaining2985 images are used for testing.10-fold cross
validation is applied. For visual description, we use spa-
tial Principal component Analysis of Census Transform his-
tograms (sPACT) [20, 9, 22] as feature.

The result is shown in Fig.1. The left plot shows the
changes of the number of SVs as a function of the num-
ber of training examples. It can be seen that, for Hinge
loss, namely Ramp(−∞,1), the number of SVs increases lin-
early with the number of training examples. It becomes sub-
linear when Ramp loss is used. We can observe that better
scalability (less SVs) is achieved whensl increases. Larger
sl leads to a shorter SVs internal. Subsequently, the number

Figure 1. Impacts ofsl on learning scalability and generalization
performance.

of SVs is dramatically reduced. It indicates that Ramp loss
give us the ability to control the scalability of the algorithm
by controlling the length of SVs interval.

The right plot in Fig.1 shows the impact ofsl on both
the generalization performance and scalability. Two trends
can be observed:(1) At the early stage, the number of SVs
increases assl decreases, and the generalization error is re-
duced correspondingly. However, the generalization error
starts to increase when further decrement is put onsl after
it reaches−0.9. (2) The number of SVs is rapidly decreased
whensl increases. But whensr becomes larger than−0.9,
the generalization performance also starts to drop rapidly.
These trends verify our conjecture that the second hinge
point sl gives us the flexibility to control the balance be-
tween generalization performance and scalability. Depend
on specific problem and its training data, an optimalsl is
possible to be obtained in terms of the optimal balance be-
tween computational cost and generalization performance
gain.

5.3. Multi-class HTL for Object Recognition

The last experiment is conducted on Caltech-256 dataset
for verifying the proposed multi-class HTL method. We
use similar experiment setting as the one used in [10].
We choose10 classes (bonsai, gorilla, horse, motorbikes,
mushroom, segway, skateboard, skunk, snowmobile, sun-
flower) as target classes. Maximum30 examples are se-
lected from each class for training, and50 example are used
for testing. 20 classes (palm-tree, cactus, fern, hibiscus,
bat, bear, leopards, zebra, dolphin, killer-whale, mountain-



Figure 2. Recognition accuracy for Caltech-256 (10 target classes
and20 source classes) multi-class object categorization.

bike, fire-truck, car-side, bulldozer, camel, dog, raccoon,
chimp, school-bus and touring-bike) are used as source
classes. PHOG shape descriptor, SIFT appearance descrip-
tor, Region Covariance and Local Binary Patterns are used
as visual features for representing examples. One-versus-all
strategy and SVM with RBF kernel are adopted for gener-
ating source domain hypotheses. For the proposed method,
one-versus-all strategy is used for initializing target domain
training. SVM with RBF kernel is used for training target
domain classifiers. Balancing parameterλ and RBF kernel
parameterγ are obtained by cross-validation.

We compare our method with three state-of-the-art HTL
approaches: MKTL [10], MultiKT [ 19] and MULTI-
pLE [11]. Since MultiKT is a binary transfer learning ap-
proach, one-versus-all strategy is adopted for it to achieve
multi-class HTL. Learning without knowledge transferring
is also compared as a baseline. It adopts one-versus-rest
strategy and only uses target domain examples for training
classifiers. The experiment runs10 times. Training and
testing examples are randomly drawn from each category
for each run. Recognition accuracies are averaged over runs
and classes. The result is shown in Fig.2 with the number
of training examples per class increasing.

From Fig.2, we can see that all the HTL approaches per-
form better than learning without knowledge transferring,
and the proposed method consistently outperforms the other
HTL approaches. The improvement becomes larger when
the number of training examples per class increases. The
reason is that, with more target domain training examples
available, the proposed method improves not only target do-
main classifier learning but also coding space learning.

6. Conclusion

A learning-based decoding method is proposed for im-
proving multi-class classification. It exploits ramp loss to
measure multi-class decoding error and refines coding with
real-valued codes. Both theoretical analysis and numeri-
cal results show its superiority over existing approaches.

The method is further extended for multi-class HTL. Source
domain hypotheses are exploited for leveraging target do-
main training via an alternative optimization process be-
tween coding space learning and target domain training.
Experimental result shows that it outputs the state-of-the-
art multi-class HTL approaches.
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