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Abstract

We describe a new approach for generating regular-
speed, low-frame-rate (LFR) video from a high-frame-rate
(HFR) input while preserving the important moments in the
original. We call this time-mapping, a time-based anal-
0gy to high dynamic range to low dynamic range spatial
tone-mapping. Our approach makes these contributions:
(1) a robust space-time saliency method for evaluating vi-
sual importance, (2) a re-timing technique to temporally re-
sample based on frame importance, and (3) temporal filters
to enhance the rendering of salient motion. Results of our
space-time saliency method on a benchmark dataset show it
is state-of-the-art. In addition, the benefits of our approach
to HFR-to-LFR time-mapping over more direct methods are
demonstrated in a user study.

1. Introduction

High-frame-rate (HFR) cameras such as the FastCam'
and Phantom? are capable of capture rates of 1,000 fps or
higher at HD video resolution. These cameras are typically
used to create slow-motion playback by replaying the cap-
tured frames at a much slower rate. These are expensive
specialized cameras intended for visualization and analysis
of high-speed events such as automotive crash tests and ex-
plosions. There are now consumer-grade cameras such as
the GoPro® and iPhone 5S* which are capable of 120 fps
video capture at 720p. In addition, there is a Kickstarter
project called “edgertronic®” where the goal is a relatively
inexpensive high-speed camera capable of 18, 000 fps.

Although the obvious purpose for HFR cameras is to
produce slow-motion video, we address a different ques-
tion. Given HFR video, can one produce a superior regular-
speed low-frame-rate (LFR) video, than is possible from
normal LFR video input? By regular-speed, we refer to
maintaining the overall pacing of the original input, i.e.,
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Figure 1. Example of time-mapping. (a) Uniform sampling using a
box filter. Note the blur throughout each frame. (b) Sampling and
filtering using our system. The sampling is denser in the middle to
stretch out a little the more interesting part of the video.

a 10 second event should still playback in 10 seconds, al-
though short intervals may deviate from this constraint.
This is analogous to the conversion from high-dynamic-
range (HDR) imagery to the low-dynamic-range (LDR) of
current monitors for display. This HDR-to-LDR conver-
sion, often called tone-mapping has been well studied. In
this paper we explore HFR-to-LFR conversion, i.e., time-
mapping, with the goal of producing superior normal speed
LFR video from the richer set of input frames available from
HFR capture. To our knowledge, this is the first paper to ask
and attempt to answer this specific time-mapping question.

Clearly, one can (almost) reproduce low-frame-rate (30
fps) video by simply averaging over HFR blocks of frames
representing each 1/30%" of a second. But can one do bet-


http://www.f-zhou.com
http://www.photron.com/
http://www.visionresearch.com/
http://gopro.com/
http://www.apple.com/
http://www.kickstarter.com

ter? For example, the rich temporal details captured by
a HFR camera may be lost in this averaging step. Con-
sider the performance capture of the skateboarding maneu-
ver shown in Fig. l1a, where three frames are synthesized by
uniformly averaging the HFR video frames over 1/30" of a
second intervals. The 1/30'" of a second intervals as well as
the temporal integration miss and blur the split-second key
moment. Alternatively, given three sequential HFR frames,
the key moment is preserved but we now need to consider
how to display these frames in such a way as to both depict
this moment and also maintain the pacing of the real event.

To accomplish this goal, we devised methods for: (1)
predicting what is interesting or salient in the video, (2) re-
timing to retain as many salient frames as possible while
minimizing time distortion, and (3) temporal filtering to
combine frames minimizing loss of detail while avoiding
strobing. Methods for retiming and filtering make use of
the results of the proposed space-time saliency measure.

As an example, shown in Fig. 1b, the output video is gen-
erated using more densely sampled frames where the faster
and more interesting part of the skateboarder’s performance
can be better visualized at a higher temporal resolution. To
enhance the motion perception of the fast moving object
(e.g., hand and torso), a saliency-based filter is applied to
synthesize motion blur while keeping the foreground sharp.

We validate our space-time saliency approach using a
benchmark dataset, and subsequently our overall approach
through a user study. Results show that our approach is ca-
pable of generating visually better regular-speed video than
achieved from standard LFR video. In this paper, we as-
sume that the camera is stationary.

2. Related work

In this section, we briefly review related work in motion
saliency, video re-timing, and temporal filtering.

Motion saliency. The ability to predict where a human
might fixate in an image or a video is of interest in the vi-
sion community. While many models have been proposed
in image domain (see [2] for a review), computing spatio-
temporal saliency for videos is a relatively unexplored prob-
lem. Most existing motion saliency methods built upon im-
age attention models by taking into account simple motion
cues. For instance, Guo et al. [7] adopt an efficient method
based on spectral analysis of the frequencies in the video.
Similarly, Cui et al. [4] analyze the Fourier spectrum of the
video along X-T and Y-T planes. Seo and Milanfar [21]
propose using self-similarity in both static and space-time
saliency detection. Rahtu et al. [17] apply a sliding window
on video frames to compare the contrast between the feature
distribution of consecutive windows. Recently, Rudoy et
al. [20] model the continuity of the video by predicting the
saliency map of a given frame, conditioned on the map from

the previous frame. Compared to previous work, our mo-
tion saliency method combines various low-level features
with region-based contrast analysis.

Video re-timing. Our method for re-timing is closely re-
lated to time-lapse video and video summarization tech-
niques for condensing long videos into shorter ones. (See
[24] for a review.) By sampling the video non-uniformly
with user control, Bennett and McMillan [ 1] are able to gen-
erate compelling-looking time-lapse videos. In an interest-
ing twist, Pritch ef al. [16] present a time-lapse technique to
shorten videos, while simultaneously showing multiple ac-
tivities which may originally occur at different times. Kang
et al. [10] generate a space-time video montage by ana-
lyzing both spatial and temporal information distributions
in a video sequence. By sweeping an evolving time front
surface, Rav-Acha et al. [19] manipulate the time flow of
a video sequence to generate special video effects. Un-
like these techniques that significantly modify the original
spatio-temporal video structure, our HFR video sampler is
designed to produce natural regular-speed videos.

Temporal filtering. Temporal filtering techniques have
been well-studied for removing noise and aliasing artifact in
video signals and for creating motion effects [ 4] in the con-
text of computer animation. For instance, Fuchs et al. [5]
investigate the effect of different temporal sampling kernels
in creating enhanced movies for HFR input. Bennett and
McMillan [1] experiment with various virtual shutters that
synthetically extend the exposure time of time-lapse frames.
By simulating motion blur in stop-motion videos, Brostow
and Essa [3] are able to approximate the effect of captur-
ing moving objects on film. Recently, temporal filtering has
also been used to obtain high-resolution videos [22] from
multiple low-resolution inputs.

In the related work on motion magnification, special spa-
tial or temporal filters are used to amplify subtle motions.
Wang et al. [27], for example, introduce the cartoon anima-
tion filter to create perceptually appealing motion exagger-
ation. Liu et al. [13] compute flow and amplify subtle mo-
tions and visualize deformations that would otherwise be
invisible. On the other hand, Wu et al. [28] apply a linear
Eulerian magnification method to reveal hidden information
in video signal. Another variant of this work, a phase-based
method [26] has recently been shown to achieve larger mag-
nifications and with less noise. We focus on retaining im-
portant moments that lie within the original HFR video.

3. Space-time saliency

The key to effective time-mapping of high-frame-rate to
regular-speed low-frame-rate counterparts is the ability to
identify frames that are more informative. We propose a ro-
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Figure 2. The pipeline for computing space-time saliency.

bust bottom-up saliency model to rate spatial-temporal re-
gions in a video. The process of computing our space-time
saliency measure is summarized in Fig. 2. First, the video
is segmented into spatio-temporal regions; for each region,
various appearance and motion features are extracted. The
saliency measure for each region is a combination of feature
contrast (Section 3.2) and local prior (Section 3.3).

3.1. Video pre-processing

Prior to estimating saliency, we over-segment the input
video into color-coherent spatio-temporal regions (STRs).
We leverage a streaming method [29] to segment video
frames on-the-fly. To capture region of interests in different
spatial scales, we construct a [-level pyramid of segmenta-
tion by adopting different scale parameters in the usage of
[29]. (In our work, [ = 4.) After the initial segmentation
pass at each scale, we refine the result by merging adjacent
STRs that are too small but have similar colors.

3.2. Feature contrast

Our space-time saliency measure is defined based on
contrast in both appearance and motion features. In other
words, a spatio-temporal region may be salient because its
color or motion is different from its neighbors. This design
decision is inspired by sensitivity of the human visual sys-
tem to contrast in visual signal, and shared by the recent
advance in image saliency [9, 15].

At each scale level®, given an STR (denoted by r. ;)
within a sliding window centered at frame ¢, we compute
three feature vectors. First, we compute its color statistics
in CIE Lab color space, which is perceptually uniform. The

5To keep the notation clean, we remove the scale superscript j =
1,--- [ from Ti,t until the fusion step.

7Our STR features for each frame are computed within a sliding tem-
poral window (200 frames) instead of over the entire sequence.

appearance of r.; is computed as a color histogram, ng’tl,
normalized to be of unit length. The second and third fea-
tures are based on the motion of the STR’s pixels. Given the
pixel-wise optical flow [12] between consecutive frames,
the motion distribution of r.; is encoded in two descrip-
tors: x,';" a normalized histogram of the flow magnitude,
and ngti the distribution of flow orientation.

The contrast of each STR (7. ;) is measured as the sum
of its feature distances to other STRs (7; ¢), i.e.,

Uer = > |rilw(resri)lxl, — x|

forit#ret

)

where f = {col,mag,ori} denotes one of the three fea-
tures, each of which is weighted by two factors. | - | is the
STR size and w(re ¢, 7)) = exp(M) measures
the proximity between the center-of—masss, Pc,t and p; 4, of
the STRs r,. ; and r; ;. Note that all these are computed over
the current temporal window. As with [9], we set 05 = 0.04
with the pixel coordinates normalized to [0, 1]. A larger r; ;

closer to 7.+ contributes more in the estimation of . ;.

3.3. Local prior

In addition to the contrast between an STR and its neigh-
bors, we also compute a prior term based only on the STR’s
characteristics itself. There is a natural bias towards specific
parts of the video, e.g., the center of the frame or foreground
objects. We encode these priors as part of saliency, to com-
plement feature contrast. Our priors are based on location,
velocity, acceleration, and foreground probability.

It has been shown that [25] humans watching a video
are biased towards the center of the screen. We represent
this bias by assigning a constant Gaussian falloff weight,
vEen = exp(—9(x? + y?)), for each pixel i with a nor-
malized coordinate (x;, y;) centered at the frame origin. To
encode preference for fast moving pixels and rapid changes



in direction, we compute for each pixel its velocity v?¢! and
acceleration v{“¢, respectively from the optical flow. Fi-
nally, since we want to bias foreground objects with higher
saliency, we compute the foreground probability vzf 9 of
each pixel by subtracting the background from the frame. In
our work, our camera is stationary; hence, the background
is approximated as a per-pixel temporal median filtering.

Given the various pixel attributes, the local prior of each
STR 7., is computed as the average prior of the pixels ¢
within r 4, i.e.,

ver =3 |T:t‘ 3o, @)
' Jre,

i€Tc,t

where a € {cen,vel,acc, fg} denotes one of the four pixel
attributes.

3.4. Saliency fusion

All the processing described so far (to model each STR
based on its appearance and motion features) is done at each
level of the hierarchy. To generate a more robust space-time
saliency value, we fuse over all the levels j = 1,--- .. In
our work, [ = 4. The final saliency score s; ; for each pixel
1 at frame ¢ is then computed by combining these responses
in a linear fusion scheme, i.e.,

l
. _E J J
Sijt = uc(i),tvc(i),t’
=1

where ui (i)t and vi (1),t measure the feature contrast and

local prior of the STR rﬁ (i)t computed by Eq. | and Eq. 2
respectively. The subscript ¢(i) of the two terms denotes
the index of the STR containing pixel . The superscript
j =1,---,lindicates the STR is generated in the j" scale
of the segmentation pyramid.

Compared with other methods (see Fig. 5a), our model
generates saliency maps that have sharper object and motion
boundaries and with less background artifacts. It provides a
more robust and stable saliency measure for re-timing and
filtering high-speed videos.

4. Video re-timing

Time-mapping consists of re-timing followed by render-
ing via filtering. In this section, we describe how we make
use of saliency information for re-timing, i.e., mapping in-
put frames to output frames. The goal is to slightly slow
down the action to focus on highly salient regions at the
cost of slightly speeding up other portions. Thus we are
constraining the overall length of the video to mimic real-
time, and also trying to maintain a pacing that still feels real.

More specifically, we apply an optimal dynamic pro-
gramming approach to sample representative frames based
on overall saliency per frame. To reduce the effect of im-
age noise on saliency, and hence the re-timing curve, we
perform a final temporal smoothing (Section 4.2).
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Figure 3. Re-timing a synthetic 1000-frame saliency curve to 50
frames. (a) Uniform sampling (Uni). (b) DP-based sampling. (c)
Smoothed version (DPS). (d) Input-output frame mapping func-
tions. (e) 2"¢ derivative of the frame mapping functions. (f)
20 monotonic bases (the green curves in the upper-left) used for
smoothing, where an example base (the blue curve) is generated
by piece-wisely transforming the function sin (the red curve).
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4.1. Saliency-based sampling

The “importance” of frame ¢ is computed to be the av-
erage saliency score s € R™ over all its pixels. Note that
each element of s is between 0 and 1. We define the frame
saliency curve to be the variation of frame importance over
frame number. The user can set the weight of saliency on
re-timing: s; < vs; + (1 — ), with parameter v € [0, 1].
If v = 0, we have uniform sampling (Fig. 3a), while y =1
results in total reliance on saliency for sampling. In our ex-
amples, we set v empirically to a value of 0.5 resulting in
a good balance between importance and maintaining actual
speed playback.

Suppose the input and desired effective output frame
rates are fp and f;, respectively. This is equivalent to
extracting m frames from the original n frames such that
m = %n We cast the problem of video re-timing as find-
ing p € {1 : n}™, the optimal m-frame sampling of the
saliency curve s € R”.

As an illustration, consider the synthetic example in
Fig. 3a, where we need to sample 50 frames on a 1000-
frame saliency curve. The ideal p should sample more
densely around the peaks and more sparsely at the troughs.
In principle, the cumulative saliency between successive
frames in p, ie., a; = ?;*;;1 s; = §, should be a con-
stant equal to 5 = ﬁ E?:l s;. In practice, this strict
criterion can be relaxed to minimize the following sum of
least-square errors:

m—1
. 2
i — AA;, 3
min E (a; — 8)° + 3)

i=1

(a) Frame (b) Frame (C) Frame



where a regularization term A; weighted by A is introduced

to penalize a large jump at i*" step,

A, = { W++1|7 if |pi — piya] < 38,
00, otherwise.

In the experiments, we empirically constrained the maxi-
mum step size to be three times the average sampling gap,
ie., 33 = 3%. Due to its additive nature, Eq. 3 can
be globally minimized by dynamic programming (DP). As
shown in Fig. 3b, the DP method generates a non-uniform
sampling that adapts to the saliency.

4.2. Smoothing

The proposed DP sampler optimally subsamples frames
from a high-speed input given its saliency curve. In prac-
tice, however, the saliency curve can change dramatically
at motion boundaries or contain random variations due to
image noise. Consequently, the generated sampling func-
tion may be locally noisy, yielding noticeable artifacts in
the regular speed output. As shown by the blue dashed line
in Fig. 3d, the DP sampling function has several sharp peaks
in its 2" derivative (Fig. 3e). Since the DP-based method
is based on pairwise errors (Eq. 3) between samples, it is
not possible to enforce 3"¢ smoothness and curvature on
the solution. To handle this limitation, we instead apply a
smoothing step.

Given a sampling function p € R™, the goal of smooth-
ing is to find a monotonic approximation q € R™ that
remains in a similar global pattern as p while leaving out
the rapid change in fine-scale structure. Inspired by the
work [ 18] on approximating time warping functions, we pa-
rameterize the sampling function q = Qa as a linear com-
bination of & monotonic bases, Q = [qi,--- ,qx] € R™*F
weighted by a € R*. The monotonic bases are generated
by piecewisely shifting and scaling sin and cos functions.
For instance, the bottom-right corner in Fig. 3f illustrates an
example basis. In our experiments, we found that 20 mono-
tonic bases are sufficient.

Given the bases Q and the input sampling function p, we
optimize a to minimize the following reconstruction error
weighted by saliency score sy, on the sample position:

min [(p — Qa) ©sp” + || LQall?, )
s.t. FQa>e>0,a’1=1,

where L € R™*™ is the 2"? differential operator and
|ILQal|? penalizes the curvature of the approximation Qa,
whose quality can be controlled by the parameter «. To en-
force monotonicity of Qa, we constrain its gradient FQa €
R™ to be positive, where F € R™*™ is the 1%¢ differential
operator. To prevent repeated frames in the output video,
we set a small threshold € on the minimum of gradient.
The optimum of Eq. 4 can be efficiently found by solving a

small-scale quadratic programming. Fig. 3¢ shows the sam-
pling result refined by this smoothing step. Compared to
DP, the new DPS result has a similar global shape (Fig. 3d)
but much smaller local acceleration (Fig. 3e).

5. Temporal filtering

We approximate standard film camera capture with a box
filter over the temporal span between frame times®. Given
a high-speed video, we can also simulate a very short ex-
posure for each frame using a delta filter (i.e., selecting a
frame without any blending with other frames). While the
delta filter retains the most details, the lack of visible motion
blur can produce a discontinuous strobing effect. We intro-
duce two new saliency-based temporal filters for rendering
the regular-speed video output.

Adaptive box filter (BoxA). The adaptive box filter sim-
ulates shorter-time exposures at more important moments to
retain more temporal details. The synthetic exposure at each
frame is w; = (1 — s&)wp, which is a saliency-based expo-
nential falloff curve whose tail length matches wg. Note
that wy is the actual exposure window associated with the
regular-speed video. The parameter « allows the user to
configure the curve and we set & = 1 in the experiments.

Saliency-based motion-blur filter (SalBlur). Motion
blur is a strong perceptual cue. Our goal in designing Sal-
Blur for high-speed video is to combine the advantages of
box and delta filters, i.e., retain the blur for salient motion,
while keeping foreground as clear in the original as pos-
sible. Given the saliency map, SalBlur renders the video
frame in three steps as shown in Fig. 4.

First, we remove the holes and artifacts in the original
saliency map through bilateral filtering [23]. A direct filter-
ing of the saliency map might blur the object’s boundary.
To keep the edge sharp, we compute the pixel-wise kernel
of the filter from the original frame.

Second, we compute a binary motion blur mask for each
frame based on the refined saliency map and optical flow.
The pixels with non-zero mask values correspond to the his-
toric position of important regions that need to be blurred.
For example, the bottom-right of Fig. 4 shows five pixels
(circles) on a 1-D slice at current frame ¢y and the opti-
cal flow (arrows) computed for the previous three frames
t1, to and t3. Although the third pixel (the filled red cir-
cle) locates outside the human body at frame ¢, it very
likely belongs to the important region at previous frames
(the filled red square) according to the motion history. Fol-
lowing this intuition, we calculate for each pixel 7 the dif-
ference, r(i,t) = Sf(s,+) — Si> between its saliency value s;
at current frame ¢ and the ones s(; ;) at the position f (i, t)

8We ignore issues such as rolling shutter here.
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Figure 4. The pipeline of the salient-based motion-blur filter (Sal-
Blur). The bottom-right corner illustrates the computation of mo-
tion blur mask for the five pixels (circles) on the 1-D slice at cur-
rent frame (Zo) using the optical flow (arrows) in the previous three
frames (f1, t2, t3). The number of sy; ;) and s; indicate the
saliency value at different pixel position and r(4,t) = sf(;,;) — s
computes the saliency difference.

following the flow starting from frame ¢. A positive (i, t)
indicates a more salient event happened at pixel ¢ at some
previous frame ¢ before. We assign a non-zero mask value
to ¢ if r(i, t) is positive for some ¢ within the exposure win-
dow. In the case of Fig. 4, the mask at the third pixel is
non-zero because r(4,¢1) = 0.1 and (¢, t2) = 0.6.

The final result is generated by applying a box filter only
on the pixels with non-zero values in the mask.

6. Results

We first show our space-time saliency method is state-of-
the-art based on a benchmark dataset. This is also justifica-
tion of its use in re-timing and temporal filtering to generate
the output video. To subjectively evaluate the overall effec-
tiveness of our system, we show results of a user study.

6.1. Comparisons using Weizmann database

In the first experiment, we test our proposed saliency
method on the Weizmann human action database [6]. This
database contains 84 video sequences of nine people per-
forming ten actions. The ground-truth foreground mask of
each frame is provided by the authors of this dataset.

We compare our method against three image saliency
methods [8, 11, 9] and four video saliency ones [21, 17, 7,

]. We took the implementation of all the methods from the
authors’ websites except for [4], for which we implemented
according to the paper. We evaluate the accuracy of the
computed saliency of each video frame using the ground-
truth segmentation mask in the same manner as described in
[2]. Given a threshold ¢ € [0, 1], the regions whose saliency
values are higher than ¢ are marked as foreground. The

segmented image is then compared with the ground-truth
mask to obtain the precision and recall values. The average
precision-recall curve is generated by combining the results
from all the video frames.

A visual comparison of different motion saliency meth-
ods is shown in Fig. 5a. As can be seen, the saliency map
produced by the proposed method is more visually consis-
tent with the shape, size, and location of the ground truth
segmentation map than the maps generated by the other
methods. Fig. 5b shows the precision-recall curves. Our
method significantly improves on previous motion saliency
methods [21, 17, 7, 4] and the image saliency ones [8, 11]
by a significant margin. The most competitive method to
ours is [9]. However, [9] lacks the fundamental mechanism
for enforcing temporal coherence of the saliency map across
the video, which is important for our problem.

6.2. Evaluation of our system

In the second experiment, we investigate the perfor-
mance of the proposed system for re-timing and filtering
high-speed videos. Given the lack of ground truth to evalu-
ate video quality, we collect a number of high-speed videos
and design a user study where subjects compare the quality
of differently generated outputs.

Fig. 6a lists the ten videos recorded using a Phantom
high-speed camera at between 500 and 1000 fps. These
videos (representative frames shown in Fig. 6b) cover a va-
riety of human behaviors and object interactions occurred
in different indoor and outdoor scenarios.

To establish baselines for re-timing, we implemented
the non-uniform sampling method developed by Bennett
and McMillan (BM) [1] as well as a simple uniform sam-
pler (Uni). To evaluate our temporal filters, we compare
against a delta filter (Delta, using sampled unmodified orig-
inal frames) and a box filter (Box, uniformly integrating
pixel values within a fixed-length window). In total, we
have four different re-timing schemes (Uni, BM, DP, and
DPS) and four filters (Delta, Box, BoxA, SalBlur) for com-
parison. Recall that BoxA and SalBlur, which rely on our
saliency measure, are described in Section 5. Implemented
in Matlab on a PC platform with 3.6GHz Intel Xeon and
16GB memory, our system takes less than a second to re-
time each video and ten seconds for rendering each frame.

Given a significant number of sampling techniques and
filters and the need to make the user study manageable
for subjects, we selected only a subset of combinations
for comparisons. There are three groups of comparisons:

| Group 1 ] | Group 2 ] | Group 3 ]

Uni Delta Uni Delta Uni Delta

|BM [Box] |BMEBOX] |BM| Box
| DP [BoxA] | DP | BoxA] | DP | [BoxA]

————————————
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Figure 5. Comparison of different saliency algorithms on the Weizmann dataset. (a) Saliency maps. (b) Precision-recall curves.

Seo & Milanfar [21]

These combinations yield 120 video pairs (12 method
combinations with 10 sequences). In the user study, the
video pairs and their ordering are randomized.

Thirteen subjects (ten men and three women) took part
in the user study. Each subject is asked to compare two
videos at a time; the two videos were generated using dif-
ferent re-timing method and filter. Each video is shown one
after another. The subject is asked to select the video that
seems more “informative” or pleasing. To counter the pos-
sible bias towards picking the second result, the same re-
sult pair would appear once more in the user study but in
the reversed order. On average, each participant took about
70 minutes to evaluate all 240 pairs of video results (120
unique pairs repeated).

The re-timing and filtering results of two examples are
illustrated in Fig. 7a and Fig. 7b respectively. The results of
the user study are summarized in Fig. 7c-e, where the mean
and variance of user preferences are plotted for each pair of
method combinations. Although video quality assessment
is a strong subjective task, we can conclude from Fig. 7c
that most users preferred the non-uniform sampling results
rather than the simple uniform sampling.

Without smoothing, the proposed DP method received
more preferences than BM with a small margin. This is
because the lack of smoothness causes some videos to ap-
pear unnatural. For instance, the second row of Fig. 7a
compares the four sampling methods, where the DP sam-
pling bar abruptly switches in sampling rates for several ar-
eas. However, the DP results were largely improved by the
smoothing step in DPS.

From Fig. 7d, we found the new BoxA filter is preferred
much more than the conventional box filter. This appears to
show the effectiveness of adapting the filter length so that
the exposure was kept low to reduce motion blur at inter-
esting moments. It is surprising to us that Delta is more
popular than Box and BoxA. Based on subject feedback,
the attractiveness of Delta is visual clarity of frames. Our
SalBlur filter is similar to Delta in that it is able to retain
the sharp motion and object boundaries in the output vides.
However, SalBlur is also able to introduce motion blur for
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Cui et al. [4]

Lietal. [11] Precision

Harel et al. [8]

— Ours Guoetal. [7]
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ot
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fast moving objects, which is an important perceptional cue
for the case like the “Soccer Kick” example (second row
in Fig. 7b). Using frames as-is will result in the strobing
effect. Fig. 7e shows that the subjects prefer the results of
our new system (DPS + SalBlur) over those of simple direct
techniques.

7. Concluding remarks

We have presented a system for time-mapping, i.e., con-
verting a HFR video into a regular-speed LFR video while
retaining detail in the original video. We propose a new
space-time saliency technique, shown to be state-of-the-art
in performance on a benchmark dataset. This new saliency
technique is the basis of retiming and temporal filtering. A
user study shows that our system is very promising in gen-
erating pleasing and informative video outputs.

There are several future directions to our work. Cur-
rently, we assume the camera is stationary. As future work,
we could remove camera motion as a preprocess by deter-
mining and tracking background features, while realizing
this is also a difficult problem. In addition, we implemented
time-mapping using whole frame selection. One challeng-
ing extension is to analyze and time-map separate objects
differently in the scene. Another direction is to correlate
effective retiming and filters with high-level content (e.g.,
indoor vs. outdoor, type of activity, and object identity).
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