TILDE: A Temporally Invariant Learned DEtector

Yannick Verdie, Kwang Yi, Pascal Fua, Vincent Lepetit; Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015, pp. 5279-5288

Abstract


We introduce a learning-based approach to detect repeatable keypoints under drastic imaging changes of weather and lighting conditions to which state-of-the-art keypoint detectors are surprisingly sensitive. We first identify good keypoint candidates in multiple training images taken from the same viewpoint. We then train a regressor to predict a score map whose maxima are those points so that they can be found by simple non-maximum suppression. As there are no standard datasets to test the influence of these kinds of changes, we created our own, which we will make publicly available. We will show that our method significantly outperforms the state-of-the-art methods in such challenging conditions, while still achieving state-of-the-art performance on the untrained standard Oxford dataset.

Related Material


[pdf]
[bibtex]
@InProceedings{Verdie_2015_CVPR,
author = {Verdie, Yannick and Yi, Kwang and Fua, Pascal and Lepetit, Vincent},
title = {TILDE: A Temporally Invariant Learned DEtector},
booktitle = {Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2015}
}