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Abstract

We focus on the problem of semantic segmentation based
on RGB-D data, with emphasis on analyzing cluttered in-
door scenes containing many visual categories and in-
stances. Our approach is based on a parametric figure-
ground intensity and depth-constrained proposal process
that generates spatial layout hypotheses at multiple loca-
tions and scales in the image followed by a sequential in-
ference algorithm that produces a complete scene estimate.
Our contributions can be summarized as follows: (1) a gen-
eralization of parametric max flow figure-ground proposal
methodology to take advantage of intensity and depth in-
formation, in order to systematically and efficiently gen-
erate the breakpoints of an underlying spatial model in
polynomial time, (2) new region description methods based
on second-order pooling over multiple features constructed
using both intensity and depth channels, (3) a principled
search-based structured prediction inference and learning
process that resolves conflicts in overlapping spatial par-
titions and selects regions sequentially towards complete
scene estimates, and (4) extensive evaluation of the impact
of depth, as well as the effectiveness of a large number of
descriptors, both pre-designed and automatically obtained
using deep learning, in a difficult RGB-D semantic segmen-
tation problem with 92 classes. We report state of the art
results in the challenging NYU Depth Dataset V2 [44], ex-
tended for the RMRC 2013 and RMRC 2014 Indoor Seg-
mentation Challenges, where currently the proposed model
ranks first. Moreover, we show that by combining second-
order and deep learning features, over 15% relative ac-
curacy improvements can be additionally achieved. In a
scene classification benchmark, our methodology further
improves the state of the art by 24%.

1. Introduction and Related Work

The problem of semantic segmentation in monocular
images is of central importance in areas like robotics,

human-computer interaction and scene understanding for
large-scale indexing. For intensity images, significant
progress has been achieved recently through work per-
formed in association with the VOC Semantic Segmenta-
tion challenges[11], where high performing methods for
boundary detection[36, 31], feature description and non-
linear feature maps[4, 39, 37, 46, 33, 6], image segmen-
tation [1, 5, 10, 32] as well as optimization and contex-
tual reasoning [27, 38, 25, 15, 23, 7, 47] have been devel-
oped. Recently the use of deep feature extraction learn-
ing frameworks, trained on large-scale databases like Im-
agenet, has been shown to be effective not only for image
classification [26], but also for semantic segmentation[14],
where in conjunction with figure-ground proposal genera-
tion methods[5], impressive results have been achieved (the
effectiveness of such regions descriptors will be analyzed in
our proposed RGB-D framework, as well).

The scientific problem of three dimensional scene un-
derstanding from images, both quantitative[49, 12] and
qualitative[21, 41], has a long standing research tradition
in computer vision. Some of the more recent work has fo-
cused on the analysis of cluttered indoor scenes [22, 29, 16,
17, 20]. In this setup [29, 20] analyze the geometry of the
rooms including surfaces and objects, whereas [17] reason
about object functionality from the standpoint of a human
user of the environment.

The existence of affordable and increasingly miniatur-
ized time of flight and infra-red sensors like Kinect opens
the possibility that RGB-D sensors will be embedded in
any device, mobile or not in the near future. This creates
scientific and technological opportunities for exploiting the
RGB-D information for scene understanding and semantic
segmentation, with potentially high gains in tasks that have
been traditionally considered very challenging when per-
formed based on intensity images alone. Range data has
been extensively studied in the past, not only at the level
of adapted descriptors like spin images[24] and 3D shape
contexts[13] but also for shape modeling using, e.g., de-
formable superquadrics[30].

Besides the recent success for real-time human pose
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estimation[42], Kinect has also spurred a wave of scene
understanding research in robotics[39, 45] and computer
vision[44, 39, 18, 34, 2, 3] with datasets[43, 28] recently
made available. Our work relates to these recent RGB-
D analysis approaches, and we will review them showing
how we differentiate in methodology and focus. The NYU
Depth Dataset V2 was introduced in [44], where the au-
thors develop an expressive methodology for semantic seg-
mentation by labeling merged superpixels while also infer-
ring support relations between objects. Baseline approaches
for semantic segmentation of RGB-D images were pro-
posed in [43], where multiple alternatives were considered
for the unary and pairwise terms inside a pixel-level CRF,
with unary terms combining the output of a neural network
applied on local descriptors and a depth-sensitive location
prior; pairwise terms enforced smoothness while preserv-
ing depth discontinuities. In [39] a superpixel hierarchy is
used, and the leaf superpixels are described using concate-
nated features (kernel descriptors) extracted from the entire
path towards the root node of the segmentation tree. The
work in [18] achieves excellent results for semantic seg-
mentation after revisiting related problems such as bound-
ary detection, bottom-up grouping and scene classification
and extending the methodology to take advantage of depth
information. The authors start with a hierarchy of non-
overlapping (superpixel) partitions, and use the long-range
amodal completion of surfaces for better region grouping.

Our methodology differentiates from the above ap-
proaches in our multiple figure-ground proposal generation
based on parametric max-flow extended to use intensity and
depth information1, as well as in the feature description,
second order pooling, and inference procedure used, which
is adapted to handle RGB-D models with many categories
and scenes where many instances are present, at widely
varying spatial scales. Our pooling process operates over
descriptors that capture both appearance (e.g. SIFT [35])
and geometry (e.g. spin images [24]). Besides the pooled
local descriptors we also extracted point cloud features to
coarsely characterize the aspect and size of each region.
Also, we extracted features from a large convolutional neu-
ral network trained for image classification on ImageNet. In
the experiments we report the performance of the above fea-
tures individually and also show the benefits of using them
together to jointly describe each region. A class label is as-
signed to each segment by learning linear category models,
one per class, trained to predict the overlap (IoU) between
the segment and the best matching object of that class. Fi-
nally, a principled search-based structured prediction infer-

1Note that in parallel with the initial versions of our work, ideas based
on our earlier RGB-based constrained parametric min cuts (CPMC) [5]
and second-order pooling (O2P) [4] have also been used for RGB-D data
in [34]. In any case, notice however, that [34] address the different task of
3D object detection, providing methodology to assign labels to 3D cuboids,
instead of a pixel-level segmentation, as our focus in this work.

ence procedure is defined in order to resolve conflicts be-
tween overlapping segments which were assigned different
labels, and to generate a final per-pixel segmentation. We
differentiate from previous sequential search-based scene
parsing procedures (e.g. [40, 48]) in our training proce-
dure derived from SEARN [8], which allows optimizing
decisions under the true metric, using partial segmentations
as intermediary states and resolving conflicts between the
overlapping regions, as opposed to e.g. inferring labels of
non-overlapping superpixels. We analyze the effectiveness
of integrating depth, as well as the proposed solutions at
each stage of this pipeline, perform analysis of alternative
features including those obtained from deep learning, and
show that in the challenging NYU Depth Dataset V2 [44],
extended for RMRC 2013 and RMRC 2014 Indoor Segmen-
tation Challenges, the proposed model ranks first.

The rest of the paper is organized as follows: §2 presents
how depth data is used in order to improve the generation
of figure-ground segmentations within parametric max-flow
models, §3 illustrates the procedure used for assigning a
label to each segment, while §4 describes the sequential
search-based structured prediction inference and learning
procedure we propose in order to resolve conflicts between
overlapping segments and obtain final per-pixel labels for
the entire image. Experiments follow in §5. We conclude in
§6.

2. Parametric Generation of Figure-Ground
Proposals

In contrast to methodologies that compute hierarchi-
cal, non-overlapping partitions of the image into multi-
ple regions, our approach relies on generating multiple
overlapping figure-ground segmentations, systematically,
based on parametric max-flow solvers. We focus on con-
strained parametric min cuts models CPMC[5] general-
ized to take advantage of intensity and depth information
(CPMC-RGBD). We rely on simple spatial energy models
based on attention mechanisms that allow us to solve for
all breakpoints (segmentation solutions), corresponding to
different locations and spatial scales, in polynomial time.
The idea is to ‘fixate’ at different spatial locations, set up
constraints such that a fixated location is assigned to the
foreground, and elements on the boundary of the image are
assigned to the background, then solve for the set of bi-
nary partitions that can be obtained under such constraints.
Because solutions obtained at different fixation points may
overlap, or may have low quality, skewed shape statistics, a
ranking process ensures that only a valid and compact sub-
set is retained. The ranker (in our case a linear regressor) is
trained to distinguish between those segments that exhibit
the regularities of real-world objects (e.g. continuity, con-
vexity, Euler structure, etc.) and the ones that do not. This
‘objectness’ criteria is category independent: the ranker is



trained using a large variety of shapes belonging to many
visual categories. Following duplicate elimination and hy-
pothesis scoring, a Maximal Marginal diversification stage
ensures that the pool of solutions obtained contains good
quality configurations that are sufficiently different from
each other.

The figure-ground segmentation proposals are generated
by solving a family of optimization problems for spatial en-
ergies of the form:

Eλ(L) =
∑
x

Dλ(lx) +
∑

x,y∈N (x)

Vxy(lx, ly) (1)

where L is a labeling of the pixels in the image into fore-
ground or background, N (x) is the neighborhood of a par-
ticular pixel/node x, λ ∈ R selects the problem instance to
be solved, the unary term Dλ defines the cost of assigning
a particular pixel to the foreground or the background, and
the pairwise term Vxy penalizes the assignment of different
labels to similar neighboring pixels.

In order to incorporate depth data, our CPMC-RGBD
method modulates the pairwise term of the spatial model
to account for both intensity and depth discontinuities, re-
sulting in a more accurate pool of segments (see fig. 1
for qualitative results). The intensity-based pairwise term
Vxy in eq. 1 has the following form: Vxy(lx, ly) =

exp
[
−max(BI(x),BI(y))

σ2

]
when two neighboring pixels x, y

are assigned different labels, where BI is the output of a
generalized, trained contour detector [31, 36] computed for
the image I at a given pixel. In order to fuse depth infor-
mation, we relied on two boundary probability maps, one
based on the RGB information in the image and the other
using the depth image. We define an augmented penalty
which has the following form when neighboring pixels x, y
are assigned different labels:

Vxy(lx, ly) = exp

[
−max(BI(x), BI(y), BD(x), BD(y))

σ2

]
(2)

whereBD is the output of a global contour detector [31, 36]
on the depth image. The effects of the proposed boundary
fusion scheme are illustrated in fig. 2 where it can be seen
that we can adaptively select useful boundaries using both
RGB and depth cues.

By solving for minλ,LE
λ(L) of the sub-modular energy

using parametric max-flow, we systematically obtain an en-
tire family of nested solutions in polynomial time (the nest-
ing property of the solutions for this model enables an ef-
ficient solver for all breakpoints). For imaging models, the
nesting property also ensures that solutions are obtained at
different spatial scales in the image – provided that our ‘at-
tention mechanism’ operates over a sufficiently fine grid,
both small and large objects are usually covered quite well.
The segments are ranked using a class independent predic-
tor, based on the object-like regularities that each region ex-

Figure 1. By combining depth and intensity cues we can signif-
icantly improve the quality of the figure-ground proposal. Left
to right: original image, best segment obtained from constrained
parametric max-flow on intensity images (CPMC), best segment
from CPMC-RGBD that combines intensity and depth informa-
tion, and ground truth. The images are from the NYU Depth
Dataset V2 [44].

poses. We use this category-independent ranker to retain
only the top K = 500 scoring hypotheses for further pro-
cessing.

Fig. 1 illustrates how better segment pools are obtained
by fusing RGB and depth information in CPMC-RGBD.
Notice that thin structures (considering the detail available
at that spatial scale) and fine details of objects are captured
extremely well – see for instance the legs or the arm rest of
chairs. This is promising for robotic RGB-D sensing sys-
tems that would be capable to both recognize and manipu-
late objects in the long run. Quantitatively, the improvement
due to the usage of depth is also significant (§5).

3. Description and Recognition of Regions

3.1. Second-Order Pooling Over Local RGB-D De-
scriptors

To characterize a proposal region, we use local descrip-
tors that capture both the appearance and the depth informa-
tion available in the RGB-D images. Local descriptors ex-
tracted inside the region are aggregated using Second Order
Pooling (O2P) [4]. O2P introduces multiplicative second-
order analogues of average pooling that together with addi-
tional non-linearities (matrix logarithm, power normaliza-
tion) produce good predictors without the need of going
through a feature coding step.

We pool local features characterized by say, M descrip-
tors, X = (x1, . . . , xM ), x ∈ Rn, extracted over patches
centered at image locations sampled inside the region pro-
posal R, to form global descriptors based on second-order
statistics. We will exploit multiplicative second-order inter-
actions (e.g. outer products), with average operators. We
define second-order average-pooling (2AvgP) as the ma-
trix:



Figure 2. Depth and intensity boundary complement each other. Left to right: original image, boundaries extracted from the intensity
image, boundaries extracted from the depth image, boundaries resulting from the fusion of RGB and depth information, cf (2) with winning
channel shown.

Gavg(R) =
1

M

∑
i

xi · x>i , (3)

As the second order pooling operator constructs a
symmetric positive definite matrix, we will use the log-
Euclidean metric adapted for this space. We apply this op-
erator on the second-order statistics Gavg of each region
proposal Rj , generated using CPMC-RGBD:

Glog
avg(R)← log (Gavg(R)) , (4)

The logarithm is obtained using the Schur-Parlett algo-
rithm which takesO(n3÷n4) operations depending on the
distribution of eigenvalues of the input matrices.

Our pooling process considers both RGB and depth in-
formation. We first pool features that have proven effective
for RGB data [4] – SIFT, masked SIFT, Local Binary Pat-
terns (the LBP descriptor). In order to exploit the additional
depth information available, we pool over spin images[24],
masked spin images and SIFT, masked SIFT, and Local Bi-
nary Patterns applied to the depth image. The main dif-
ferences between the masked and non-masked version of a
descriptor occur at those points near the boundaries of the
region, where the spatial support of the local descriptor may
include fragments outside the current region, belonging to
other objects – choosing to ignore the points outside the cur-
rent region leads to the masked version of the descriptor.
The 3D local descriptors are further enriched using location
and color information.

3.2. Structural 3D Point Cloud Features

In order to better characterize the structure of a region
proposal, we additionally extract a series of measurements
from the 3D bounding box of the point cloud associated to
it. We characterize the 3D bounding box of the region pro-
posal by 11 numbers: volume, surface, diagonal, perime-

ter (sum of all side lengths), min side length, median side
length, max side length, the length of each side along the
3 axes, and aspect ratio (min side / max side). Fitting a
bounding parallelepiped to a region point cloud exactly may
not produce desirable results due to noise. Therefore in or-
der to achieve robustness we ignore a fixed percent extremal
points along each of the 3 axes. This outlier percent was var-
ied (0%, 2.5%, 5%, 7.5%), to generate the 11-dimensional
feature vector for each threshold process. We combined the
4 levels to obtain a 44 dimensional descriptor for the point
cloud, then let the classifier decide what represents a good
threshold.

3.3. Confidence Models for Region Categories

The second order RGB-D descriptors and the 3D point
cloud features described in the previous two sections are
concatenated and used as a joint region descriptor. For each
category we train linear regression models to predict the
overlap between a region and the best-matching objects of
each class – one predictive model is trained for each cat-
egory. The data used for building the predictive category
models is composed of the features extracted on the ground
truth masks from the training set along with the K masks
generated by CPMC-RGBD for each training image, with
their true Intersection over Union (IoU) overlap with the
ground truth. For the ground truth masks the target value
will be 1 for the predictive model associated to the specific
class of the object, and 0 for all other models, whereas for
the imperfect CPMC-RGBD segments the target output will
be a value in the [0, 1] interval.

At test time, we assign a class label to each of the K re-
tained masks by running all category predictors and choos-
ing the class with maximal estimated overlap. The regres-
sion model naturally provides a useful confidence measure,
for each proposal and visual category. While this provides a



Figure 3. Sequential Search-Based Structured Prediction proce-
dure at test-time. We iteratively apply the learned policy and select
the action predicted as most suitable given current state.

decision at the level of regions considered in isolation, such
regions may overlap. In order to construct the final solu-
tion, the predicted labels of regions together with their con-
fidence will be used within a sequential inference process
that resolves conflicts and assigns labels for entire image.

4. Sequential Search-Based Inference
At this point, for a given test image, we have K overlap-

ping object-level proposals which have been independently
labeled to visual categories using the methodology just de-
scribed. We also have confidences for estimates. Our objec-
tive is to generate a per-pixel labeling. This is not straight-
forward because the K object-level proposals overlap.

We formulate the solution in terms of a principled se-
quential framework which involves learning a policy to op-
timally select among a set of actions until a final state is
reached. The quality of a decision can be evaluated either
immediately, or by considering the long term effect of the
action, after multiple decisions have been made. The proce-
dure described in this section shares connections with re-
inforcement learning and is in the spirit of Search-based
Structured Prediction (SEARN) [8]. We are not aware of
an application of such principles for the task of semantic
segmentation. Formally, we learn a policy π : S → A,
where S represents the set of states (partial semantic seg-
mentations of an image in our case) and A represents the
set of actions.

In practice our method generates a complete image seg-
mentation by selecting one labeled region at a time. The
partial semantic segmentations reached during this process
represent the intermediary states (see fig. 3). In our imple-
mentation the actions are represented by candidate labeled
regions to be added next, and there is also a special ‘stop
action’ which determines finalization of the process.

The generic training method is described in Algorithm 1
(see [8]). We pursue two instantiations of this framework.
In both situations, a state is a partially segmented image,
represented by a set of regions selected so far, along with
their associated classes: s = {(ri, ci)|i = 1..k}. We first
generically describe the common elements of the two in-
stantiations and will afterwards detail the specific elements
of each.

In order to train a policy to optimally select an action
available in a given state (partial segmentation), we gather
multiple cost-sensitive training examples. Ideally, these

Algorithm 1 Learn a policy for sequential inference
Require: initial policy πi, train set D
Ensure: π – the learned policy

1: Initialize current policy π ← πi
2: while termination criterion not reached do
3: Initialize the set of cost-sensitive examples E ← ∅
4: for each d ∈ D do
5: Apply π, generate a seq. of states (s0, s1, ...sn)
6: for each partial segmentation si do
7: for each action αj available in si do
8: Compute features θ = θ(si, αj)
9: Compute loss l = l(αj , si, π) for action αj

10: Add (θ, l) to E
11: end for
12: end for
13: end for
14: π′ ← new policy trained using the examples in E
15: Current policy π ← interpolation of π and π′

16: end while

training examples should be generated from intermediary
partial segmentations which are similar in nature to those
which will be encountered at test time. However, it is not
straightforward to achieve this, since at test time the inter-
mediary states will be generated by applying the learned
policy. To this end, an iterative procedure is used for pol-
icy training. We start from an initial policy πi (which can
be defined using ground-truth), generate training examples
from partial segmentations obtained by applying this policy,
train a new policy, and repeat using this new policy.

The features θ(si, αj) derive information from both the
current partial segmentation si and also from the current
candidate action αj – their aim is to capture how suitable
it is to add a candidate labeled segment given current par-
tial segmentation. In our implementation we included co-
occurrences between current candidate label and previously
selected labels, number of segments, number of distinct la-
bels selected and confidence for the candidate segment.

The loss l(αj , si, π) models the effect of performing can-
didate action αj in the state si. One benefit of the frame-
work is that it allows evaluating the long-term effect of the
selected action (by analyzing the final segmentation which
results after applying the current policy) under the metric
that we optimize (e.g. mean per class Jaccard index).

We detail two instances of this generic procedure.
Decide-region. Here, the actions available in a given state s
areAs = {(rj , cj)|j = 1..l}∪{αstop}, where each (rj , cj)
pair represents a region with an associated class – these are
the segments which do not overlap2 with the segments al-
ready selected in current partial segmentation s. Selecting
such an action advances the system in a new state, which

2We permit minor overlaps – we only reject candidates whose IoU with
previously selected regions is above a fixed 0.05 value



is obtained by adding the new (rj , cj) labeled region to the
set of already selected labeled regions. There is also a spe-
cial action, denoted αstop for which the final state is reached
when selected – in this case, the current labeled regions rep-
resent the segmentation of the input image. The initial pol-
icy πi is based on ground-truth (i.e. always choose the best
available segment) and a fixed number of iterations (10) is
used as termination criterion.
Decide-continuation. In this instantiation the actions avail-
able in a given state s are As = {αcontinue, αstop}. As be-
fore, when αstop is selected, the final state is reached. When
αcontinue is selected, a new state is generated by adding the
region with the highest class specific estimated confidence
(§3). During training, in each intermediary state we gener-
ate a training example. The loss for stop action is positive
(i.e. continuation is encouraged) if the best possible state
(evaluated under the metric to be optimized) can be reached
later by sequentially applying the αcontinue action.

5. Experiments
Our experiments were conducted on the NYU Depth

Dataset V2 [44], which contains 1449 RGB-D images. We
model 92 object classes for semantic labeling, each being
found at least 50 times in the NYU Depth Dataset V2.

We also show results on two extensions of this dataset,
introduced for the RMRC 2013 and RMRC 2014 Indoor
Segmentation Challenges, held during ICCV 2013, respec-
tively ECCV 2014, where our method currently ranks first.

In our implementation the spin images pooled using O2P
were represented by 16 × 16 2D histograms, extracted at
two spatial scales – considering points within a radius of
0.3 respectively 0.5 meters. The RGB-based local descrip-
tors (SIFT and LBP) were computed using the same param-
eters as in the publicly available implementation of O2P.
In the PCA reduction step we retained 2,500 dimensions
from the pooled spin images and 2,500 dimensions from
the pooled masked spin images, along with the 12,500 di-
mensions retained from the descriptors which use RGB in-
formation (SIFT and LBP). When pooling SIFT, masked
SIFTs and LBP descriptors on the depth image we used the
same parameters as for RGB, but when reducing the dimen-
sionality of the descriptors using PCA we retained 2,500
dimensions from each descriptor type (instead of retaining
5,000 dimensions as in RGB for each variant of the SIFT
descriptors – masked/not masked).

We have also experimented with ‘deep features’ ex-
tracted from a large convolutional neural network trained
for image classification on ImageNet. We followed the
procedure and implementation from [14], without the fine-
tunning step, using the network architecture defined in [26]
which resulted in a 4096 dimensional feature vector.

We next analyze the effects of various components of
the system, at each stage. Unless otherwise indicated, the

CPMC CPMC-RGBD CPMC+[9] Upp-bnd.
55.6 (707) 59.1 (1166) 57.7 (762) 68.1

Table 1. Integrating RGB and depth cues generates improved
figure-ground segmentations. The values represent the average
IoU measures over ground-truth objects for the best-matching pro-
posal using different methods. The numbers in the parantheses
specify the average number of segments generated per image.
We present the scores for the CPMC algorithm ([5]), the CPMC-
RGBD algorithm (§2), the score obtained by integrating depth into
CPMC-RGBD using an edge detector trained on RGB and Depth
simultaneously ([9]), upper bound generated assuming that perfect
(gt) boundaries are available.

results reported below are obtained on the test set of NYU
Depth V2, using the standard train-test split which consists
of 795 training images and 654 testing images.
Parametric Generation of Figure-Ground Proposals:
We have generated proposals using a regular ‘attention
model’ based on a 5x5 grid of seeds, and constraints placed
as described in §2. We first investigated the impact of depth
in the generation of the segment pool. We show qualitative
results in fig. 1 and quantitative ones in table 1.
Description and Recognition of Regions: After extracting
multiple figure-ground segment proposals based on RGB-
D, each of them is categorized, with confidence, using the
procedure described in §3. We retained K = 500 segments
from each testing image (the highest-scoring regions ac-
cording to a category-independent ranker). For training we
used both the clean ground truth masks and noisier auto-
matically generated segment proposals. We observed only
marginal improvements when training with more than 300
masks per image – therefore we only retained 300 segments
for training, which are passed to category-specific predic-
tors, along with ground truth segments. Notice that we
use 300 proposals in training and 500 in testing. There is
no inconsistency as these numbers need not be the same
– in practice we have also experimented with mixed regu-
lar and irregular grids where we made sure that we always
placed seeds on ground truth objects in training, but this
strategy did not produce significantly better pools than the
ones based on a regular 5x5 seeding grid.

We will extensively analyze the performance of the seg-
ment descriptors constructed based on both RGB and depth
information. We report intermediary results as well since
the inference process that estimates per-pixel segmentations
involves steps which are in turn prone to error.
Labeling Ground Truth Segments: We begin by analyz-
ing the performance of our descriptors on the clean ground
truth segments from the NYU Depth V2 test set. Results are
shown in table 2. Interestingly, the pooled depth descrip-
tors performed better than the RGB descriptors. However,
their combination significantly boosted the score, confirm-
ing that indeed complementary information is present in the
depth and intensity channels, and our model can leverage it.



Deep
features

O2P on local descriptors
PCF

O2P
+

PCF

O2P
+

deep feats.
all Depth features all

RGB-DRGB spin imgs SIFT depth LBP depth all depth
45.43 55.98 47.04 52.39 40.84 57.22 62.95 16.46 62.94 64.54

Table 2. Accuracy of different RGB and depth descriptors in labeling the ground-truth segments on the NYU Depth V2 test set.

Labeling Figure-Ground RGB-D Segment Proposals:
We next analyzed the behavior of the descriptors consider-
ing the segments generated by our parametric solver operat-
ing on RGB-D channels. This aims to analyze robustness of
descriptors with respect to imperfections in segmentation.
Categorizing segments individually is the final step before
proceeding to inference described in §4 where overlapping
segments compete for pixel labeling. The performance of
labeling imperfect segments is shown in table 3.
Semantic Segmentation: In table 5, we report the end-to-
end performance using various descriptors for labeling seg-
ments. The metric is the one used in the RMRC Indoor
Semantic Segmentation Challenge held during ICCV 2013
– mean recall per class.
RMRC 2013 results: In table 6 we show the scores of our
segmentations, which were uploaded on March 06, 2014 on
the RMRC test server. These segmentations were generated
using only the pooled local descriptors (O2P).
RMRC 2014 results: Table 7 shows the performance of the
winning entries for the recent RMRC 2014 Indoor Segmen-
tation Challenge. This competition used a different evalua-
tion metric – mean intersection over union scores per class.
The set of semantic labels consists of 23 frequently occur-
ring object classes. Here, motivated by the effectiveness
of our categorization with confidence methods in §3, we
retained full segment pools for processing, bypassing the
category-independent ranker.
Evaluation of the inference procedure: In §4 we de-
scribed a generic sequential framework for selecting a sub-
set of non-overlapping segments. In table 4 we compare two
instantiations of the generic framework (§4) with a base-
line that consists of running the Decide-region with a sin-
gle iteration – i.e. for the baseline we train with partial seg-
mentations that consist of subsets of best available segments
(ground truth based initial policy). The method with high-
est score (denoted as Decide-continuation) was evaluated on
RMRC 2014 test server and achieved a Jaccard index score
of 0.32 (table 7).
Failure cases: Errors occur at different stages of our
pipeline, but quantitatively, larger gains can be achieved by
further improving class predictions of segments (§3), as op-
posed to e.g. having perfect candidate regions and apply-
ing the current labeling methods on top. In general small
objects are problematic both for segment proposal and for
classification stage; thin planar background elements are of-
ten confused with pictures (e.g. fig. 4, row 2); textureless
elements are difficult in general (e.g. fig. 4, row 3 - light

Method Score
Decide-Region, single iteration 34.65

Decide-Region 37.33
Decide-Continuation 40.39

Table 4. Segmentation scores achieved with different inference
procedures. The results are obtained on the test set of NYU Depth
V2 dataset consisting of 654 images. The metric used is the mean
Jaccard index (intersection over union) per class. The label set is
represented by the 23 object classes which were used in the RMRC
2014 Indoor Segmentation Challenge.

Method Classes won Average score
Gupta et al. [18] 32 23.98

Silberman et al. [44] 29 21.31
Ren et al. [39] 22 17.52

Ours 39 24.61

Table 6. Semantic segmentation performance under the average
recall per class metric, for 92 classes. The reported results are
obtained on the RMRC 2013 test set (an extension of the NYU
Depth V2 dataset) after uploading our results on the evaluation
server. The metric is the average recall per class (‘average score’
column). We also report the number of classes where each method
achieves the highest score (in case of ties, one point is added for
each method achieving the highest score). The uploaded method
uses the O2P descriptors (without deep learning features)

Method Score
Ours 0.32

Gupta et al. [19] 0.30

Table 7. Winners of the RMRC 2014 semantic segmentation chal-
lenge. Each pixel in each image is labeled with one of the follow-
ing 23 classes: background, bathtub, bed, blinds, cabinet, ceiling,
chair, counter, curtain, desk, dresser, floor, night stand, picture, pil-
low, refrigerator, shelves, sofa, table, television, toilet, wall, win-
dow. The metric is the Jaccard index: the mean of the per-class
intersection over union scores.

projected on wall classified as window).
Scene classification: Motivated by the accuracy of the
pooled local descriptors we also tackled the problem of
scene classification (also studied in [18]) and investigated
the improvements that resulted by adding depth informa-
tion. We applied the second-order pooling machinery on top
of the same local descriptors presented in §3.1, that capture
both appearance and depth. The pooling of local descriptors
was done in a spatial pyramid, homogeneously (no segmen-
tation proposals) by dividing the entire image in 1, 2 × 2,



Deep
features

O2P on local descriptors
PCF

O2P
+

PCF

O2P
+

deep feats.
all Depth features all

RGB-DRGB spin imgs SIFT depth LBP depth all depth
61.69 56.87 46.01 54.90 46.27 59.35 65.22 12.87 65.54 67.15

Table 3. Accuracy for labeling figure-ground RGB-D proposals extracted automatically, on the NYU Depth V2 test set. The correct label
of a proposal is assumed to be the label of the ground truth object that mostly overlaps that segment. Only segments that have at least 50%
overlap with a ground truth object are considered.

Deep
features

O2P on local descriptors
PCF

O2P
+

PCF

O2P
+

deep feats.
all Depth features all

RGB-DRGB spin imgs SIFT depth LBP depth all depth
20.80 18.68 13.13 16.64 11.06 20.49 24.68 3.28 24.10 29.03

Table 5. Semantic segmentation performance on the NYU Depth V2 test set under the average recall per class metric.

Figure 4. Sample semantic segmentations generated by our sys-
tem. Left to right: RGB image, ground truth semantic segmenta-
tion, our segmentation.

4 × 4 grids. State of the art results were achieved, results
are shown in table 8.

6. Conclusions

We have presented a semantic segmentation methodol-
ogy for RGB-D data, where we have focused on cluttered
indoor scenes containing many visual categories. Our ap-
proach is based on a parametric figure-ground intensity and
depth-constrained proposal process that systematically gen-
erates spatial layout hypotheses at multiple locations and
scales in the image followed by a novel, optimal sequen-
tial inference algorithm that integrates conflicting proposals
into a complete scene estimate. We contribute by: (1) gen-
eralizing parametric max flow figure-ground methodologies
to take advantage of intensity and depth information, (2)
region description methods based on second-oder pooling
over multiple features constructed using both intensity and
depth channels, (3) a principled search based structured pre-
diction inference and learning process that can select re-

Class [18] RGB Depth RGB-D
bedroom 79 79.06 78.01 82.72
kitchen 74 65.09 60.38 75.47

living room 47 73.83 33.64 75.70
bathroom 67 89.66 81.03 96.55

dining room 47 96.36 50.91 96.36
office 24 63.16 13.16 71.05

home office 8.3 70.83 0.00 62.50
classroom 48 69.57 52.17 82.61
bookstore 64 100.00 72.73 100.00

others 15 85.37 39.02 95.12
mean diag. cm. 47 79.29 48.11 83.81
avg. accuracy 58 77.52 55.81 82.42

Table 8. Scene classification performance on the NYU Depth
V2 test set, measured using the mean-diagonal of the normalized
confusion matrix (average precision per class) and average clas-
sification accuracy. The ‘RGB’ column shows results obtained
using descriptors that use RGB data only (SIFT, LBP), pooled us-
ing O2P; the ‘Depth’ column gives results using only pooled local
descriptors, SIFT, LBP, spin images computed on depth channels.

gions sequentially towards complete scene estimates, (4)
evaluation of the impact of depth, as well as the effective-
ness of a large number of descriptors, both pre-designed and
automatically obtained using deep learning, in a difficult
RGB-D semantic segmentation problem with 92 classes.
We report state of the art results in the challenging NYU
Depth Dataset V2 [44], extended for the RMRC 2013 and
RMRC 2014 Indoor Segmentation Challenges, where the
proposed model ranks first. By combining second-order and
deep learning features, accuracy improvements in excess of
an additional 15% can be attained. In a RGB-D scene classi-
fication benchmark, our methodology further improves the
state of the art by 24%.
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