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Abstract

All that structure from motion algorithms “see” are sets

of 2D points. We show that these impoverished views of

the world can be faked for the purpose of reconstructing

objects in challenging settings, such as from a single im-

age, or from a few ones far apart, by recognizing the object

and getting help from a collection of images of other ob-

jects from the same class. We synthesize virtual views by

computing geodesics on networks connecting objects with

similar viewpoints, and introduce techniques to increase the

specificity and robustness of factorization-based object re-

construction in this setting. We report accurate object shape

reconstruction from a single image on challenging PASCAL

VOC data, which suggests that the current domain of appli-

cations of rigid structure-from-motion techniques may be

significantly extended.

1. Introduction

Modern structure from motion (SfM) and multiview

stereo approaches [45, 12, 18] are widely used to recover

viewpoint and shape information of objects and scenes in

realistic settings, but require multiple images with overlap-

ping fields of view. If only a single image of the target ob-

ject is available, or if multiple ones are available but from

viewpoints far apart, these methods are, respectively, inap-

plicable or prone to fail.

Here we aim to extend SfM-style techniques to these

cases by incorporating recognition. Once an object is rec-

ognized into some potentially broad class such as ”cars” or

”aeroplanes”, one can leverage a reusable collection of im-

ages of similar objects to aid reconstruction. This is in the

spirit of recent papers on face reconstruction using auto-

matically learned morphable models [31, 30] but we target

generic categories and use SfM techniques. Our main in-

sight is the following: SfM algorithms inhabit a rudimen-

tary visual world made of 2D points in correspondence and

these are all they “see”. In this visual world, novel views

can be faked more easily than in ours, where light compli-

cates matters. Our idea, illustrated in fig. 1 is to synthesize

Figure 1. Our goal is to reconstruct an object from a single im-

age using structure from motion techniques on virtual views ob-

tained by aligning points on a regular grid on the test object

(shown on top) with points on similar grids defined on objects in a

reusable collection. Accurate alignment is achieved by computing

geodesics on virtual view networks, VVN in short, which induce

smooth rotations through the class object collection and simplify

matching. Our approach assumes object classification, localiza-

tion and viewpoint detection as inputs and produces a point cloud

(here shown for different camera azimuths on the left and different

elevations on the right). Better seen on a computer screen with

color and zoom.

virtual (SfM) views of the target object by aligning it with

images of different instances from the same class then em-

ploying robust rigid SfM techniques to reconstruct its visi-

ble surfaces. This idea is compatible with findings that hu-

man perception of structure from motion is robust to small

shape deformations of the object [27] and prefers to inter-

pret them as manifestations of a rigid object with slightly

altered shape instead of a non-rigid object [51].

The main technical challenge we face is the need to align

the target object with every different object in a collection,

which may be pictured with arbitrary viewpoint displace-

ments, all the way up to 180 degrees from the viewpoint of

the target object. There is no dense 2D alignment technique

that we know of that is prepared for such large viewpoint

variation, so we propose a new one: instead of attempting

to match the target object with each object in the collection



individually, we predict the pose of the target object and

identify a subset of objects from the collection with simi-

lar poses – the intuition is that these will be easier to align

with. Afterwards we propagate the correspondences to all

other collection objects along geodesics on our new virtual

view networks.

Standard RANSAC-based SfM approaches are unlikely

to hold in our setting because use images from multiple

objects that may not have exactly the same shape. Non-

rigid SfM [8], developed for reconstruction from video,

has not yet been demonstrated on deformations arising

from intra-class variation for generic classes. We pursue

instead more regularized scaled-orthographic factorization

techniques [49], which optimize fewer parameters, and in-

troduce methodology for a) increasing robustness to the

multitude of noise sources we have by extrapolating syn-

thetic inliers using domain knowledge and b) making the re-

sulting reconstructions more specific, by emphasizing col-

lection objects more similar to the target object.

We will review related work in the next section. Sec. 3

explains how we build and use virtual view networks to syn-

thesize large sets of new views from one or more images of

a target object to feed to SfM. Sec. 4 introduces techniques

for robust SfM from noisy virtual views and sec. 5 shows

alignment and reconstruction results. Source code to repro-

duce all results will be made available online1.

2. Related Work

Several recent papers have exploited class-specific

knowledge to improve SfM. The goal in one line of work is

to create denser, higher-quality reconstructions [2, 13, 19],

not to regularize SfM from few images and typically re-

quires 3D training data. Closer to our work, Bao and

Savarese proposed to reason jointly over object detections

and point correspondences [3] to better constrain SfM when

there are few scene points shared by different images. Our

approach differs in that it focuses on reconstructing the

shape of individual objects and can reconstruct from a sin-

gle image of the target object.

Our work is also related to 2D alignment approaches2,

that can be divided into two camps, class-specific sparse

ones, that try to localize the keypoints available in a training

set [11, 5, 55, 24], and class-agnostic dense ones such as

SIFTflow [36, 42] and related techniques [32] that attempt

to align pairs or, as in the interesting concurrent work by

Zhou et al [56], more general sets of images. Our alignment

method sits in a middle ground as it uses class information

but aligns a uniform grid of points inside each object that

is much denser (several hundreds of points in practice) than

1Videos with all our reconstructions can be accessed online:

http://goo.gl/8Xzy3m.
2There are also several papers studying alignment using 3D models

[48, 40, 33].

the typical sets of training keypoints comprising 10 to 20

points per class.

Approaches building networks of objects have gained

popularity in vision in the last few years [38] and have been

recently proposed for 3D reconstruction from a single im-

age [47] but using a collection of 3D CAD models, whereas

we use annotated images. Other approaches requiring some

form of 3D training data have been proposed for generic

[4, 28] and class-specific [23, 10] object and scene recon-

struction [25, 43, 15, 35, 29].

3. Virtual View Networks

As in popular class-specific sparse alignment setups

[11, 5, 55, 24], we assume that a collection of training im-

ages ❢I✶❀ ✿✿✿❀ I◆❣ is available for each class, together with

a small set of ❩ consistent keypoints ▲✐ ❂ ❢m✐✶❀ ✿✿✿❀m
✐
�❣

for each image ✁, where some of them may be missing

due to occlusion. We bootstrap scaled orthographic cam-

eras, represented by rotation matrices ❢❘✶❀ ✿✿✿❀ ❘◆❣ from

the keypoints for all images using the method from Vicente

et al. [52] 3. We also assume for simplicity that all ob-

jects in a collection are segmented and that at test time the

localization problem has been solved and we have a seg-

mentation of the test object, which could be obtained using

a state-of-the-art semantic segmentation algorithm [9, 21]

or cosegmentation [41] if multiple test images are avail-

able4. We use a fixed stride for feature extraction, result-

ing in a regular grid of 2D locations for matching in each

image ❳✐ ❂ ❢x✐✶❀ ✿✿✿❀ x
✐
▼❣ with ✂ associated descriptors

❢d✐✶❀ ✿✿✿❀ d
✐
▼❣, inside each object segmentation. The partic-

ular descriptors used will be described in the experimental

section.

SfM algorithms operate on a set of point tracks, which

were traditionally obtained by tracking local features in

video frames and later also from unstructured image col-

lections [45]. Here we aim to compute one track for each

feature in the target object by matching it to corresponding

features in ”virtual views” borrowed from every object in

the training collection, a hard problem because local appear-

ance changes dramatically with viewpoint variation. We

convert this hard wide-baseline problem into many easier

small-baseline ones by defining a distance between feature

points that considers a network over the whole collection

of objects. Let network ● ❂ ❢❱❀ ❊❣ have nodes for all

points in ❢❳✐❀ ✿✿✿❳◆❣ and edges derived by matching points

in objects having similar pose. We dock the image of the

test object to the network by matching it to a few objects

3Cameras for non-rigid classes are computed from a representative sub-

set of keypoints in a rigid part such as the torso, in animal classes.
4This is a stronger assumption but it allows us to focus entirely on re-

construction without having to dabble with the intrincacies of segmenta-

tion. In the long run the two problems are likely to be best handled in

conjunction.



Figure 2. Instead of matching a test object to each training ob-

ject directly, which may be difficult due to viewpoint variation, we

match through a network connecting training objects with similar

viewpoint. A test object is docked to the network by matching it to

a few network objects with similar viewpoint (✶✵ in practice), then

it is aligned with all other objects based on geodesic distances in

the network. Points connected by an edge are shown with similar

color.

also chosen based on pose, which is assumed to be com-

puted using a pose detector for the test object, and compute

geodesics (shortest paths) between each point in the target

object and all points in the collection, which can be done

efficiently [17] using Dijkstra’s algorithm▼ times, one for

each feature in the target object. This network distance can

then be used as a more meaningful alternative to standard

euclidean distance based on appearance features, for match-

ing the test object to all training objects (using for instance

nearest neighbor matching). The overall idea is illustrated

in fig. 2.

3.1. Network Construction

We match separately each object in the collection to a

fixed number of nearest neighbors in pose space (✸� in prac-

tice), measured using the riemannian metric on the manifold

of rotation matrices ❥❥❧♦❣✭❘✐❘
❚
✁ ✮❥❥❋ , where ❧♦❣ refers to the

matrix logarithm and ❥❥✿❥❥❋ denotes the Frobenius norm of

the matrix. Drifting is a major concern in any tracking ap-

proach and is especially hard to deal with automatically in

our case, over different objects. We counter drifting by reg-

ularizing feature matching using symmetric warping priors

derived from the manually annotated keypoints. Let ☛ be a

weighting parameter. We define the cost of matching points

✉ and ✈ with locations x✐✂ and x
✁
✄ with descriptors d

✐
✂ and d✁✄

in two different images ☎ and ✆ as:

❊✭✉❀ ✈✮ ❂ ❥❥d✐✂ ✝ d✁✄❥❥ ✰ ☛ ✞
✟
❊✇✭x

✐
✂❀ x

✁
✄❀ ▲✐❀ ▲✁✮

✰ ❊✇✭x
✁
✄❀ x

✐
✂❀ ▲✁❀ ▲✐✮

✠
✿ (1)

and model the warping cost using an interpolant ❣ ✡ ☞✷ ✦

☞✷, here instantiated as thin plate splines which are popular

for modeling various types of shapes in vision and can be

fit in closed form [6, 7]. We define the warping cost as:

❊✇✭x
✐
✂❀ x

✁
✄❀ ▲✐❀ ▲✁✮ ❂ ❥❥x✁✄ ✝ ❣✐✁✭x

✐
✂✮❥❥ (2)

where ❣✐✁ is fit to map ▲✐ to ▲✁ . We use two warping costs

for symmetry, one in each direction, as we found this to lead

to more accurate alignment in practice.

Given matching costs between all pairs of points in

two neighboring objects, we add a directed edge to the

network from each node ✉ to each node ✈ satisfying

❛r✌♠✍♥✄ ❊✭✉❀ ✈✮.

3.2. Docking to the Network

We do not use thin plate splines for computing match-

ing costs when docking test instances to the network be-

cause this would require keypoints that are unavailable at

test time. Cost functions similar to those used in optical

flow [36] would be valid alternatives, but incur some com-

putational cost. We opted instead to simply replace the thin

plate splines in eq. 1 by affine interpolants ❤ ✡ ☞✷ ✦ ☞✷

fit to map between the ✹ corners of the bounding boxes

of the target object and a docking object, resulting in an

anisotropic scaling. This makes sense because it biases cor-

responding points to be in the same relative location within

a bounding box, a good prior since we are docking objects

with similar viewpoint. Note that a single spatial term is

sufficient in this case, because the mapping is symmetric.

Matching proceeds as when constructing the network, but

we suppress multiple edges connecting to the same point

in a docking object and keep only the one with minimum

weight, to enable the speed-up to be presented next.

3.3. Fast Alignment at Test Time

It is usually desirable to push as the burden of compu-

tation to an offline stage and to have fast performance at

test time. This is also feasible with our method, assum-

ing nearest neighbor matching is used and hence we only

need to identify points in training objects having minimum

geodesics to points in test objects (e.g. retrieving distances

to all points in each training object is unnecessary) by lever-

aging the recursive properties of shortest paths. We pre-

compute the nearest neighbor matchings using network dis-

tances between all pairs of objects in the network and use

these to construct a new network where all shortest paths

between points in any two objects can be identified by sim-

ply selecting the outgoing edges having minimum weight, a

property we will call being point-to-point.

At test time there is an additional set of edges between

test object points and docking object points and the network

ceases being point-to-point. Assuming there is at most a

single edge from a test object point to each network node in



docking objects, however, this edge can be pushed forward

and summed to all outgoing edges from nodes in docking

objects making the network again point-to-point. Geodesics

to all points in all objects can then be found by selecting the

minimum geodesic from any of its docking points. Using

this linear-time operation we manage to align a test object to

a collection of roughly ✶✵✵✵ objects having ✸✵✵❀ ✵✵✵ points

in around half a second on a modern desktop computer, in-

stead of in more than a minute using Dijkstra’s algorithm.

4. Reconstruction

Reconstruction faces three challenges in our setting: in-

tegrating sparse, far apart views of the target object, cop-

ing with noise in virtual views synthesized from training

objects and producing a shape that is specific to the target

object while pooling shape evidence from all objects in the

training collection. We use all network images to recon-

struct each test instance, and deal with noise by assuming

that all generated virtual views are of a same rigid object

undergoing rigid motion under scaled-orthographic projec-

tion, which has the positive effect of allowing us to estimate

fewer parameters than in non-rigid reconstruction or for-

mulations assuming perspective projection and to adopt the

well-studied Tomasi-Kanade factorization framework [49].

We employ the robust Marques and Costeira algorithm [39]

which can handle missing data.

Sparse reconstruction from many views of an object is

an almost solved problem [22, 45, 18]. Here we focus on

reconstruction from few views, in particular from a single

image plus its mirrored version, exploiting bilateral sym-

metry possessed by most object classes (e.g. cars, aero-

planes). Directly matching original and mirrored views is

generally infeasible, e.g. a car seen from the right side

shares few points with one seen from the left side. We pro-

pose network-based factorization to handle these issues. To

cope with outliers we introduce a technique called synthetic

inlier extrapolation and, we also propose two strategies for

making the reconstruction more specific to the shape of the

target object, resampling and xy-snapping. We will first de-

scribe synthetic inlier extrapolation in the next subsection,

after summarizing our overall reconstruction algorithm at

test time as follows:

4.1. Synthetic Inlier Extrapolation

Even though factorization has few parameters compared

to approaches based on bundle adjustment, they can still be

negatively affected by outliers. There is prior work on han-

dling known gaussian noise distributions [1, 26] and outliers

[54, 14] within factorization, but these approaches may not

be trivial to adapt so they can deal with missing data. Here

we propose instead to reduce the influence of outliers by

swamping the data with synthetic inliers generated using

domain knowledge, namely we sample a constant number

Algorithm 1 Novel Object Reconstruction using VVN

VIRTUAL VIEW GENERATION

for each image i of test object do

Predict pose P✐

Extract dense local features d✐

Dock with VVN using P
✐, d✐

Compute distances to network points as in sec. 3.3

Align (match) instances to generate virtual views

end for

OBJECT RECONSTRUCTION

Compute test object similarity with VVN objects (sec.

4.3)

Form observation matrix with virtual views and syn-

thetic inliers, with resampling (sec. 4.2)

Factorization

XY-Snapping (sec. 4.3)

Figure 3. The effect of reconstructing points from an image (blue)

and its mirrored version (red) with and without extrapolated syn-

thetic inliers (in green). Reconstructed points for a motorbike, in-

cluding extrapolated inliers, are shown on the top row, seen from

side and above. The bottom row shows the computed shapes using

extrapolated inliers (left) and not using extrapolated inliers (right)

from above. The shape becomes wider and noisier without extrap-

olated inliers.

(✶✵ in practice) of equally spaced points along 2D lines con-

necting all pairs of ground truth keypoints in the training im-

ages. Such points define correct correspondences between

different images (as much as they can, ignoring object shape

variation) under scaled orthographic projection.

4.2. Network­Centered Factorization

Classic rigid factorization builds an observation matrix

having two rows for each of ◆ frames in an input video



sequence and one column for each of❑ tracked points:

❲ ❂

✷

✻
✻
✻
✻
✻
✹

①✶✶ ✁ ✁ ✁ ①✶�
②✶✶ ✁ ✁ ✁ ②✶�
...

①
◆
✶ ✁ ✁ ✁ ①

◆
�

②◆✶ ✁ ✁ ✁ ②◆�

✸

✼
✼
✼
✼
✼
✺

❀ (3)

then compute a ✂ ✄ ❑ shape ❙ as well as rotation matri-

ces, translation vectors, and scale parameter for each image

from this matrix. In our case, each column will contain the

coordinates of one point in the target object and the coor-

dinates of those points in network objects that are aligned

to it. Our observation matrix has a more specific structure

as well, shown in fig. 4, motivated by our reliance on the

virtual view network as an alignment hub which multiple

target images can be docked to, hence the name network-

centered factorization. We create one set of distinct points

for each image of the target object, because we do not know

a priori if points are shared by multiple views, and fill in

tracks only between points in target images and images in

the network (e.g. we do not match the target images di-

rectly), then set the rest of the matrix as missing data for the

factorization algorithm to fill in. The extrapolated synthetic

inliers are also added as separate points which are available

for the training images but not for the test images, where

they are also set as missing data. We use these points just

as an additional source of regularization and ignore their re-

construction afterwards and this may be better understood

by consulting fig. 3.

4.3. Building up Target Specificity

We use two strategies for increasing the specificity of the

reconstruction towards the target object: resampling and xy-

snapping.

Resampling. Factorization algorithms compute low-rank

matrix approximations and these can be weighted so that

some of the observations are given more importance. So-

phisticated algorithms [46] for this task have been devel-

oped but not yet demonstrated on structure from motion.

Here we propose instead to boost the importance of the tar-

get images and a few nearest neighbors from the training

set (based on appearance), by simply resampling their rows

in the observation matrix. This is equivalent to finding the

low-rank factorization that minimizes a weighted euclidean

loss with the rows corresponding to the important instances

having higher weights.

xy-Snapping. The points from the target object are the only

ones we can trust blindly and which should be considered

correct. We enforce this as post-processing by snapping the

points of the target object back to their original coordinates

in a reference image after reconstruction. If we are recon-

Figure 4. The blockwise pattern of missing data in the observation

matrix (inside the bold lines) for our network-centered factoriza-

tion approach, here instantiated in the case where two images of

the object are docked to the network – if more images are avail-

able they can be used in the same way. The SfM algorithm fills

in the missing data so we retrieve the reconstructed points for all

images from the first block-row shown in this table and ignore the

reconstructed points of synthetic inliers, which are only used as

regularization.

structing also using a mirrored image, we can compute cor-

respondences across the symmetry axis trivially by tracking

where points move to during mirroring, and then just trans-

lating them in the image plane by the same offset as the

points in the original image.

5. Experiments

Our focus is on alignment and reconstruction so we will

assume that target objects have been localized and seg-

mented as discussed in the introduction. We will evaluate

2D alignment and reconstruction separately, in each of the

following subsections. We will study the impact of the ac-

curacy of pose prediction on 2D alignment and will assume

viewpoint has been correctly detected in the reconstruction

section. All experiments used PASCAL VOC [16], where

there are segmentations and around ☎✵ keypoints available

for all objects in each class [20]. The same setup and the

same ✾❀ ✵✽✆ fully visible objects were used as in [52], but

we split them into ✽✵✪ training data and ✝✵✪ test data and

built virtual view networks on the training images and their

mirrored versions, and evaluated alignment performance on

test data without using keypoints. We discarded classes

”dining table”, ”bottle” and ”potted plant” in the reconstruc-

tion section because their keypoints are marked in a view-

dependent way (e.g. bottles have keypoints marked on their

silhouettes, so the induced cameras are always frontal and

direct depth recovery requires additional cues).



5.1. 2D Alignment

We resized the image of each object to be ✶✺✵ pixels

tall and computed a regular grid of features taken by con-

catenating the fourth and fifth convolutional layers of the

AlexNet convolutional network [34], resulting in 640 di-

mensional feature vectors at each grid location. We ob-

tained a stride of 8 pixels by offsetting the image appropri-

ately and passing it through AlexNet multiple times, then

carefully assembling back the multiple resulting grids (sim-

ilar to [44]). We also evaluated SIFT features, computed

with a stride of 2 pixels and all feature extraction was per-

formed with the background pixels set to black 5. Each ob-

ject’s figure-ground segmentation was also used for ignor-

ing grid points in the background during matching.

Our full proposed approach, VVN, aligns a test object to

each training object using nearest neighbor matching on a

distance function defined by geodesics on a network con-

necting all grid points on all training examples. While there

are many class-specific techniques for localizing a set of

keypoints available in training data, we are not aware of

techniques of that kind that are able to align arbitrary grids

of points. We opted then to compare with techniques that

can align grids even though they do not use class-specific

knowledge: nearest neighbor matching using the euclidean

distance and SIFTflow [36], using either SIFT or the same

deep features we employ. We evaluate alignment by match-

ing each test image to all training images and checking how

the ground truth test keypoints match to the training image

keypoints. We average the following per-pair matching er-

ror:

▲✭❈✮ ❂
✶

❇

❳

✉

❥❥c✉ � m✉❥❥❀ (4)

where ✁ iterates over the grid points closest to each ground

truth keypoint ✁ on the test image, ❈ is the set of corre-

sponding points ❝✂❀ ✿✿✿❀ ❝✄ on a training image according to

the matching, and m✉ is the position of ground truth key-

point ✁ on the training image. We average the errors over

all images in all ✷✵ PASCAL classes.

Different Features and Segmentation. We first compared

SIFT and deep feature matching using nearest neighbor

with the euclidean distance, and evaluated how important

it is to have segmentation for this task. Deep features do

better in general and the matching errors are slightly worse

without segmentation, especially when matching with SIFT

features - the deep features seem better prepared in the pres-

ence of background clutter which is promising but we will

assume segmentation for the rest of the paper. For a com-

plementary, more focused study on these matters see [37].

5We convert images to be gray-valued and compress the pixel value

range to be between 30 and 255 before zeroing out the object background,

in order to preserve contrast along the boundaries of dark objects
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Figure 5. Mean error in eq. 4 when matching points in two objects

from the same class using nearest neighbor, as a function of the

viewpoint difference between the objects. Deep features allow for

more accurate alignment, and this is more evident when segmen-

tation is not available.

Results are shown in fig. 5.

Euclidean and Network Distance. We compare our pro-

posed nearest neighbor matching using the network distance

to two baselines, nearest neighbor with the euclidean dis-

tance and SIFTflow. All methods used images with the

background masked and the correspondences constrained to

be inside the segmentation. In this experiment we assume

knowledge of ground truth cameras for selecting the ele-

ments in the network to dock the test object with, which we

will also assume in the reconstruction section. The results

are shown in fig. 6 and demonstrate that given an accurate

pose estimate for the test object, the network distance leads

to more accurate alignment up to the maximum 180 degrees

viewpoint difference. SIFTflow leads to large gains over

nearest neighbor using SIFT features and euclidean distance

but is less robust to viewpoint variation.

Pose Prediction and Alignment. Our final and main ex-

periment in this subsection evaluates VVN alignment with

automatic pose prediction. We used predictors for the 12

rigid categories in PASCAL VOC from Tulsiani and Ma-

lik [50], which are finetuned for pose using annotations

from PASCAL3D+ [53], including the additional train-

ing examples from Imagenet. Our results were obtained

with an early AlexNet-based version of the models. Us-

ing more advanced convolutional network architectures [50]

should boost performance further. The alignment results are

shown, for the 12 rigid categories, in fig. 7 and demonstrate

that the improvements over nearest neighbor with the eu-

clidean distance still hold with automatic pose prediction.

We also measured accuracy when using the best among the

2 and 4 top-scoring predicted poses and found this to bring

large improvement, which suggests pose reranking as an in-

teresting direction for future work. We show sample align-

ments for our method and siftflow on the same grid of deep

features in fig. 8.
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Figure 6. Mean error when matching points in two segmented ob-

jects from the same class using nearest neighbor with euclidean

distance and SIFTflow, compared to nearest neighbor and our pro-

posed network distance, as a function of the viewpoint difference

between the objects. SIFTflow improves considerably over near-

est neighbor matching using euclidean distance but is not robust to

large viewpoint variation. Results are good even using a network

built without features, using just the spatial terms.
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Figure 7. Mean error when matching points in two segmented ob-

jects from the same class using nearest neighbor with euclidean

distance and our proposed network distance, as a function of the

viewpoint difference between the objects. The network distance

leads to more accurate alignment across all viewpoint differences.

The same deep features are used in all cases here and we consider

only rigid categories, for which there is pose prediction training

data from Imagenet. See text for details.

5.2. Reconstruction

We reconstructed PASCAL VOC objects in the test set

of each class, producing fuller 3D reconstructions from a

single view by taking advantage of bilateral symmetry as

discussed in sec. 4. We used the same parameters for

all classes, except xy-snapping which helped noticeably in

most cases but degraded subtle aeroplane wings and bicy-

cle handles so we disabled it on these two classes - the only

class-specific option we introduced. We resampled the tar-

get image and its mirrored version ✐❥✐❦ times the number

of training examples, and their ❧ nearest neighbors from the

training set ✐❥✐♠ times the total number of training examples

for the class (see sec. 4.3). Nearest neighbors were com-

Figure 8. Example alignments using our proposed network-

based approach, VVN, with automatic pose prediction (first two

columns) and SIFTflow (last two columns), on the same grid of

deep features and assuming correct figure-ground segmentation.

Corresponding points are colored the same. VVN exploits class-

specific knowledge and pose prediction to obtain resillience to

viewpoint variation. See the text for additional details and the sup-

plementary material for images showing other alignments.

puted from those training examples in the ♥✐ to ♦✐ degree

range of viewpoint differences to the pose of the test exam-

ple, selected based on euclidean distance between descrip-

tors obtained using second-order pooling [9] on the AlexNet

layer 5 features. The idea was to discard the spatial infor-

mation in the layer 5 grid to better cope with viewpoint vari-

ation.

Reconstructions for all considered classes are shown in

fig. 9, assuming ground truth object segmentation and view-

points from [52]. Inlier extrapolation helped visibly in

many cases, especially for the tv/monitors class which com-

pletely failed without it, becoming curved shapes not unlike

Dali clocks. Highly accurate shapes are obtained for most

classes, the clearest exception being horses, seemingly due

to noise in the cameras used. See the caption for additional

comments. There is no existing dataset for evaluating this

task, also because there are few, if any, methods developed

for it, so we simply put all our reconstructions on youtube

for anyone to evaluate http://goo.gl/8Xzy3m. The

method with closest capabilities is perhaps carvi [52],

which produces full meshes but uses only silhouette infor-

mation in a visual hull framework, e.g. image information

is ignored and correspondences are not used, so it cannot

deal with concavities. We will include side-by-side recon-

structions in supplementary material.



Figure 9. Example reconstructions produced by VVN on 15 PASCAL VOC categories. The first column below each image shows shapes

from increasing camera azimuths, the second from different elevations as in fig. 1. We do not show two classes due to lack of space:

cows, which we shown in fig. 1 and sheep, which are reconstructed with quality similar to cats and dogs. All test set reconstructions can

be better visualized online at http://goo.gl/8Xzy3m and a selection is available in the supplementary material. Reconstruction is

quite successful for most classes, including most animal categories except horses, that are mostly flat and consistently get a long, tilted

neck. Boat is not very good either, perhaps because due to extreme intra-class variation and aeroplane and birds wings are challenging to

capture accurately when seen from the side. The person class is not aided much by bilateral symmetry, except for side views, and their

reconstructions feel less 3D than for most other classes.

6. Conclusions

We have introduced a framework for shape reconstruc-

tion from a single image of a target object, using structure

from motion on virtual views computed from a collection

of training images of other objects from the same class.

At the core of our approach is a method for 2D alignment

that builds a network over the image collection in order to

achieve robustness across wide viewpoint variation. We

have also developed techniques to increase the robustness

and specificity of factorization-based rigid structure from

motion using virtual views and obtained stable and accurate

reconstructions of challenging objects with diverse shapes.

The main challenge now is to relax the need for keypoints

or to confine it to a few seed classes, which may be feasi-

ble using more advanced matching techniques [56] and fea-

tures. The ability to reconstruct from one image opens new

avenues for both structure from motion and recognition.
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