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Abstract

Affordances are fundamental attributes of objects. Affor-

dances reveal the functionalities of objects and the possible

actions that can be performed on them. Understanding af-

fordances is crucial for recognizing human activities in vi-

sual data and for robots to interact with the world. In this

paper we introduce the new problem of mining the knowl-

edge of semantic affordance: given an object, determining

whether an action can be performed on it. This is equiv-

alent to connecting verb nodes and noun nodes in Word-

Net, or filling an affordance matrix encoding the plausibility

of each action-object pair. We introduce a new benchmark

with crowdsourced ground truth affordances on 20 PASCAL

VOC object classes and 957 action classes. We explore a

number of approaches including text mining, visual mining,

and collaborative filtering. Our analyses yield a number

of significant insights that reveal the most effective ways of

collecting knowledge of semantic affordances.

1. Introduction

Affordances are fundamental attributes of objects. Affor-

dances reveal the functionalities of objects and the possible

actions that can be performed on them. An object is a chair

because it affords the possibility to be sit on. An object is

a food item because it is edible. Understanding affordances

is crucial for recognizing human activities in images and

videos because the functionality of objects informs us about

possibile activities and roles—a person wearing a stetho-

scope is likely to be a doctor; a person looking at a clock is

likely to be checking the time. In addition to helping com-

puters better undersand human activities, the knowledge of

affordances is also essential for a robot to interact with the

environment and achieve its goals.

The key question is: given an object, can an action be

performed on it? Can a dog be hugged? What about an ant?

Can a TV be turned on? What about a bottle? While these

questions might seem obvious to a human, to the best of our

knowledge, there is no automated system that can readily

answer this question and there is no knowledge base that
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Figure 1. Mining the knowledge of semantic affordance is equiv-

alent to filling an “affordance matrix” encoding the plausibility of

each action-object pair.

provides comprehensive knowledge of object affordances.

In this paper, we introduce the problem of mining the

knowledge of semantic affordance: given an action and an

object, determine whether the action can be applied to the

object. For example, the action of “carry” form a valid

combination with “bag”, but not with “skyscraper”. This is

equivalent to establishing connections between action con-

cepts and object concepts, or filling an “affordance matrix”

encoding the plausibility of each action-object pair (Fig. 1).

We envision that the collection of such knowledge will

benefit a variety of applications. For example, the knowl-

edge of semantic affordance provides a vocabulary for ac-

tion recognition. It gives a list of valid action-object pairs,

the basis for creating a large-scale image/video dataset to

train and evaluate action recognition algorithms. Another

application is to use the affordance knowledge as a com-

mon sense prior for generating natural language descrip-

tions from images or videos. As demonstrated in the liter-

ature [15, 22, 31, 42, 45], such priors improves recognition

of actions by eliminating implausible verb-noun combina-

tions.

It is important to note two important distinctions of se-



mantic affordance in contrast with other possible represen-

tations. First, the complete knowledge of affordance is

multi-faceted—it includes not only semantic relations as ex-

plored here but also spatial information such as grasp points

and human poses. Complementary to prior work that pri-

marily addressed the spatial aspect of affordances [49, 21,

46, 16, 19], we focus on the semantic aspect, leaving the

spatial representation unspecified.

Second, the semantic affordance is defined in terms

of categories of actions and objects, instead of individual

“verbs” and “nouns”. It is closely related, but not equiv-

alent, to the linguistic problem of finding valid verb-noun

pairs. This is because the same verb or noun can have mul-

tiple meanings (senses). For example, the meaning of the

verb draw can be making a drawing of or take liquid out of

a container. Instead, each action or object is denoted us-

ing a WordNet [30] “synset” (a set of synonyms that have

the same meaning). Specifically, we aim to enrich WordNet

by adding affordance edges, drawing connections between

compatible verb synsets and noun synsets.

The key scientific question is: “how can we collect af-

fordance knowledge”? We study a variety of approaches in-

cluding text mining, visual mining, and collaborative filter-

ing. Using text mining, we extract co-occurrence informa-

tion of verb-noun combinations. Through visual mining, we

discover whether images associated with a particular verb-

noun combination are visually consistent. We also explore

an interesting and surprising connection between the prob-

lem of mining semantic affordance and that of collaborative

filtering: can we predict if a noun “likes” an action, just

as a user likes a movie? We evaluate all approaches using

ground truth affordances collected through crowdsourcing.

Our contributions are as follows: 1) we introduce the

new problem of mining semantic affordances; 2) we create

a benchmark dataset for affordance modeling that contains

the complete ground truth for all 20 PASCAL VOC cate-

gories on 957 verb synsets;1 3) we explore and analyze a

variety of approaches and present a number of significant

insights, which open up further research for better action

recognition and affordance understanding.

2. Related Work

Object Affordances There has been an emerging consen-

sus on the benefits of modeling object affordances [49, 21,

46, 16, 19]. Gupta et al. [16] use functional constraints (hu-

man poses and motion trajectories) to aid object and action

recognition. Kjellstrom et al [19] perform simultaneous

action and object recognition, showing the benefits of mod-

eling the dependency of obejcts and actions.

Another line of work seeks to discover or predict af-

fordances on object instances. Zhu et al. [49] explored

1The dataset and code are available at [1]. The dataset has been ex-

tended to all 91 object categories of MS COCO [27].

reasoning of affordances using a knowledge base repre-

sentation. In their approach, they assume that the knowl-

edge of semantic affordance, i.e. what we aim to mine in

this paper, is already given. Yao et al. [46] discover af-

fordances (expressed as spatial configurations of humans

and objects) from weakly supervised images. Koppula et

al. [21] jointly predict affordance labels and activity labels

on RGB-D video segments without modeling object cate-

gories.

Our work differs from prior work on affordances mainly

in that that previous research has shown the importance and

benefits of using affordances, but has not addressing the is-

sue of collecting the knowledge of semantic affordances.

Action Recognition Action recognition is an important

problem for general image understanding and has improved

dramatically over the recent years [37, 39, 43, 44]. Com-

pared to standard datasets in object recogntion such as Ima-

geNet [8], action recognition has been trained and evaluated

with relatively small numbers of classes, e.g. 101 classes in

UCF101 [40] or 487 classes in Sports-1M [18].

Due to the compositional nature of actions, there are

many more action-object pairs than objects, so to advance

action recognition to the next level, it is necessary to train

and evaluate on a much larger number of classes. To con-

struct such a dataset, the first question would be: what are

those action-object pairs? By mining semantic affordances,

we can answer this question in a systemic way.

Generating Image Descriptions This paper is also com-

plementary to prior work that generates natural language

descriptions from images and videos [15, 22, 31, 42,

45]. Previous work in this area typically uses a language

model to score possible descriptions (e.g. subject-verb-

object triplets). The language model is trained on text cor-

pora and is mostly based on occurrence statistics. However,

it is not clear how well linguistic scores predict semantic af-

fordances. To the best of our knowledge, the work described

in this paper provides the first analysis on this question.

Common Sense Knowledge and Attributes Mining se-

mantic affordances is also closely connected to a wave of re-

cent work on collecting common sense knowledge [5, 6, 13,

50, 3]. The NELL [5] project and the NEIL project [6] auto-

matically extract structured knowledge from texts (NELL)

and from images(NEIL) respectively. Another line of work

leverages crowdsourcing. Freebase [3] accumulates a large

number of facts through the contribution of online volun-

teers. Zitnick and Parikh [50] introduced visual abstrac-

tion (having humans manipulate clip art characters and ob-

jects) as a way to collect visual common sense. Fouhey

and Zitnick [13] use the visual abstraction methodology to

learn object dynamics. This work differs from prior work in

that we focus on semantic affordances, a type of structured

knowledge that was not systematically considered before.



Semantic affordances can also be considered as a speci-

cal type of category-level object attributes, thus connect-

ing to work on using attributes to improve object recogni-

tion [35, 38, 47, 33, 24, 12], except that our emphasize is on

collecting the attribute knowledge.

Language Understanding In computational linguistics,

the line of work most closely related to ours is the one

concerned with the automatic learning of selectional pref-

erences from text. Selectional preferences (also sometime

referred to as ”selectional restrictions”) can tell us what are

the most likely arguments for a verb, e.g., ”eat apple” or

”dog barks”. Earlier work on selectional preferences at-

tempted to model the semantic class of the arguments by

performing generalizations across semantic networks such

as WordNet [30], which resulted in associations between

verbs and entire semantic classes, e.g., ”eat <food>”. In

[4] a comparison was performed of several such network-

based approaches, including [36], [26], and [7], and it was

found that the simpler frequency-based models can per-

form at par with the more advanced class-based methods.

More recent data-driven work on selectional preferences at-

tempted to identify similar arguments from large corpora

[10, 32, 2], where similarity metrics are computed over vec-

tor representations of words, with the goal of identifying

clusters of nouns (or classes) that can be used as arguments

for a given verb. Unlike previous research, in our work

we use a gold standard with extensive coverage, as well as

methods that rely on visual information and collaborative

filtering.

3. Crowdsourcing Semantic Affordances

The most reliable way of collecting affordance knowl-

edge is probably crowdsourcing, i.e. asking a human

whether an action can be applied to an object. At the same

time, it is probably also the least scalable: it would be pro-

hibitively expensive to exhaustively annote all action-object

pairs. Nonetheless, it is feasible and necessary to obtain a

subset of human annotated affordances. This serves three

purposes: (1) it offers insights on how humans understand

object affordances; (2) it can constitue the ground truth for

evaluating automatic methods; (3) it can also be used as

training data for learning-based approaches.

Selection of Objects and Actions For our crowdsourc-

ing study, we use the 20 object categories in PASCAL

VOC [11], a widely used dataset in object recognition.

The selection of action categories is not as straightfor-

ward as that of objects. Compared to objects (or noun

synsets), the semantic space of actions (or verb synsets) is

less well established— there is not a standard list of verb

synsets that are known to be both common and “visual”—

meaning that it can be depicted by images or videos. This

is an important consideration because many verbs, espe-

cially those describing mental processes (“decide”, “con-

sider”, “plan”), are quite hard to represent visually.

To get a list of common verb synsets, we first find out

what verbs (without disambiguating the senses) are com-

mon. Note again the difference between verbs and verb

synsets in WordNet: a verb synset is represented by one

or more synonymous verbs and the same verb can appear

in multiple verb synsets. We use the occurrence count of

verbs in Google Syntactic N-grams dataset [28]. We start

by extracting all verb-noun pairs with the dobj dependency,

which ensures that we only get transitive verbs. We sort the

extracted verbs by the total occurrence count, and create a

top 1000 verb list. Next, we create a candidate set of verb

synsets by taking all Wordnet verb synsets that have at least

one verb in the top 1000 verb list.2 This gives us a list of

2375 candidate verb synsets.

We set up a crowdsourcing task on Amazon Mechanical

Turk (AMT) to determine the “visualness” of each candi-

date verb synset. In this task, we first show the definition of

a verb synset with synonyms and examples, as provided by

WordNet. For instance,

align

definition: place in a line or arrange so as to be parallel

or straight

synonyms: align aline line up adjust

example: align the car with the curb

Then we ask:

Is it possible to tell whether someone is “align-ing”

(place in a line or arrange so as to be parallel or straight)

something by looking at an image or watching a video

clip without sound?

Note that we repeat the definition of the verb synset in the

question to make sure that it is not confused with other

meanings of the same verb. A worker then chooses an

answer from “Definitely yes”, “Normally yes”, “Maybe”,

“Normally no”, “Definitely no”, “I don’t know”, and “De-

scription doesn’t make sense”. To further ensure the anno-

tation quality, we also add a quiz for each verb synset to test

whether the worker understands the synset definition. We

detect spammers by planting a small number of gold stan-

dard questions.

For each candidate verb synset, we obtain answers from

5 different workers. For each answer, we convert it to a

score ranging from 5.0 (“definitely yes”) to 1.0 (“definitely

no or makes no sense”). The “visualness score” of a verb

synset is then the average score from 5 workers. Fig. 2

shows the distribution of scores for all candidate synsets—

about 30% of the synsets have a score of 4.0 or higher.

2An additional criterion is that the WordNet count of the verb in the

synset, a measure provided by WordNet, must be at least 3. This rules out

the cases where the verb is popular but the particular verb sense is rare.



Visualness Synset Synonyms Definition Example Sentence

Definitely yes
{wash, launder} Cleanse with a cleaning agent, such as soap, and water. Wash the towels, please!

{drive} Operate or control a vehicle. Drive a car or bus.

Yes
{deliver} Bring to a destination, make a delivery. Our local super market delivers.

{switch off, cut, turn off, turn out} Cause to stop operating by disengaging a switch. Turn off the stereo, please.

Maybe
{enjoy} Have for one’s benefit. The industry enjoyed a boom.

{respect, honor, honour, abide by, observe} show respect towards. Honor your parents!

No

{intend, destine, designate, specify} Design or destine. She was intended to become the director.

{drive} Compel somebody to do something, often against his She finally drove him to change jobs.

own will or judgment.

Definitely no {wish} Make or express a wish. I wish that Christmas were over.

/Make no sense {come} Come to pass, arrive, as in due course. The first success came three days later.

Table 1. Examples of verb synsets with different visualness scores.
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Figure 2. Histogram of visualness scores of common verb synsets.

Tab. 1 shows example synsets at different scores. Our fi-

nal list of verb synsets is generated by re-ranking the can-

didate synsets by visualness and retaining the synsets above

a cut-off visualness score (around 3.6). The cut-off score is

chosen such that we have about 1,000 verb synsets.

Annotating Semantic Affordances We are now ready to

annotate semantic affordances. Given an action (i.e. a verb

synset) and an object (i.e. a noun synset), we ask an AMT

worker whether it is possible (for a human) to perform the

action on the object. Just as the visualness task, we first

show the definition of the verb synset and then repeat the

definition in the question, e.g.

Is it possible to hunt (pursue for food or sport (as of

wild animals)) a car?

The worker needs to choose an answer from “Definitely

yes”, “Normally yes”, “Maybe”, “Normally no”, “Defi-

nitely no”, “I don’t know”, and “Description doesn’t make

sense or is grammatically incorrect”.

For every possible action-object pair formed by the 20

PASCAL VOC objects and the 957 visual verb synsets, we

ask 5 workers to determine its plausibility. This gives a to-

tal of 19K action-object questions and 96K answers. Each

answer is converted to a score from 5.0 (“Definitely yes”)

to 1.0 (“Definitely no or makes no sense”). The “plausibil-

ity score” of an action-object pair is then the average of 5

answers.

Analysis Fig. 3 shows the distribution of plausibility

scores for all action-object pairs. On average, around 24%

of action-object pairs have scores 4.0 or higher. Tab. 2

shows examples of action-object pairs with different plausi-

bility scores.

How do the semantic affordances differ between ob-

jects? It has long been hypothesized that object catgories
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Figure 3. Distribution of human annotated plausibility scores for

all action-object pairs
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Figure 4. Visualizing 20 PASCAL VOC object classes in the se-

mantic affordance space.

are formed based on functionality [14]. Our exhaustive an-

notations provide an opportunity to confirm this hypothe-

sis. Each object has a 957 dimensional “affordance vec-

tor”, where each dimension is the plausibility score with an

action. We use PCA to project the affordance vectors to

a 2-dimensional space and plot the coordinates of the ob-

ject classes in Fig. 4. It is notable that the object classes

form clusters that align well with a category-based seman-

tic hierarchy—we can clearly see one cluster for vehicles,

one for animals, and one for furniture. This validates the

functional view of semantic categories.

What affordances best distinguish the different object

classes? We sort the entries of the first two principal com-

ponents by their absolute values, and look at the associated

verb synstes of to those entries. Fig. 5 shows the plausibility

scores of these actions on several objects in the PASCAL-20

set. This suggests that affordances are indeed very discrim-



Plausibility
Action Object

Synset Synonyms Definition Synset Synonyms Definition

Definitely yes

{race, run} Compete in a race. {car, auto, automobile, A motor vehicle with four wheels; usually

machine, motorcar} propelled by an internal combustion engine.

{feed, eat} Take in food; used of animals only. {dog, domestic dog, A member of the genus Canis that has been

Canis familiaris} domesticated by man since prehistoric times.

Yes

{repel, repulse, fight off, Force or drive back. {bear} Massive plantigrade carnivorous or omnivorous

rebuff, drive back} mammals with long shaggy coats and strong claws.

{turn} Cause to move around or rotate. {sofa, couch, lounge} An upholstered seat for more than one person.

Maybe

{compress, constrict, squeeze, Squeeze or press together. {bottle} A glass or plastic vessel used for storing drinks or

compact, contract, press} other liquids; typically cylindrical without handles.

{repair, mend, fix, bushel, Restore by replacing a part or putting {wineglass} A glass that has a stem and in which wine is served.

doctor furbish up, restore, together what is torn or broken.

touch on}

No

{capture, catch} Capture as if by hunting, snaring {chair} A seat for one person, with a support for the back.

or trapping.

{ignite, light} Cause to start burning; subject to {knife} Edge tool used as a cutting instrument; has a

fire or great heat. pointed blade with a sharp edge and a handle

Definitely no
{cultivate, crop, work} Prepare for crops. {person, individual, someone A human being.

somebody, mortal, soul}

/Make no sense
{wear, bear} Have on one’s person. {airplane, aeroplane, plane} An aircraft that has a fixed wing and is powered by

propellers or jets.

Table 2. Examples of action-object pairs with different average plausibility scores.

inative attributes for object categories.

4. Mining Semantic Affordances

In this section we study approaches that mine semantic

affordances. We pose the question: to what extent can we

automatically extract such information?

4.1. Mining from Texts

We first explore the possibility of mining from texts. To

determine the plausibility of an action-object pair, we con-

sider the following signals from texts:

• N-Gram Frequency. We count the frequency of the

verb-noun pair in Google Syntactic N-Grams. This is

the basis of many language models used in the litera-

ture for generating descriptions from images [15, 22,

31, 42, 45].

• Latent Semantic Analysis (LSA). LSA [25] is a

widely used method to convert words to semantic vec-

tors, which can then be used to compute the similarity

of two words. LSA essentially factorizes the word-

document matrix. Words that tend to co-occur in the

same document would get mapped to similar vectors.

Given a verb and a noun, we compute their cosine sim-

ilarity as a proxy for plausibility of affordance. To train

the model, we use the Europarl parallel corpus [20] by

segmenting the corpus into sentences and training for

2 cycles.

• Word2Vec [29] is the current state of the art method

for embedding words into semantic vectors. At its

core is a deep neural network trained to predict a word

based on its surrouding context. We use the Continu-

ous Bag-of-Words architecture and train on the same

corpus as LSA. We set the dimensionality to 300, win-

dow size to 5, and train for 15 iterations. Similar to

LSA, we compute the similarity between the verb and

the noun as a signal for affordance.
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Figure 5. Plausibility scores on the verb synsets that have high

responses in the first two principal components.

Since all these methods operate at the word level instead of

the sense level, in cases of multiple verbs for a synset, we

use the leading verb in the synset, the most representative

verb among the synonyms as specified by WordNet.

Evaluation How well do these signals from texts predict

semantic affordances? To evaluate, we first binarize the

plausibility scores using a threshold 4.0 (average answer is

“normally yes” or above) 3. Thus the problem of predicting

affordance becomes a binary classification problem: given

an object and an action, predicting the pair to be plausible or

not. Following the tradition of PASCAL VOC, we evaluate

each object separately and then compute the average. For

each object, we rank the verb synsets using one of the tex-

tual signals, plot a precision recall curve, and compute the

average precision (AP). We also evaluate mAP, the mean

average precision over all objects.

Results Fig. 6 shows the precision recall curves for each

signal. Tab. 4 presents the (mean) average precision. The

results show that the textual signals are indeed predictive

3This is the threshold used throughout the paper. We have also run all

experiments with the threshold 3.0, which produce similar results and do

not affect the conclusions we draw.



of semantic affordance, but they are very far from perfect.

They can accurately retrieve a small number of affordances

but the precision drops quickly with a higher recall. Some-

what surprisingly, the simplest method, Google N-Gram,

outperforms the more sophisticated LSA and Word2Vec.

This is likely because LSA and Word2Vec consider larger

context windows, which may introduce spurious associa-

tions between verbs and nouns, whereas Google N-Gram

only considers verbs and nouns with direct dependencies.

Tab. 3 shows success and failure cases of the Google

N-Gram signal. We see that the false positives can be at-

tributed to two cases: 1) no disambiguation of the verb (e.g.

“pass a bottle” where “pass” means “go across or through”),

and 2) failure in parsing the semantic dependency between

the verb and the noun (e.g. “feed bus” has a high count

likely because the original texts were about “twitter feed

on bus schedule”). The false negatives reveal a more funda-

mental limitation with the text based signals: what if some-

thing has not appeared in the corpus? For example, “photo-

graph an airplane” has a count zero in the Google N-Gram

dataset, but it is a perfectly valid action-object pair.

4.2. Mining from Images

We now investigate mining from images, another possi-

ble source of affordance knowledge. The idea is that we can

use the verb-noun pair representing the action-object affor-

dance to query an image search engine. Search engines can

rely on historical user click data to identify the images that

match the query. Thus the top images returned by a search

engine may be assumed to be correct. Under this assump-

tion, if the affordance exists, the top returned images should

be more visually coherent. If the affordance does not exist,

the returned images would be more random.

Similar ideas have been explored by prior work (e.g.

[9, 6]). For example, the LEVAN system developed by Div-

vala et al. [9] queries Google Image Search to discover new

visual concepts. It verifies that the concept is visually valid

by checking the visual consistency of the returned images.

Following their approach, we train a binary classifier to dif-

ferentiate the top returned images against a set of random

background images. The cross-validation accuracy of this

classifier can then be used as a consistency measure for the

returned images. In particular, we train an SVM classifier

using features extracted by Alex’s Net [23] implemented

in CAFFE [17]. We also use Google Image Search as the

source of images.

Results The question is how well this approach would

work for predicting semantic affordances. Evaluating the

visual consistency signal the same way as the individual

textual signals in Sec. 4, we plot the precision recall curves

(Fig. 6) and present the average precision (Tab. 4). The re-

sults indicate that although decent precision can be achieved

with a very low recall, the precision recurve curve is very

poor—in fact, not better than random most of the times.

Thus the visual signals are much worse than textual signals.

Fig. 7 shows sample image search results and the corre-

sponding accuracy of the learned classifier (i.e. visual con-

sistency). Inspecting these results reveals several sources of

errors. False positives arise when Google Image Search can

return images that are irrelevant to the query but are highly

visually uniform due to accidental textual match, e.g. the

queries “wear bicycle” and “transport chair” return visually

uniform images, but the content of the images are very dif-

ferent from the underlying concepts of the queries. False

negatives occur when the search engine either fails to return

enough relevant images (e.g. “manufacture chair” in Fig. 7),

or when many returned images are relevant but too visually

diverse to learn a classifier even with the current state of the

art feature representation (e.g. “wash bicycle” in Fig. 7).

4.3. Collaborative Filtering

So far we have explored approaches that use signals on

individual action-object pairs. However, performing PCA

on the human annotated affordances (Fig. 4 ) suggests that

the space of affordance vectors is lower dimensional and

“smooth”. This observation leads to an interesting connec-

tion to the problem of collaborative filtering [41] (or ma-

trix completion): suppose we already observe the ratings of

some users on some movies, can we predict the rest of the

ratings? Here we just need to replace “user” with object and

“movie” with action. This connection opens up the possi-

bility of extrapolation, i.e. inferring new affordances based

on existing ones.

Some collaborative filtering methods admit “side infor-

mation”, attributes or features about the users or movies in

addition to the observed ratings. Including side informa-

tion allows us to handle the “cold start” scenario, where for

certain users (or movies) we do not have any observed rat-

ings. Without loss of generality, side information can be

expressed as similarities (kernels) between users or between

movies.

We employ Kernelized Probabilistic Matrix Factoriza-

tion (KPMF) [48], a state of the art collaborative filtering

method that allows similarity based side information. Es-

sentially, for N objects and M actions, the method factor-

izes the N × M affordance matrix into the product of a

latent N × D matrix and a latent D × M matrix. There

is an additional constraint: if we treat each row (column) of

the latent N×D (D×M ) matrix as a new representation of

the corresponding object (action), then similarities based on

this new representation should agree with the known simi-

larities provided as side information.

Evaluation Following the evaluation setting in Sec. 4.1,

we evaluate each object class separately. Given an object

class, we assume that none of its affordances are observed

but the ground truth affordances for all the other 19 ob-



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

recall

p
re

c
is

io
n

 

 

person

boat

car

bottle

chair

bicycle

airplane

cat

horse

bird

motorcycle

sheep

dog

cow

couch

tv

dining table

bus

train

potted plant

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

recall

p
re

c
is

io
n

 

 

person

boat

chair

motorcycle

car

airplane

dog

bird

horse

bicycle

couch

tv

sheep

cat

bottle

dining table

bus

cow

train

potted plant

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

recall

p
re

c
is

io
n

 

 

person

boat

bottle

horse

car

cat

chair

bird

dog

airplane

motorcycle

sheep

cow

bicycle

couch

tv

dining table

bus

potted plant

train

(a) Google N-grams (b) LSA (c) LR

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

recall

p
re

c
is

io
n

 

 

person

boat

car

bottle

airplane

tv

dog

chair

sheep

horse

motorcycle

cat

bird

bicycle

bus

couch

dining table

cow

train

potted plant

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

recall

p
re

c
is

io
n

 

 

person

boat

motorcycle

chair

horse

dog

airplane

car

sheep

tv

bicycle

couch

bottle

cow

dining table

bird

cat

train

bus

potted plant

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

recall

p
re

c
is

io
n

 

 

chair

boat

motorcycle

person

dining table

airplane

car

bicycle

couch

tv

horse

cat

dog

sheep

bird

bus

bottle

cow

potted plant

train

(d) Word2Vec (e) V Consistency (f) KPMF

Figure 6. PR curves. Each row corresponds to a different score threshold when setting the ground truth. Each column corresponds

to different baselines: (a) occurence count from Google syntatic N-grams, (b) LSA, (c) Word2Vec, (d) Visual Consistency, (e) logistic

regression on (a),(b),(c),(d), and (f) Collaborative filtering (KPMF). Dash lines represent chances.

Google N-Gram Action Object

Synset Synonyms Definition Synset Synonyms Definition

True positives

{fly, aviate, pilot} Operate an airplane. {airplane, aeroplane, plane} An aircraft that has a fixed wing and is powered by

propellers or jets.

{draw} Represent by making a drawing of, {person, individual, someone, A human being.

as with a pencil, chalk, etc. somebody, mortal, soul}
on a surface.

{pass, hand, reach, Place into the hands or custody of. {bottle} A glass or plastic vessel used for storing drinks or

pass on, turn over, give} other liquids; typically cylindrical without handles.

False positives

{fly} Transport by aeroplane. {airplane, aeroplane, plane} An aircraft that has a fixed wing and is powered by

propellers or jets.

{draw, take out} Take liquid out of a container or {person, individual, someone, A human being.

well. somebody, mortal, soul}
{pass,go through,go across} Go across or through. {bottle} A glass or plastic vessel used for storing drinks or

other liquids; typically cylindrical without handles.

{feed, give} Give food to. {bus, autobus, coach, A vehicle carrying many passengers; used for public

charabanc, double-decker} transport.

False negatives

{photograph, snap, shoot} Record on photographic film. {airplane, aeroplane, plane} An aircraft that has a fixed wing and is powered by

propellers or jets.

{award, present} Give, especially as an honor or {person, individual, someone, A human being.

reward. somebody, mortal, soul}

Table 3. Examples of success and failure cases for Google N-Gram, the best performing text-based signal

aero bike bird boat bottle bus car cat chair couch cow table dog horse mbike person plant sheep train tv mAP

Random 28.3 25.0 22.2 34.8 22.2 19.7 27.4 22.6 29.8 23.4 20.2 23.1 26.5 25.6 27.1 45.5 18.3 22.8 17.0 21.9 25.2

G N-Grams [28] 44.1 44.4 41.4 53.9 47.9 27.5 50.0 43.3 47.8 36.7 39.5 29.5 40.6 42.2 41.2 65.3 19.5 40.6 21.6 36.7 40.7

LSA [25] 31.5 28.8 29.0 39.9 24.4 21.2 31.7 25.3 35.5 27.8 20.7 23.1 30.1 28.9 34.0 47.4 18.3 26.6 19.4 27.4 28.5

Word2Vec [29] 31.4 24.8 25.5 40.0 31.4 24.3 33.0 26.8 29.0 23.4 22.0 23.1 30.2 28.2 27.6 50.5 18.3 28.9 20.1 30.7 28.5

V Consistency 33.2 28.2 23.6 38.5 26.8 20.1 31.7 22.7 36.8 28.2 25.2 24.3 33.9 34.2 36.9 48.2 19.8 30.6 21.4 29.0 29.7

LR 35.6 33.3 38.5 45.2 39.7 23.6 39.2 38.7 38.7 31.8 34.1 30.1 36.5 39.4 35.5 60.0 20.0 34.2 18.5 30.7 35.2

NN 55.6 52.7 49.7 63.0 49.5 44.6 61.9 50.1 66.3 58.1 47.5 60.2 56.8 55.3 61.6 57.2 28.2 51.7 41.2 51.0 53.1

KPMF [48] 71.1 69.9 58.3 76.3 56.4 56.8 70.2 62.0 78.1 67.1 53.6 71.5 61.8 62.1 75.2 73.6 50.5 59.7 36.2 63.3 63.7

Table 4. Per object average precision (AP) and mean average precision (mAP) for a variety of automatic mining methods.



wear + bicycle, 90.00 % ride + bicycle, 87.50 % lock + bicycle, 84.00 % wash + bicycle, 63.50 %

transport + chair, 93.50 % sit + chair, 92.50 % repair + chair, 81.50 % manufacture + chair, 73.00 %

Figure 7. Query keywords, the top 100 images return by Google Image Search, and visual consistency (cross validation accuracy).

ject classes are available. We define side information as

the WordNet similarities (e.g. PATH, LCH, WUP [34]) be-

tween two objects. We then run KPMF to predict plausi-

bility scores for the unobserved entries using the observed

ground truths. For each of the 20 object classes, we repeat

this process and report a precision recall curve and an aver-

age precision (AP).

We compare KPMF with two baselines. First, we pre-

dict the affordances for each object class by simply trans-

ferring the affordance labels from the most similar object

class among the other 19 (NN). Second, we learn a logistic

regression (LR) classifier that linearly combines the textual

and visual signals to predict the plausibilities. For each ob-

ject class, the weights of the classifier is learned using the

ground truth plausibility on the other 19 objects.

Results The results are reported in Tab. 4 and Fig. 6.

Across all object classes, collaborative filtering (KPMF)

outperforms textual and visual signals by a very large mar-

gin, 63.7 mAP versus 40.7. Besides, KPMF also outper-

forms LR and NN, suggesting that both side information

and matrix factorization are essential. Interestingly, the lo-

gistic regression classifier performs worse than Google N-

Gram, suggesting that the learned weights do not general-

ize across classes. These results confirm that collaborative

filtering can indeed exploit the low rank structure of the af-

fordance matrix and generalize to new classes using side

information, which surprisingly turns out to be much more

effective than mining from texts and images.

5. Discussions and Future Work

Our study has led to a number of interesting findings:

1) Human annotated ground truth affordances have low di-

mensional structure that reveals a good alignment of func-

tionalities and categories; 2) Language models based on co-

occurrence statistics have substantial limitations in predict-

ing affordances due to the difficulty of sense disambigua-

tion and inevitable data sparsity; 3) Visual models are sig-

nificantly weaker than language models in predicting affor-

dances. 4) Collaborative filtering can effectively exploit the

low rank structure of affordances.

These findings suggest a plausible bootstrapping se-

quence towards better affordance knowledge and action

recognition. We first use crowdsourcing and collaborative

filtering to collect an initial set of high quality affordances,

which can in turn help improve visual and language mod-

els. We then use the improved visual and language models

to predict more affordances and form a virtuous cycle. This

human-collaborating strategy can also lead to possible cost

reduction in future data collection.

Since we are studying a new problem, we start with the

simplest possible semantic affordances: action-object pairs

(transitive verb + noun). Note that semantic affordances

can also be described by intransitive verbs, e.g. cutting

with a knife, or more complex verb-noun relationships, e.g.

action-object-instrument triplets.

Finally, reasoning about affordances—determining

whether an action can be performed on an object—is in

itself a meaningful and challenging problem in AI, as it

requires multimodal common sense reasoning involving

both vision and language. Our study introduces this

problem, establishes the first benchmark, and presents a

number of new insights. We believe that this work will

open up a rich space for further exploration.
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