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Abstract

In real applications, data is not always explicitly-
labeled.  For instance, label ambiguity exists when we
associate two persons appearing in a news photo with
two names provided in the caption. We propose a matrix
completion-based method for predicting the actual labels
from the ambiguously labeled instances, and a standard
supervised classifier can learn from the disambiguated la-
bels to classify new data. We further generalize the method
to handle the labeling constraints between instances when
such prior knowledge is available. Compared to existing
methods, our approach achieves 2.9% improvement on the
labeling accuracy of the Lost dataset and comparable per-
formance on the Labeled Yahoo! News dataset.

1. Introduction

Learning a visual classifier requires a large amount of
labeled images and videos for supervision. However, la-
beling images is expensive and time-consuming due to the
significant amount of human efforts involved. As a result,
brief descriptions such as tags, captions and screenplays ac-
companying the images and videos become important for
training classifiers. Although such information is publicly
available, it is not as explicitly labeled as human annota-
tion. For instance, names in the caption of a news photo
provide possible candidates for faces appearing in the image
[2,3,16—18] (see Figure 1). The names in the screenplays
are only weakly associated with faces in the shots [14]. The
problem in which instead of a single label per instance, one
is given a candidate set of labels, of which only one is cor-
rect is known as ambiguously labeled learning' [10,22].

Various methods have been proposed in the literature
for dealing with this ambiguously labeled learning problem.
Some of these methods propose Expectation Maximization
(EM)-like approaches to alternately disambiguate the labels

lalso known as partially labeled learning

President Barack Obama is accompanied by Secretary of State Hillary
Rodham Clinton [Photo and caption from The Telegraph]

Figure 1: The names in the captions are not explicitly asso-
ciated with the face images appeared in the news photo.

and learn a classifier [1,23]. Non-parametric methods have
also been used to resolve the ambiguity by leveraging the
inductive bias of learning methods [22]. For the ambigu-
ously labeled training data the actual loss of mislabeling is
not explicit. As a result, it is difficult to learn an effective
discriminative model. Cour et al. [!1, 12] proposed the
partial 0/1 loss function for ambiguous labeling, which is a
tighter upper bound for the actual loss as compared to 0/1
loss [28]. Subsequently, a discriminative classifier can be
learned from the ambiguous labels by minimizing the par-
tial 0/1 loss. Several dictionary-based methods have also
been proposed in the literature for handing the partially la-
beled datasets [10,26]. In particular, an EM-based dictio-
nary learning approach was proposed in [10], where a con-
fidence matrix and dictionary are updated in alternating it-
erations. Although dictionary-based methods are robust to
occlusions and noise, the EM-based approach can be very
sensitive to the selection of initial dictionary and also may
suffer from suboptimal performance.

Luo et al. [25] generalize the ambiguously labeled learn-
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ing problem addressed in [! 1] from single instances to a
group of instances. The ambiguous loss considers the as-
sociation between the group of identities and the candidate
label vectors. The pairwise constraint between the instances
(e.g. unique appearance of a subject) is accounted for when
generating the candidate label vectors. Furthermore, Zeng
et al. [27] use a Partial Permutation Matrix (PPM) to as-
sociate the identities in a group with the ambiguous labels.
The pairwise constraint is encoded by restricting the struc-
ture of PPM. Assuming that instances of the same subject
inferred by PPM can ideally form a low-rank matrix, the ac-
tual identity of an instance can be predicted by alternatively
updating the low-rank subspace and PPM.

In recent years, the problem of completing a low-rank
matrix with missing entries has gained a lot of attention.
In particular, matrix completion methods have been shown
to produce good results for multi-label image classification
problems [15], [4]. In these methods, the underlying as-
sumption is that the concatenation of feature vectors and
their labels produce a low-rank matrix. Our work is moti-
vated by these works. The proposed method, Matrix Com-
pletion for Ambiguity Resolving (MCar), takes the hetero-
geneous feature matrix, which is the concatenation of the
label matrix and feature matrix, as input. We first show that
the heterogeneous feature matrix is ideally low-rank in the
absence of noise. This in turn, allows us to convert the label-
ing problem as a matrix completion problem. In contrast to
multi-label learning, ambiguous labeling provides the clue
that one of the labels in the candidate label set is the true
label. This knowledge is utilized to regularize the labeling
matrix in the heterogeneous feature matrix. This is essen-
tially the main difference between our work and previously
reported matrix completion techniques [15], [4]. Moreover,
we generalize MCar to include the labeling constraints be-
tween the instances for practical applications. As shown by
the recent success in low-rank matrix recovery [7], several
prior works have developed robust methods for classifica-
tion [9], [20]. The proposed method inherits the benefit of
low-rank recovery and possesses the capability to resolve
the label ambiguity via low-rank approximation of the het-
erogeneous matrix. As a result, our method is more robust
compared to some of the existing discriminative ambigu-
ous learning methods [11,25]. The disambiguated labels
from MCar are used to learn a supervised learning classi-
fier, which can be used to classify new data.

This paper makes the following contributions:

1. We propose a matrix completion method where instances
and their associated ambiguous labels are jointly considered
for disambiguating class labels.

2. Our method can handle the group constraints between
instances for practical applications.

3. We provide a geometric interpretation of the matrix com-
pletion framework from the perspective of recovering the

potentially-separable convex hulls of each class.

2. The Proposed Framework
2.1. Notation

We use the following notations in this paper. Upper
and lower bold letters indicate matrices and vectors, respec-
tively. The matrix element a; ; denotes the entity in the i*?
row and ;" column of matrix A. 1,, represents a column
vector of size n X 1 consisting of 1’s as its entries. || - |1
and || - ||o denote the £; norm and ¢, norm, respectively.
The Frobenius norm and the nuclear norm of A are defined

2
as [Allr = (3,,(0)?) " and AL = 5, 0i(A), re-

spectively where o; is the i singular value of A. ()T

denotes transposition operation. |S| returns the cardinality
in set S. S,[b] = sgn(b) max(|b| — a,0) is the shrinkage
operator. The concatenation of matrix A and B is defined

as [g} — [A;B].

2.2. Problem Formulation

The ambiguously labeled data is denoted as £ =
{(x;,L;), 5 = 1,2,...,N}, where N is the number of
instances. There are c classes, and the class labels are de-
noted as ) = {1,2,...,¢}. Note that x; is the feature
vector of the j*" instance, and its ambiguous labeling set
L; C Y consists of the candidate labels associated with the
4" instance. The true label of the 5 instance is l; € L.
In other words, one of the labels in L; is the true label of
x;. The objective is to resolve the ambiguity in £ such that

each predicted label [ ; of x; matches its true label /;.
2.3. Modeling of Ambiguously Labeled Data

We interpret the ambiguous labeling set L; with soft la-
beling vector p;, where p; ; indicates the probability that
instance j belongs to class ¢. This allows us to quantitatively
assign the likelihood of each class the instance belongs to if
such information is provided. Given the ambiguous label of
the j*" instance, we assign each entry of p;j as

{ pi; = (0,1]

pij =0

ifiel,
ifi¢ L,

where >°7_, p;; = 1. Without any prior knowledge, we
assume equal probability for each candidate label. Let P €
RN denotes the ambiguous labeling matrix with p; in
its 5" column. With this, one can model the ambiguous
labeling as

P=P’+Ep, )

where P° and Ep denote the true labeling matrix and the
labeling noise, respectively. The 5 column vector of PV is
p(j = ey,, where e, is the canonical vector corresponding
to the 1-of-K coding of its true label /;.
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Similarly, assuming that the feature vectors are corrupted
by some noise or occlusion, the feature matrix X with x; in
its j*" column can be modeled as

X =X"+Ey, 3)

where X € R™*N consists of N feature vectors of dimen-
sion m, X° represents the feature matrix in the absence of
noise and Ex accounts for the noise. Concatenating (2)
and (3), we obtain a unified model of ambiguous labels and
feature vectors, which can be expressed as

0-E e

P Ep
H,. = and E =
denote the heterogeneous feature matrix and its noise, re-
spectively. If we can show that H,;, is a low-rank matrix
in the absence of noise, then we can use matrix comple-
tion methods for resolving the ambiguity in labeling. In the

following section, we investigate the low-rank property of
Hobs-

Let
5)

2.4. Exploiting Rank of H,,,

The column vectors of X can be partitioned into sets
S1,592,...,5. based on their true labels. We assume that
the elements of S}, form a convex hull C}, of nj vertices.
It is clear that nj, < |Si|. The representative matrix of
the kclass, D, € R™*™ consists of vertices of C}, as
its column vectors, and each column vector is treated as a
representative of the k'"class. Therefore, according to the
definition of a convex hull, a noise-free instance x‘]? from
class k (x? € C}) can be represented as

x? = Dyay, ;, where aZ:jlnk =l,ay, € ]Ri’”(l. 6)

Note that ay, ; € R’} *1 is the coefficient vector associated
with the representative matrix of the k** class. As the true
label of an instance is not known in advance, we can repre-
sent x) as

X? = DQj,
D-[D, D, - D] ™
qj=[aj;a;; - ag]", qj1=1,

where D € R™*(Xi-17) is the collective representative
. (¢, ni)x1
matrix, and q; € R;~*="
vector.

According to (7), we can decompose X° as

is the associated coefficient

X’ =DQ. (®)

The coefficient matrix Q in (8) is not unique as column vec-
tors of D are not necessary linearly independent. However,
we assume that an ideal decomposition X° = DQ* satis-
fies the following condition

0 *T' 0
x; = Dq;j, where a; ;1,, =1, x; € Sk,

C))
a1y, =0, l #F,
which implies that x;? is exclusively represented by Dy, even
though it is possible that it can be written as a linear combi-
nation of any other vertices from different classes.
With this, we can recover the true labels from

P’ = TQ", (10)

where T = [e;1] e;1l ... e.1] ] accumulates the
coefficients associated with each matrix representative.
Hence, the coefficient vector of dimension Y5, n; is con-
verted into labeling vector of dimension c. Using P? =

TQ* and X° = DQ*, we rewrite (4) as

0
) =[]+ o] = o) @+ [e] - v
It is clear that

rank([P% X°]) < min (rank([T; D]), rank(Q"))

< min (c—i—m,an,N)

k=1
(12)

Since the representatives in D only account for a subset of
data samples, it is clear that ZZ=1 ny, < N. Therefore,

rank( [PU;XO]) < min <c +m, an> ) (13)

k=1

The rank of [P?; X°] is at most >} _, ny, if the dimension
of feature vectors m is not less than the number of repre-
sentatives in D, i.e. Y7, nx < m. Hence, [P%; X has
the rank relatively smaller than IV in the case of

c
N >> min <c+m,2nk> .
k=1

Hence, we have justified the following proposition:

Proposition 1 The heterogeneous feature matrix Hps is
low-rank in the absence of noise.

Note that a similar result is also reported in [5] without the
assumption of convex hull.
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3. Matrix Completion for Ambiguity Resolving

According to (10), the true labeling matrix P° can be
recovered if D and Q* are available. Unfortunately, obtain-
ing D and Q* based on the observed P and X is ill-posed.
Following [15], we propose to resolve the ambiguity by re-
covering the underlying low-rank structure of the heteroge-
neous feature matrix. Hence, we transform the matrix de-
composition problem to a matrix completion problem. For
the ease of presentation, we start with solving a label assign-
ment problem assuming that X is noise-free, i.e. X = X.
The predicted labeling matrix Y can be estimated by solv-
ing the following rank minimization problem

s (1]
(5] [E]- %)

y; € {el,eg,...,ec},jzl,Q,...
yi,j =0 lf pi,j = 0

(14)
7N7

The problem is to complete the labeling matrix Y via pur-
suing a low-rank matrix [Y; X°] subject to the constraints
given by the ambiguous labels. The first constraint defines
the feasible region of label assignment and the second con-
straint implies that an instance can only be labeled among
its candidate labels. We cannot guarantee that the optimal
solution of (14) always yields a perfect recovery of ambigu-
ous labeling such that Y* = PP, Several factors contribute
to our inability to resolve the ambiguity. For instance, if la-
bel 1 consistently presents in the candidate labeling set of
each instance, assigning e; for each column vector of Y
yields a trivial solution. This issue is also addressed in [12],
where an accurate learning from instances associated with
two consistently co-occurring labels is impossible.

Note that Y* = P is one of the possible optimal solu-
tions to (14). The solution may not be unique if any one of
the instances belongs to more than one convex hull, i.e. the
convex hulls from different classes overlap with each other.
Hence, an instance can be ideally decomposed from either
one of the convex hulls without further changing the rank of
[Y; X?]. This issue is analogous to the non-separable case
of linear support vector machine (SVM). Nevertheless, it is
our intention to seek Y = P via solving (14) bearing the
premises that 1) the ambiguous labeling carries rational in-
formation, and 2) data lies in sufficiently high-dimensional
space such that convex hulls of each identity are separable
[15].

Figure 2 illustrates the geometric interpretation of MCar
with the convex hull representation. When each element
in the ambiguous labeling set is trivially treated as the true
label, the convex hulls of each class are erroneously ex-
panded and the low-rank assumption of [Y;X"] does not
hold. MCar exploits the underlying low-rank structure of

Ambiguous Labels Disambiguated Labels

o o
[o) o o Class2 @ o o
° o © ° o ° o
° o © MCar ° o 4 o
o © ° o © ° °
. ° Class1 @ o o ©
o o o © o
o Class3 o
oL={1} oL={2} OL={3} oL={l1,2} L={2,3} L={1,

Figure 2: MCar reassigns the labels for those ambiguously
labeled instances such that instances of the same subjects
cohesively form potentially-separable convex hulls. The
vertices of each convex hull are the representatives of each
class, forming Dy,. The interior and outline of the circles are
color-coded to represent three different classes and various
ambiguous labels, respectively.

[Y;X°], which is equivalent to reassigning the labels for
those ambiguously labeled instances such that instances of
the same class cohesively form a convex hull. Hence, each
over-expanded convex hull shrinks to its actual contour, and
the convex hulls become potentially separable. This is es-
sentially different from the discriminative ambiguous learn-
ing methods that construct the hyperplane between ambigu-
ously labeled instances by minimizing the ambiguous loss.

In the case when data is contaminated by sparse errors,
the above optimization problem (14) can be reformulated as

i k(H E
Pin ran (H) + M[Ex|lo

o[- )

yj € {61,62,...,66},3': 1,2,..., N,
Yij =0if pi; =0,

5)

where H is the heterogeneous feature matrix in the absence
of noise, and Z is the recovered feature matrix. The parame-
ter A € R controls the rank of H and the sparsity of noise.
The objective is to assign the predicted label Y and extract
the sparse noise of X in pursuit of a low-rank H. Figure
3 illustrates the ideal decomposition of heterogeneous fea-
ture matrix, where the underlying low-rank structure and
the ambiguous labels are recovered simultaneously.

As (15) is a combinatorial optimization problem, we re-
lax each column vector of Y in probability simplex in R€.
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[

Figure 3: Ideal decomposition of heterogeneous feature ma-
trix using MCar. The underlying low-rank structure and the
ambiguous labeling are recovered simultaneously.

&)

The original formulation can be rewritten as

min rank(H) 4+ M|[Ex|[o +7[Ylo
Y.Ex

a0 oo

17y = 1%, Y e ROV,
Yij = 0if pij =0,

where v € R, encourages the sparsity of Y such that the
original discrete feasible region can be well approximated.
From the perspective of convex hull representation, such re-
laxation allows each instance to be represented from more
than one set of representative matrix Dy, while it will be
penalized by the non-sparsity of Y. Consequently, the pre-
dicted label of instance j can be obtained as

I = -
j = ATGIMAX Vi (17

3.1. Optimization

The augmented Lagrangian method (ALM) has been ex-
tensively adopted for solving low-rank problems [7,24]. In
this section, we propose to incorporate the ALM with the
projection step [4, 1 5] to solve the optimization problem for
resolving the label ambiguity.

In order to decouple Y in the first and third terms of
the objective function in (16), we replace |[Y]|o with |P —
Ep||o and rewrite (16) as

min rank(H) + \|Ex|lo + 7||P — Epllo
Y Ex

s l-EE

17Y =1%, Y e RV,

Following the procedure of ALM, we relax the first con-

straint in (18) and reformulate it as
i HE A
ann ((H,E, A, 1)
st. 17y =1%, Y e RV, (19)
Yij = 0if p; ; =0,

where u € Ry and A € R(+™)*N_ The Lagrangian is
expressed as

((H,E, A, p) = rank(H) + A[[Ex[lo + 7P = Epllo

+ (A Hy —H-E) + g |HL, — H—E|%.
(20)
In order to make the optimization problem feasible, we ap-
proximate the rank with the nuclear norm and the £, norm
with the #; norm [6]. Thus, we solve the following formu-
lation as the convex surrogate of (19)

o B (r(H,E, A, p) (21
st. 17Y =1%, Y e ROV, (22)

Yij = 0 if bij; = 0, (23)
where the Lagrangian is represented as
(r(H,E, A, p) = [[H, + A[Ex |1 + [P — Eply

+ (A Hyy, —H—E) + £ |Ho —H- B
(24)
The ALM operates in the sense that H, Ep, and Ex can
be solved alternately by fixing other variables. In each it-
eration, we employ a similar projection technique used in
[4,15] to enforce Y to be feasible. The entire procedure for
solving (21) is summarized in Algorithm 1.

4. Labeling Constraints between Instances

In practical applications, several ambiguously labeled in-
stances can appear in the same venue. As a result, pairwise
relations between instances can be utilized to assist ambi-
guity resolving. For example, two persons in a news photo
should not be identified as the same subject even though
both of them are ambiguously labeled in the caption. Such
prior knowledge can be easily incorporated by restricting
the feasible region of the labeling matrix. Moreover, it is
essential to handle the open set problem, where there are
some instances whose identities never appear in the labels.
These unrecognized instances can be treated as null class.

In this section, we show how MCar’s formulation can be
extended to associate the identities in news photos when the
names are provided in the captions. We assume all the in-
stances (face images) are collected from the K groups (pho-
tos), and G, is the set consisting the indices of the instances
(face images) appearing in the k" group (photo). Note
that instances (face images) from the same group (photo)
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Algorithm 1 The optimization algorithm for (21)

Input: P € RN X € R™*N ), and 7.

1: Initialization: Y = 0, Z = 0, ;t > 0, ftmax > 0,

p>1,A= [AP; AX] = Hobs/|IHobs|

2: while not converged do
3 Ep :P—S,W—1[Y—,u_1Ap];
4 EX :SA“—l[X—Z‘FM_le];
5: (U,%,V) =svd gﬂHobs —-E+ ,u‘lA);
6: H=US§,.[X]V";
7.
8
9

25

A=A+ (Hy —H-E);
[t = min(pp, fmax);
: Project Y:

10: > Line: 11: Projection for (23)

11: Yij = 0 if Pij = 0, V¥4, 5;

12: > Line: 13-14: Projection for (22)

13: Y = max(Y,0);

4y =y;5/lly;lls Vi

15: end while

Output: (H.E)

share the same ambiguous labels provided by their associ-
ated caption. Without loss of generality, we assume that the
cth class corresponds to the null class. Considering the prior
knowledge, the original formulation addressed in (16) can
be reformulated as

min rank(H) + A\||Ex/|lo + v/[Y o 25
Y Ex
Y] [P Ep
S.t. H = |:Z:| = |:X:| - |:EX:| ’
17y =13, Y e RV, (26)

yiﬁjZOifpi’j:(Li:1,27...,C—1, (27)

c—1
STy =i U L #{ch Yk, (@28)
jEGy, i=1 JECK
Syg<li=12.c-1, % (29
JEGkK

Constraints (26) and (27) are inherited from the original for-
mulation. The constraint in (28), assumes that there is at
least one non-null identity in a photo unless all the instances
in a photo are explicitly labeled as null. This constraint is
enforced to avoid the trivial solution that all the instances
are treated as null class. A similar constraint has been con-
sidered by [25] and [27] via restricting the candidate label-
ing set and confining the feasible space of PPM, respec-
tively. The constraint in (29) enforces the uniqueness of
non-null identities. Note that this framework can be easily
tailored to handle other prior knowledge (e.g. must/cannot-
link constraints, prior statistics) by regularizing the labeling
matrix. This problem can be solved by following the similar
relaxation procedures for solving (16).

5. Experimental Results

We use the Labeled Faces in the Wild (LFW) dataset [21]
with synthesized ambiguous labels to evaluate the perfor-
mance of our method under various controlled parameter
settings. Furthermore, we use the Lost dataset [| 1] and the
Labeled Yahoo! News dataset [2, 19] to demonstrate the ef-
fectiveness of our method in real-world applications. For
the datasets provided with face images, we use face images
in gray scale of range [0, 1.0]. Each instance is preprocessed
with histogram equalization and converted into a column
feature vector.

It is interesting to observe that (15) becomes asymptot-
ically similar to the formulation of Robust Principle Com-
ponent Analysis (RPCA) [7] as the dimension of the data
feature is far greater than the number of classes. Motivated
by this fact, we fix A = 1/y/max(c + m, N), which is the
tradeoff parameter suggested in RPCA. In all the experi-
ments, we use 7y = 2\ to encourage stronger sparsity of the
labeling vector than that of the feature noise.

5.1. Experiments with the LFW Dataset

The FIW(10b) dataset [12] consists of the top 10 most
frequent subjects selected from the LFW dataset [21], and
the first 50 face images of each subject are used for evalu-
ation. We use the cropped and resized face images readily
provided by the authors of [12], where the face images are
of 45 x 55 pixels. We follow the ambiguity model defined
in [12] to generate ambiguous labels in the controlled ex-
periment. Note that o denotes the number of extra labels
for each instance, and S represents the portion of the am-
biguously labeled data among all the instances. The degree
of ambiguity e indicates the maximum probability that an
extra label co-occurs with a true label, over all labels and
instances.

We conduct two types of controlled experiments sug-
gested in [12]. For the inductive experiment, the dataset
is evenly split into ambiguously labeled training set and
unlabeled testing set. The proposed method, MCar-SVM,
learns a multi-class linear SVM [8] with the disambiguated
labels provided by MCar. The testing data is then classified
with the learned classifier. For the transductive experiment,
all the data is used as the ambiguously labeled training set.
Each controlled experiment is repeated 20 times. We report
the average testing (labeling) error rate for inductive (trans-
ductive) experiment, where the testing (labeling) error rate
is the ratio of the number of erroneously labeled instances
to the total number of instances in the testing (training) set.
The standard deviations are plotted as error bars in the fig-
ures. We compare our method with several state-of-the-art
ambiguous learning approaches for single instances with
ambiguous labeling: CLPL [12] and DLHD/DLSD [10].
We use ‘naive’ [12] as the baseline method, which learns
a classifier from minimizing the trivial 0/1 loss.
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Figure 4: Performance comparisons on the FIW(10b) dataset. (a) o € [0,0.95], 5 = 2, inductive experiment. (b) o = 1.0,
8=1,e€[1/(c—1),1], inductive experiment. (¢c) « = 1.0, 8 € [0, 1,. .., 9], transductive experiment.

Figure 4a and 4b show the results of the inductive exper-
iments. Figure 4a shows that the proposed MCar method
consistently outperforms all the other methods especially
when half of the instances are ambiguously labeled. In Fig-
ure 4b, MCar outperforms other methods over various de-
gree of ambiguity except in the cases that ¢ > 0.7. This
shows that MCar yields improved performance in mild de-
gree of ambiguity, but it becomes susceptible to high degree
of ambiguity. An explanation is that both the true label and
the extra labels of a subject will result in low-rank compo-
nent of the labeling matrix when they are likely to co-occur
in high degree of ambiguity. Consequently, separating the
true label from the extra labels in MCar becomes challeng-
ing. In Figure 4c, MCar outperforms the other approaches
only when the number of extra labels is less than 5 in the
transductive experiment. This shows that MCar cannot op-
erate when the labeling is severely cluttered such that the
low-rank approximation of heterogeneous feature fails.

Figure 5 shows the intermediate result of low-rank de-
composition of the feature matrix using MCar. Note that
variations due to illumination, occlusions (e.g. glasses,
hand), and expressions are suppressed such that the low-
rank component of a subject is preserved. In contrast to
MCar, the discriminative methods (e.g. naive, CLPL) can
be susceptible to such variations. Furthermore, it also
demonstrates the robustness of our methods even though the
face images are not perfectly aligned. The proposed method
outperforms the dictionary-based method for all cases ex-
cept when there is severe ambiguity. Note the low-rank ap-
proximation of MCar operates on the feature matrix and am-
biguous labeling matrix as a whole by concatenating them
such that the actual labels and the low-rank component of
feature matrix are recovered simultaneously. This essen-
tially demonstrates the advantage of the proposed method
over the DLHD/DLSD methods that iteratively alternate be-
tween confidence and dictionary update.

Figure 5: A subset of images from FIW(10b) demonstrates
the low-rank decomposition of feature matrix in MCar: the
original face images, histogram-equalized images X, low-
rank component Z, and noisy component E x, from the first
row to the forth row, respectively.

| Method | naive | CLPL[12] | MMS [25] | MCar |
[Error Rate | 186% | 12.6% | 114% | 8.5% |

Table 1: Labeling error rates for Lost (16, 8) dataset (avail-
able at http://www.timotheecour.com/tv_data/tv_data.html).

5.2. Lost Dataset

The Lost dataset consists of the face images and the
ambiguous labels automatically extracted using the screen-
plays provided in the TV series Lost. We use the Lost
(16, 8) dataset released by the authors of [11] for evalua-
tion. The Lost (16,8) dataset consists of 1122 registered
face images from 8 episodes, and the size of each is 60 x 90
pixels. The labeling covers 16 subjects, but only 14 of them
appear in the dataset. Using the ambiguous labels provided
by [11], we compare our method with the performance of
‘naive’, CLPL , and MMS [25]. No labeling constraint be-
tween instances is considered in this experiment. Results
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| Method | CL-SVM

| MIMLSVM | MMS [25] [ LR-SVM [27] | MCar-SVM |

[ErrorRate | 23.1% £0.6 | 253% £03 | 143%£05 | 192% £ 04 | 145% = 0.4 |

Table 2: Average testing error rates for the Labeled Yahoo! News dataset (available at http://lear.inrialpes.fr/data).

are shown in Table 1. It can be seen from this table that
MCar outperforms CLPL and MMS by 4.1% and 2.9%, re-
spectively. This shows that MCar better resolves the ambi-
guity and handles variations of instances in the TV series as
compared to discriminative methods. Note that the perfor-
mance of MMS is close to that of CLPL since the ambigu-
ous loss functions of both methods become similar when no
labeling constraint between the instances is considered.

5.3. Labeled Yahoo! News Dataset

The Labeled Yahoo! News dataset contains fully anno-
tated faces in the images with names in the captions. It
consists of 31147 detected faces from 20071 images. We
use the precomputed SIFT feature of dimension 4992 ex-
tracted from that face images provided by Guillaumin et al.
[19]. Following the protocol suggested in [25], we retain
the 214 subjects with at least 20 occurrences in the cap-
tions. The remaining face images and names are treated
as the additional null class. We conduct experiments on 5
training/testing splits by randomly selecting 80% of images
and their associated captions as training set, and the rest are
used as testing set. In each split, we also maintain the ratio
between the number of training and testing instances from
each subject.

The baseline approaches are CL-SVM and MIMLSVM
[29], where their implementation details are provided in
[25]. We compare with two state-of-the-art methods: MMS
[25] and LR-SVM [27], which are based on discriminative
model and low-rank framework, respectively. Both of these
consider the labeling constraints between instances. We re-
solve the ambiguity for the labels in the training set using
(25) and train a multi-class linear SVM [&] to classify the
testing data. Our MCar-SVM algorithm exhibits a slightly
0.2% higher error rate as compared to MMS. One explana-
tion is that the low-rank approximation for a class of insuf-
ficient instances is not quite effective such that some of the
labels of those classes in the training data are erroneously
labeled. This results in the performance degradation in the
learned classifier. This issue is also pointed out by [27] as
evidenced by the fact that the number of instances per class
in this dataset ranges from 2 to 1168 with mean and stan-
dard deviations equal to 41.5 and 90.5, respectively.

Compared to the LR-SVM method, the MCar-SVM al-
gorithm demonstrates 4.7% improvement on the testing ac-
curacy. Since MCar assigns the labels across all the in-
stances via low-rank approximation of heterogeneous fea-
ture matrix, it is more effective than the LR-SVM method,

which updates the PPM and the low-rank subspace of each
class alternately. However, LR-SVM still possesses its own
advantage in large datasets in terms of the scalability.

5.4. Convergence

The convergence of Algorithm 1 is currently not theoret-
ically guaranteed but observed empirically. Figure 6 shows
the objective value with iterations for Algorithm 1 evalu-
ated on the Lost dataset. It can be seen that Algorithm |1
converges in a few iterations. To gain more insight on the
convergence of these methods, one may need to investigate
the projections onto the convex sets are non-expansive [5].

x107°

3.5

Normalized Objective Value
N
()]

5 10 15 20 25
Iterations
Figure 6: The optimization algorithm converges as the num-

ber of iterations increases. The objective value is normal-
ized by the number of entries in H .

6. Conclusions

We have introduced a novel matrix completion frame-
work for resolving the ambiguity of labels. In contrast to ex-
isting iterative alternating approaches, the proposed MCar
method ensures all the instances and their associated am-
biguous labels are utilized as a whole for resolving the am-
biguity. Since MCar is capable of discovering the under-
lying low-rank structure of subjects, it is robust to within-
subject variations. Hence, MCar can serve as the coun-
terpart of discriminative ambiguous learning methods. As
demonstrated by the experiments on synthesized ambigu-
ous labels and two datasets collected from real world, MCar
consistently resolves the ambiguity when single instances or
group of instances are ambiguously labeled as compared to
some of the previously proposed methods.
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