
A Fast Algorithm for Elastic Shape Distances between Closed Planar Curves

Günay Doğan1,2 Javier Bernal2 Charles R. Hagwood2

1 Theiss Research 2 National Institute of Standards and Technology (NIST)

{gunay.dogan,javier.bernal,charles.hagwood}@nist.gov

Abstract

Effective computational tools for shape analysis are

needed in many areas of science and engineering. We ad-

dress this and propose a new fast iterative algorithm to com-

pute the elastic geodesic distance between shapes of closed

planar curves. The original algorithm for this has cubic

time complexity with respect to the number of nodes per

curve. Hence it is not suitable for large shape data sets. We

aim for large-scale shape analysis and thus propose an iter-

ative algorithm based on the original one but with quadratic

time complexity. In practice, we observe subquadratic, al-

most linear running times, and that our algorithm scales

very well with large numbers of nodes. The key to our algo-

rithm is the decoupling of the optimization for the starting

point and rotation from that of the reparametrization, and

the development of fast dynamic programming and iterative

nonlinear constrained optimization algorithms that work in

tandem to compute optimal reparametrizations fast.

1. Introduction

A major challenge of modern data sets is not only their

sheer sizes, but that their elements may represent com-

plex geometric structures and objects, e.g., proteins, cells,

mechanical parts, facial surfaces, and other morphologies.

Typically, one wants to cluster, classify or compare ele-

ments of such data sets, but performing such analyses re-

quires defining a proper topological space where these enti-

ties reside. However, for data sets of complex elements, the

proper space may not be linear thus making it impossible to

use algorithmic tools designed for Euclidean spaces. This

can be the case for so-called shape spaces. In the particular

case where elements of data sets represent shapes of objects,

shape spaces have been proposed as an appropriate frame-

work [4, 5, 8, 9, 13, 18, 14, 22]. Vaguely, shape is the aspect

of an object where location, rotation and scale information

have been removed. In this paper, we focus on work by

Srivastava et al. [19] on the computation of the elastic shape

geodesic distance between closed planar curves. Their work

considers curves as points in an infinite-dimensional Rie-

mannian manifold which allows for the computation of the

geodesic distance between them (see Section 2). From

this distance a flexible and intuitive geodesic distance mea-

sure between curve shapes is obtained, invariant to trans-

lation, scaling, rotation and reparametrization. However, it

is computationally expensive. The original algorithm pro-

posed in [19] using dynamic programming (DP) runs in

O(N3) time, N the number of nodes per curve. This can
be prohibitively expensive for many practical applications.

In many computer vision applications, such as biometrics,

shape retrieval, and in many science and engineering appli-

cations, practitioners work with hundreds, sometimes thou-

sands of nodes per curve, and the shape distance algorithm

may have to be run many times on pairs from large curve

data sets. To enable such large-scale shape analyses, fast

computation of the geodesic distance between two curve

shapes is crucial. Accordingly, the goal of this paper is to

develop a fast algorithm to compute shape distances based

on that of Srivastava et al. [19] but considerably cheaper.

We propose a new fast iterative algorithm to compute the

elastic geodesic distance between shapes of closed planar

curves. The asymptotic time complexity of our algorithm is

roughlyO(N2). However, in our experiments, we have ob-
served a linear trend with running times depending on the

type of curve data. Mathematically, the distance compu-

tation is formulated as a global minimization over triplets

of possible starting points (on the curve), rotations and

reparametrizations [19]. It is very difficult to find a glob-

ally optimum triplet for this problem, and we are not aware

of any solutions that guarantee it. However, we have found

that our algorithm produces strong minima and frequently

global minima. Moreover, when the starting point (or seed)

and rotation are fixed and known, it computes a globally op-

timal reparametrization, just like the DP algorithm in [19],

but much faster. For this, we developed fast DP and itera-

tive nonlinear constrained optimization algorithms that we

describe in Section 4. The resulting reparametrization algo-

rithm is plugged into another procedure of outer iterations

that computes the optimal starting point and rotation sepa-

rately (see Algorithm 2 below). The overall computational

cost of our algorithm is O(ǫN2 + K(N2 + kN)), K the



number of outer iterations, k the number of iterations for
reparametrization computation that depends on the type of

curve data, and ǫ a small constant. Despite the quadratic
terms in the cost, we observed subquadratic, almost linear

growth in running times for curves with up to 1024 nodes.

2. Mathematical Formulation

Given S1, the unit circle, let β1 and β2 bemembers of the

family of closed curves β : S1 → R
2 of class C2 and unit

length (in parametric form β(t) = (βx(t), βy(t)), t ∈ S1).

Let q be the shape function of β: q(t) = β̇(t)/‖β̇(t)‖1/2,

t ∈ S1 (see [19]). The shape of β is defined as the orbit

[q] = {√γ̇Rq(γ) | γ ∈ Γ, R ∈ SO(2 )}.

Here SO(2) is the set of all rotations in R
2 and Γ is the set

of all orientation-preserving diffeomorphisms of S1. Each

element of [q] is square-integrable and a shape function of
Rβ(γ), i.e., a rotation and a reparametrization of β. With
q1, q2, shape functions of β1, β2, respectively, the geodesic

distance between the shapes of β1 and β2 is then defined as

d([q1], [q2]) ≡ inf
γ∈Γ,

R∈SO(2 )

∫

S1

‖q1(t)−
√

γ̇(t)Rq2(γ(t))‖2dt,

(1)

which can be interpreted as finding q̃2 in [q2] closest to q1.

We aim to devise an algorithm for the computation of (1).

For this, we work with real finite intervals as domains of

curves rather than S1. Thus we have βi : [0, 1] → R
2,

i = 1, 2, of class C2 and of unit length; moreover βi(0) =
βi(1), β̇i(0) = β̇i(1), β̈i(0) = β̈i(1), i = 1, 2, which im-
poses that βi, β̇i, β̈i, i = 1, 2, be closed. We also have
square-integrable qi, the shape function of βi, i = 1, 2,
but with domain [0, 1] instead of S1. q1, q2 are closed as

well, and this way, β1, β2, q1, q2 can all be treated as peri-

odic functions on the real line. This new domain representa-

tion brings up the question of how to obtain the appropriate

reformulation of the distance computation (1) with [0, 1] in
place of S1. As the value of any such computation will

depend on where we start on q2, and since we have the flex-

ibility to choose the starting point on q2 (q2 is periodic), we

need to introduce a starting point or seed t0 into the distance
computation to account for this degree of freedom, i.e., we

need to include t0 as a parameter to be optimized in our dis-
tance formulation. Hence we introduce the following en-

ergy formulation that if optimized is the geodesic distance:

E(t0, θ, γ) ≡
∫ 1

0

‖q1(t) −
√

γ̇(t)R(θ)q2(t0 + γ(t))‖2dt.

(2)

Here γ is a diffeomorphism of [0, 1] into [0, 1] (with γ(0) =
0, γ(1) = 1, and γ̇(0) = γ̇(1) to ensure periodicity of q̂2,

q̂2(t) ≡ q2(t0 + γ(t))), R(θ) is a 2 × 2 rotation matrix de-
fined by an angle θ, and t0 is the starting point or seed for

the reparametrization of q2. Note q2(t0 + γ(t)) is well de-
fined for any t0 by the periodicity of q2 and q̂2, and therefore

(2) is well defined as γ̇ is positive everywhere.

3. Discretization and Optimization

In practice, we work with curves shuch as β1 and

β2, given as discrete sets of points, rather than infinite-

dimensional geometric objects in the plane. Likewise, rather

than optimizing energy (2), we introduce a discretization of

the integral in (2) and this is what we actually optimize.

We start by partitioning the interval [0, 1] into subintervals
with endpoints ti = (i − 1)h, where h = 1/(N − 1),
i = 1, . . . , N , and assume β1,i = β1(ti), β2,i = β2(ti), i =
1, . . . , N , are defined. This enables us to define discretiza-
tions of β̇1, β̇2 by centered finite differences from which

discretizations of shape functions q1, q2 can be defined:

β̇j(ti) ≡ β̇j,i = (βj,i+1 − βj,i−1)/2h,

qj(ti) ≡ qj,i = β̇j,i/‖β̇j,i‖1/2,

for j = 1, 2, i = 1, . . . , N, with βj,1 = βj,N , βj,0 =
βj,N−1 and βj,N+1 = βj,2 by periodicity. Although this

gives a discretization of both shape functions q1 and q2, we

also need a continuous and differentiable function q2(t) in
the discretization of (2). We obtain this by interpolating the

set of points {q2,i}N
i=1 using cubic splines. We continue to

denote this interpolant by q2(t).
We introduce a discrete diffeomorphismvector~γ defined

by the entries γi = γ(ti), i = 1, . . . , N , (γ1 = 0, γN = 1),
and its discrete derivative ~ρ through approximation by for-
ward finite differences. We opt to use the discrete derivative

vector ~ρ, rather than ~γ, as the variable in the discretization
of the energy (2), as this makes it easier to compute the

discretized energy and its derivatives efficiently, as well as

to impose discrete versions of the continuous conditions:

γ(0) = 0, γ(1) = 1, γ̇ > 0, γ̇(0) = γ̇(1). The specific
relationships between γi and ρi are for i = 2, . . . , N − 1:

ρi =
γi+1 − γi

h
and γi = h

i−1
∑

j=1

ρj with ρ1 = γ2/h

⇒ ∂γi

∂ρj
=

{

h, if 1 ≤ j < i ≤ N,
0, if 1 ≤ i ≤ j ≤ N,

(3)

with γN = h(ρ1 + . . . + ρN−1) = 1, ρN = ρ1, γ1 = 0.
Noting ρi > 0 for all i we now discretize with γi(~ρ) the

integral (2) using the trapezoidal rule for closed curves:

Eh(t0, θ, ~ρ) = h

N−1
∑

i=1

‖q1,i −
√

ρiR(θ)q2(t0 + γi(~ρ))‖2.

(4)

Note that we can easily get ~γ back from ~ρ using (3), once
we find (t0, θ, ~ρ) that minimizes the energy (4). To devise a



minimization approach, we differentiate (4) with respect to

variables to obtain optimality conditions:

∂Eh

∂t0
= 0, ∂Eh

∂θ = 0, ∂Eh

∂ρi
= 0.

For fixed t0 and ~ρ, we can solve ∂Eh

∂θ = 0 and obtain θ =
θ(t0, ~ρ) depending on t0, ~ρ. This can be done using the
Kabsch algorithm [11, 12, 19]. Then we substitute θ by
θ(t0, ~ρ) in (4) and obtain the reduced energy

Ẽh(t0, ~ρ) = Eh(t0, θ(t0, ~ρ), ~ρ). (5)

We propose to optimize (5) using an alternating approach:

We fix ~ρ and optimize (5) with respect to t0, computing
θ(t0, ~ρ) with the Kabsch algorithm [11, 12] where required.
With optimal t0, θ = θ(t0, ~ρ) fixed in (4), we optimize Eh

with respect to ~ρ. We alternate between optimizations with
respect to t0 and ~ρ until convergence. The optimizationwith
respect to t0 is done in O(N2) time by looping through
ti = (i − 1)h, i = 1, . . . , N , and evaluating (5) for each
t0. The optimization with respect to ~ρ for fixed t0, θ is an
O(kN) iterative nonlinear constrained optimization prob-
lem initialized inO(ǫN2) time with a fast DP algorithm (k,
ǫ as defined in Introduction). We explain this solution in the
next section. The main optimization algorithm is summa-

rized in Algorithm 2 (contrast with Algorithm 1 from origi-

nal approach of Srivastava et al. [19] or with the LM-BFGS

Riemannian optimization approach of Huang et al.[10]).

Algorithm 1 The optimization algorithm in [19]

Initialize ti = (i − 1)h, γ0
i = ti, i = 1, . . . , N .

for t0 = all or some of ti do
Compute optimal θ = θ(t0, ~γ

0) with Kabsch algo.
Fix t0, θ in (4) and optimize Eh w.r.t. ~γ with DP.
Compute θ = θ(t0, ~γ) for current ~γ with Kabsch algo.
end for

Return (t0, θ,~γ) that gives smallest value for Eh in (4).

Algorithm 2 The main optimization algorithm

Initialize ρi = 1, ti = (i − 1)h, i = 1, . . . , N .
repeat

Fix current ~ρ in (5) and loop over all ti to find optimal
t0 and θ = θ(t0, ~ρ) with Kabsch algorithm.
Fix current t0, θ = θ(t0, ~ρ) in (4).
If 1st iteration, then compute new ~ρ with fast DP.
Optimize Eh in (4) w.r.t. ~ρ with iterative nonlinear
constrained optimiz. algo. initialized with current ~ρ.
until Energy change< tol = 10−6 or iteration # > 50.

4. Fast Optimization for the Diffeomorphism ~γ

A crucial step in Algorithm 2 for the optimization of

the energy (5) is the computation of the optimal diffeomor-

phism ~γ or its derivative ~ρ (related by (3)) when we fix t0
in (5), actually t0, θ in (4), as part of our alternating opti-
mization approach. With ~ρ0 as the current ~ρ at start of the
step, for fixed t0, θ = θ(t0, ~ρ0), we deal with an energy
depending on a single vector variable:

Eh
t0(~ρ) = Eh(t0, θ, ~ρ) or Eh

t0(~γ) = Eh(t0, θ, ~ρ(~γ)). (6)

The global minimum forEh
t0(~γ) can be obtained using aDP

algorithm [3, 19]. The drawback of the original DP algo-

rithm used for this problem is that it has O(N2) time com-
plexity [19]. This is expensive for curves with many nodes,

especially if we need to repeat this computation for many

t0 candidates. An efficient alternative is to use an iterative
algorithm, which can haveO(N) cost per iteration, but usu-
ally converges to a local minimum of the energy. We com-

bine the strengths of the two approaches: we first use a fast

approximate DP algorithm. Our DP algorithm works on

a reduced search space and produces a rough approximate

global minimum very fast. It still has quadratic time com-

plexity, albeit with a very small constant. Then we use this

approximation as the initial iterate for an efficient iterative

nonlinear constrained optimization algorithm, which takes

it to the precise global minimum very fast in a small num-

ber of iterations, each of which hasO(N) cost. We describe
each of these algorithms in the following subsections.

4.1. A Faster Dynamic Programming Algorithm

The goal is to modify the DP algorithm in [3, 17] in

a way that makes it significantly faster while producing a

rough approximation of a global solution. As in [3, 17], an

N×N square grid of [0, 1]×[0, 1] is formed such that for all
integers i, j, 0 ≤ i, j ≤ N − 1, grid point labeled (i, j) is
identified with planar point (ti+1, tj+1). Given such (i, j),
i > 0, j > 0, a set Γ(i, j) of piecewise linear functions
from [0, ti+1] onto [0, tj+1] is defined by

Γ(i, j) ≡{γ | γ : [0, ti+1] → [0, tj+1], γ(0) = 0, γ(ti+1) =

tj+1, γ piecewise linear, strictly increasing,

all vertices of graph of γ at grid points}.

The energy Eh
i,j(t0, θ,~γ) needed to reach (i, j)

from (0, 0) with γ in Γ(i, j) is then

Eh
i,j(t0, θ,~γ) =

i+1
∑

m=1

hm‖q1,m −
√

γ̇mR(θ)q2(t0 + γm)‖2,

where γm ≡ γ(tm), (note γ1 = 0, γi+1 = tj+1), ~γ
is the discretization of γ in terms of these γm’s, and h1 =
hi+1 ≡ h/2, hm ≡ h, 1 < m < i + 1.

Hi,j(t0, θ) ≡ minγ∈Γ(i,j) Eh
i,j(t0, θ,~γ) is then the min-

imum energy needed to reach (i, j) from (0, 0), and the
aim is then to find γ in Γ(N − 1, N − 1) that can be used



to computeHN−1,N−1(t0, θ). SinceE
h
i,j(t0, θ,~γ) is clearly

additive over the segments of the graph of any γ, this can be
done with DP as it is then apparent that the desired solution

can be obtained as the result of incrementally combining

solutions of previously solved subproblems.

For this purpose, given grid points labeled (k, l) and
(i, j), k = l = 0 or 0 < k < i, 0 < l < j, then a lo-
calized form of energy over the line segment joining (k, l)
and (i, j) is defined as

Fk,l,i,j(t0, θ) ≡
i+1
∑

m=k+1

hm‖q1,m−
√

LR(θ)q2(t0 +fm)‖2,

where L is the slope of the segment, fm ≡ f(tm), f the
linear function from [tk+1, ti+1] onto [tl+1, tj+1], the graph
of which is the segment, (note fk+1 = tl+1, fi+1 = tj+1),

and hk+1 = hi+1 ≡ h/2, hm ≡ h, k + 1 < m < i + 1.

Thus Hi,j(t0, θ) = min
k=l=0 or

0<k<i,0<l<j

Hk,l(t0, θ)+Fk,l,i,j(t0, θ),

and this is then the recurrence relation of the DP approach.

For the purpose of making the aboveDP approach faster,

we reduce the sets Γ(i, j) by requiring that (i, j) and the
graph of each γ in Γ(i, j) be inside a strip M along the

diagonal of the unit square, a strip of width d (≈ 0.3
√

2 in
our experiments), as illustrated in Figure 1. Then only grid

points inM are examined.
Additionally, we restrict grid points (k, l), k < i, l < j,

for which Fk,l,i,j(t0, θ) is defined, to a square neighbor-
hoodN(i, j) (covering a 3× 3 subgrid in our experiments),
the right-upper corner of which is (i − 1, j − 1), as illus-
trated in Figure 1. Note the computation of Hi,j(t0, θ)
above must then be adjusted accordingly.

Since intuitively the graph of an optimal γ should not
deviate much from the diagonal and the distance between

consecutive vertices of the graph should not be large, using

M and N(i, j) this way should speed up the DP algorithm
without compromising its accuracy very much.

4.2. Iterative Optimization for the Diffeomorphism

We propose an iterative nonlinear constrained optimiza-

tion algorithm to minimize the energy Eh
t0(~ρ) in (6) with

respect to ~ρ (t0, θ are fixed) implemented using the inte-
rior point method [7, 6, 20]. Specifically, we use Matlab

fmincon with the interior point option. Note however

that fmincon by itself does not guarantee superior perfor-

mance; it requires efficient implementations of the energy

gradient and Hessian. We now derive formulas for this pur-

pose and explain how to apply them in linear time. This is

one of our key contributions and is central to achieving a

fast minimization algorithm for Eh
t0(~ρ). We start with

Eh
t0(~ρ) = h

∑N−1
k=1 ‖fk‖2,

fk = q1,k −√
ρkR(θ)q2, q2 = q2(t0 + γk(~ρ)). (7)

d

(i−1,j−1)

(i,j)

(1,1)

(0,0)

.

M

N(i,j)

.
(k,l).

Figure 1. Only grid points in the stripM of width d can be vertices

of the graph of any γ. Given that grid point (i, j) is a vertex or end-
point of the graph, only grid points in the intersection of the strip

M and the square neighborhood N(i, j), such as (k, l), can be
candidates for the lower left endpoint of the line segment of the

graph of γ ending at (i, j). N(i, j) covers a 4× 4 subgrid here as
opposed to a 3 × 3 subgrid in our experiments.

Derivatives of fk with respect to components of ~ρ are

∂fk

∂ρi
= −ρ

−
1

2

k R

(

q2

2
δki − ρk q̇2

∂γk

∂ρi

)

,

∂2fk

∂ρi∂ρj
=

∂

∂ρj

∂fk

∂ρi
.

Thus the componentGi =
∂Eh

t0

∂ρi
of the gradient of Eh

t0 is

Gi = 2h
∑N−1

k=1 〈fk, ∂fk

∂ρi
〉 =

− hρ
−

1

2

i 〈fi, Rq2〉 − 2h

N−1
∑

k=i+1

ρ
1

2

k 〈fi, Rq̇2〉. (8)

The last term above is a cumulative sum that we compute in

linear time with Matlab cumsum. It is obtained from equa-

tions (3) for ∂γk

∂ρi
which allow the following matrix-vector

products to be computed in linear time using cumsum:

N−1
∑

k=1

∂γk

∂ρi
xk = h

N−1
∑

i+1

xk,

N−1
∑

j=1

N−1
∑

k=1

xk
∂γk

∂ρi

∂γk

∂ρj
yj = h2

N−1
∑

k=i+1

xk

k−1
∑

l=1

yl. (9)

Using identities (9) and Hessian H = [Hij ] = [∂Gi

∂ρj
], one

can show that the Hessian-vector product H~y can also be
computed in linear time, even though the Hessian H is a

dense matrix if assembled explicitly. Hence, by carefully

recasting the formulations of the energy gradient and the

Hessian-vector product, we achieve O(N) complexity per
iteration of the optimization scheme. This is in contrast with

the gradient descent algorithm of [19], which has O(mN)
cost per iteration, due to the use of m Fourier basis func-
tions. We also find that the number of iterations with our



method is much smaller than with a gradient descent algo-

rithm (which is known to converge slowly [21]). Thus the

total cost of our optimization algorithm is O(kN), where k
is the number of iterations, a number that changes for each

experiment depending on the type of curve data. Nonethe-

less, in our tests, on average, for different values of N , k
has been small and has resulted in small computation times.

5. Numerical Experiments

In this section we empirically demonstrate the speed and

accuracy gains achieved by Algorithm 2. We compare it

with Srivastava et al.’s Algorithm 1 [19]. To this end we

downloaded an implementation of Algorithm 1 from its au-

thors’ web site [3]. The core of that code is the DP al-

gorithm (original-DP) written in C; thus it is fast, albeit

with asymptotic time complexity O(N2), N the number of
nodes per curve. Algorithm 1 calls original-DP for all or a

specified fraction (say every fifth) of the curve nodes. Thus

the time complexity of Algorithm 1 is O(N3) [19]. On the
other hand, the core of our implementation of Algorithm 2

is the fastDP algorithm (fast-DP) and the iterative nonlinear

constrained optimization algorithm (iterative), the former

initializing the latter (fast-DP+iter), as described in Sec-

tion 4. fast-DP is coded in Fortran, so its speed is similar

to that of original-DP. Actually, it has quadratic time com-

plexity as well, but because of its limited search space, has a

much lower constant, runningmuch faster than original-DP

in practice. iterative is implemented completely in Matlab;

therefore, its code is not as fast as a C or Fortran imple-

mentation but this is compensated by the fact that the com-

putations of the energy value (7), the gradient (8) and the

Hessian-vector product (with respect to ~ρ) all have O(N)
time complexity. Thus the time complexity of iterative is

the number of iterations k times O(N). We ran most of
our experiments on a laptop computer with Intel CoreTM2

Duo CPU T9300 @ 2.50GHz and 4GB RAM. The operat-

ing system was 32-bit Centos 5 Linux. The version of the

MatlabTMinstallation was 7.14.0.739 (R2012a).

For our numerical experiments we worked with a syn-

thetic shape data set and three real shape data sets: Cells

A & B ((biological) cell boundary curves), MPEG7 [1, 15],

and Leaf [2, 16] (see Figure 2). Synthetic shape data (syn-

thetic curves) allowed us to evaluate the performance of our

algorithm on a variety of well-known but simple geometric

curves. On the other hand, real shape data allowed us to do

this on examples with a wider range of shape variability.

We started by evaluating the ability of the different al-

gorithms mentioned above to compute optimal diffeomor-

phisms. Then we evaluated the ability of Algorithm 2 to

compute geodesic distances between curve shapes. For both

evaluations we used synthetic and cell boundary curves. Fi-

nally, we performed shape retrieval experiments on MPEG

and Leaf curve shapes in order to evaluate indirectly the

Sy

CA

CB

Lf

M7

Figure 2. Curve examples for testing. Synthetic (Sy), Cells A

(CA), Cells B (CB), Leaf (Lf), and MPEG7 (M7).

(fast-DP) (iterative) (fast-DP+iter)

(original-DP)

Figure 3. Diffeomorphism examples for testing. Synthetic dif-

feomorphisms γeasy (in red), γhard (in green, (partly) overlapped

with blue) used in experiments. Computed solutions for γeasy are

still in red as they are correct, and for γhard they are in blue. Only

original-DP and fast-DP+iter computed γhard correctly.

ability of Algorithm 2 to compute geodesic distances be-

tween shapes with a large range of variability.

Computing optimal diffeomorphisms:

In the experiments described below we used seed t0 = 0
and did not apply rotations to any curve, i.e., used R = Id
(the identity matrix). With N = 256 we performed the
experiments on all synthetic and cell boundary curves us-

ing synthetic diffeomorphisms. Given one such diffeomor-

phism, γ(t), we deformed a given synthetic or cell bound-
ary curve β2 with it to obtain β1(t) = β2(γ(t)), and then
using each algorithm mentioned above tried to recover ~γ
from the shape functions q1(t), q2(t) of β1(t), β2(t) by op-
timizing the energy (7) for ~ρ and setting ~γ = ~γ(~ρ) (see
Section 4.2). Accordingly, we used two synthetic diffeo-

morphisms: γeasy , which was a sine wave added to the

identity α(t) = t that stayed close to the identity, hence
was easier to recover, and γhard, which was far from the

identity and whose derivative got close to zero thus caus-

ing at times large errors and high computation times (see

Figure 3). In particular, for the epitrochoid, we found that

each algorithm successfully recovered γeasy in these exper-



iments, but γhard proved difficult to get. The search space

of fast-DPwas not large enough, so it returned a suboptimal

solution. iterative got stuck at a local minimum of (7), and

the quality of the solutionwas not good. When we used fast-

DP to initialize iterative (fast-DP+iter), we recovered both

γeasy and γhard successfully, just as we did with original-

DP, but at a fraction of the computational cost. These solu-

tions are shown in Figure 3 (for the epitrochoid).

With increasing resolution, N = 64, 128, . . . , 4096, we
performed the same experiments described above on all

synthetic and cell boundary curves. For each N and curve,
an L2 error was calculated by

‖~γ∗ − ~γh‖L2 ≈ h(Σi|γ∗

i − γh
i |2)1/2,

where ~γ∗ was the true solution and ~γh was the computed

solution. Errors and computation times for the epitrochoid

and the first Cells A curve are listed in Table 1. We ob-

served that the L2 error of original-DP converged with a

rate of O(N−0.5) and that of fast-DP+iter converged much
faster with a rate of O(N−1.5), but began to plateau when
it reached the internal tolerance of the iterative solver.

Although original-DP and fast-DP both have quadratic

computational cost, fast-DP was about 20X faster (with an

accuracy trade-off). iterative, when used on its own, was

very fast for γeasy (up to 60X faster than original-DP for

N = 4096) but slowed down for γhard as it ended at a local

minimum. The running times of iterativewere subquadratic

and grew slowly with increasing N . This made iterative
advantageous for curves with large numbers of nodes.

We obtained the best trade-off for computation times and

accuracy when we used the solution from fast-DP to initial-

ize iterative (fast-DP+iter). The running times were fast,

about 10X-15X faster than original-DP for large curves

and the L2 errors were up to 20X lower. For curves with

N = 4096 nodes, original-DP took about 1.5 minutes,
whereas fast-DP+iter took 6-7 seconds. original-DP was

still competitive for curves with N=128-256 nodes.
Computing the geodesic distances:

Here we evaluate how well Algorithm 2 computes the

geodesic distance between two curves. We examine both

distance values and computation times. Ideally, for test-

ing, we would work with two curves that we know exactly.

Accordingly we would know the optimal triple (t0, θ,~γ) to
compute the exact geodesic distance between the curves.

But this is difficult in practice, so instead, we tried a variety

of numerical tests with synthetic and cell boundary curves

where we partly knew the exact parameters and outputs.

Scalability and accuracy for synthetic curves with in-

creasing N: We first constructed a setup in which we knew

the theoretical distance exactly. We took a synthetic curve

β2 (see Figure 2), shifted its nodes by 0.25N , i.e., set t0
to 0.25, rotated it by an angle of θ = π/3, and obtained a
second curve β1, one version by reparametrizing the shifted

and rotated curve with γeasy , another with γhard (see Fig-

ure 3). This way, we knew the geodesic distance between

β1 and β2 had to be exactly zero. We tested this using the

limaçon as an example (tests with different synthetic curves

produced consistent behavior). We sampled the curve at

increasing number of nodes N = 64, 128, 256, 512, 1024,
then computed the geodesic distances between the two ver-

sions of the limaçon. We report distances and running times

for both Algorithm 1 and Algorithm 2 in Table 2.

We found that Algorithm 2 gave better distance values

than Algorithm 1 in these tests. In the example constructed

with γeasy , our algorithm computed exact 0 for the distance,

whereas Algorithm 1 computed small values around 0.02-

0.03. In the case of γhard, both algorithms got stuck at local

minima and computed significant nonzero distances. Algo-

rithm 2 also did very well in terms of computation time. The

computational cost of Algorithm 1 grows cubically with re-

spect to N , independent of the data. The performance of
our algorithm, on the other hand, depends on the data, and

is larger for difficult examples, e.g., atN = 1024, the com-
putational time for γeasy was 2.6 s, but it was 89 s for γhard

(as it took more iterations). These running times were still

much less than the 1.5 hours it took with Algorithm 1. In

contrast with the cubic time complexity of Algorithm 1, the

empirical timings of our algorithm clearly exhibited a sub-

quadratic, almost linear trend, which implied superior scal-

ability for curves with hundreds, even thousands of nodes.

Note that the computational cost of Algorithm1 can be re-

duced by skipping t0 seed candidates, e.g., by a factor of 10
by using only every 10th node as a seed. But this has an ac-

curacy trade-off; one can miss important features and might

even get stuck at unfavorable local minima by skipping

nodes. In these experiments, we made numerical choices

that favor accurate distance computations. Thus, for Algo-

rithm 1, we did not skip nodes, and for Algorithm 2, we

used small tolerances and stringent stopping criteria, which

translated into a larger number of iterations in experiments.

Cost and correctness of distances between various

curves: We examine now how Algorithm 2 performed on

a more diverse collection of curves and compare it with

Algorithm 1. We evaluate both correctness and speed. In

general, for two arbitrary curves, it is not feasible to know

the theoretical geodesic distance between them. But, as we

did above for scalability tests, we can construct examples,

where we know the exact distance is zero. We took a known

curve β2 with N = 256, shifted it by 0.25N , rotated it by
θ = π/3, and obtained a second curve β1, one version by

reparametrizing the shifted and rotated curve with γeasy ,

another with γhard. Distances computed by Algorithms 1

and 2 for four synthetic curves and first four Cells A curves

are given in Table 3 (there γe is γeasy and γh is γhard). Of

the 16 result pairs listed, Algorithm 2 got 5 exact zeros, 6

small nonzero values (< 0.1), and 5 large values (> 0.1).



timings for epitrochoid, γeasy timings for epitrochoid, γhard

N=64 128 256 512 1024 2048 4096 N=64 128 256 512 1024 2048 4096

original-DP .023 .087 .36 1.4 5.8 23 93 .024 .087 .35 1.4 5.8 23 93

fast-DP .001 .006 .022 .086 .33 1.3 5.6 .001 .006 .027 .084 .35 1.4 5.7

iterative .15 .094 .079 .11 .23 .38 1.4 .17 .51 .59 .29 .2 6.9 8.6

fast-DP+iter .081 .071 .093 .17 .47 1.6 6.0 .098 .10 .13 .23 .56 1.7 6.6

timings for cell boundary curve, γeasy timings for cell boundary curve, γhard

original-DP .022 .087 .36 1.4 5.9 23 94 .021 .086 .37 1.4 5.8 23 94

fast-DP+iter .10 .09 .15 .20 .50 1.6 6.1 .11 .16 .22 .45 .90 2.3 7.4

×10−4 errors for epitrochoid, γeasy ×10−4 errors for epitrochoid, γhard

original-DP 2.1 1.6 .39 .25 .12 .077 .057 4.2 2.0 1.7 1.0 .71 .49 .35

fast-DP 4.0 1.6 1.1 .50 .33 .23 .17 14.3 9.8 6.9 4.9 3.4 2.4 1.7

iterative 1.5 .51 .18 .063 .022 .008 .004 127 101 71 .089 34 31 20

fast-DP+iter 1.5 .51 .18 .063 .023 .019 .038 1.9 .67 .23 .083 .030 .017 .017

×10−4 errors for cell boundary curve, γeasy ×10−4 errors for cell boundary curve, γhard

original-DP 2.2 1.4 .36 .17 .088 .058 .040 4.3 2.1 1.3 .87 .61 .43 .30

fast-DP+iter 1.6 .53 .11 .26 .007 .005 .010 2.2 .86 .18 .038 .010 .005 .005

Table 1. L2 errors and timings of diffemorphism computations for increasingN . We reparametrized β2(t) (epitrochoid or cell bound-
ary curve), with γ (γeasyorγhard). We then used the shape q2(t) of the original curve β2(t) and the shape q1(t) of the reparametrized
curve β1(t) to recover γ. We report computation times (in seconds) and L2 errors.

Timings for γeasy

N = 64 128 256 512 1024

Algo.1 1.5 11 91 740 5922

Algo.2 0.5 0.3 0.5 1.1 2.6

Timings for γhard

Algo.1 1.4 11 92 735 5917

Algo.2 4 11 19 50 89

Distances for γeasy

Algo.1 .0283 .0339 .0234 .0213 .0205

Algo.2 0 0 0 0 0

Distances for γhard

Algo.1 .2400 .2354 .2279 .2264 .2258

Algo.2 .2092 .1902 .2138 .2137 .2145

Table 2. Scalability and accuracy of distance computations for

increasing N . The theoretically zero geodesic distance between

the shapes of two versions of a limaçon was computed.

Algorithm 1 got no exact zeros, 7 small nonzero values, and

9 large values. Algorithm 1 returned smaller distances than

Algorithm 2 in only 2 of the 16 result pairs (shown in bold).

Algorithm 2 clearly did a better job in this set of experi-

ments where zero distance was expected.

Another important benchmark for each algorithm is the

computation of a distance matrix consisting of geodesic dis-

tances between curves in a given set. The distance matrix

can be used for various statistical analyses, including clus-

tering and classification of curves based on their shapes. We

computed two distance matrices, one for synthetic curves

(see Table 4), and one for cell boundary curves (not shown),

ellipse limaçon hippopede epitrochoid

γe .025/ 0 .023/ 0 .025/ 0 .022/ 0

γh .399/ 0 .228/.214 .358/.020 .270/ .037

cell 1 cell 2 cell 3 cell 4

γe .089/.073 .050/.017 .129/.248 .046/.012

γh .506/.165 .394/.536 .277/.083 .394/.257

Table 3. Zero distance between a curve and its reparametriza-

tion. With N = 256 the theoretically zero geodesic distance be-
tween the shapes of two versions of each of eight curves is com-

puted. Computed distances from Algorithm 1 and Algorithm 2 are

given as pairs of numbers “dist 1 / dist 2” for each curve.

all sampled at N=256. In the case of synthetic curves, Al-

gorithm 2 found lower distance values for all pairs. Thus,

in this case, Algorithm 2 found better minima. The total

computation time of Algorithm 2 was 733 s, or about 22%

of that of Algorithm 1 (3364 s). In the case of cell boundary

curves, the results were not as clear-cut. Algorithm 2 re-

turned lower distances in 72 of 100 distance pairs and higher

in the remaining 28 (see Table 5). However, in only 11 (of

the 28), Algorithm 1 produced significantly lower distances

(with difference > 0.02 shown in bold). The difference in
computation times was dramatic. Algorithm 1 took 9134 s

or 2.5 hours to compute a 10× 10 distance matrix, whereas
Algorithm 2 took only 270 s or 4.5 minutes.

Experiments with MPEG7 and Leaf data sets:

In order to test our algorithm on shapes with a large range

of variability, we used subsets of the MPEG7 [1, 15], and

Leaf [2, 16] data sets (see Figure 2). We used ten shape



ellipse super-ellipse limaçon

ellipse 0 / 0 .259 / .253 .254 / .249

supr-ellps .258 / .253 0 / 0 .312 / .306

limaçon .253 / .250 .312 / .306 0 / 0

hippopede 1.102/ .980 1.128/1.018 1.256/1.069

epitrochd .367 / .361 .386 / .381 .224 / .220

clover .763 / .733 .691 / .682 .734 / .723

hippopede epitrochoid clover

ellipse 1.122/ .972 .371 / .346 .802 / .678

supr-ellps 1.141/ .992 .391 / .364 .714 / .578

limaçon 1.314/1.110 .231 / .210 .746 / .619

hippopede 0 / 0 1.250/1.063 1.167/ .958

epitrochd 1.292/1.055 0 / 0 .634 / .584

clover 1.161/1.023 .633 / .629 0 / 0

Table 4. Distance matrix of synthetic curves. With N = 256
geodesic distances between shapes of synthetic curves are com-

puted. Computed distances from Algorithm 1 and Algorithm 2 are

given as pairs of numbers “dist 1 / dist 2” for each curve pair.

A1 .432 .327 .332 .596 .427 .561 .363

A2 .443 .329 .337 .635 .428 .593 .375

A1 .541 .537 .582 .540 .578 .560 .561

A2 .638 .545 .618 .553 .580 .593 .639

A1 .565 .546 .555 .506 .516 .323 .375

A2 .569 .606 .585 .520 .532 .329 .379

A1 .515 .318 .550 .386 .512 .488 .527

A2 .525 .338 .614 .392 .515 .497 .554

Table 5. Distances of cell curves when Algorithm 1 produced

lower values. Here A1 is for Algorithm 1, A2 is for Algorithm 2.

classes from the MPEG7 data set, with ten example curves

per class. The classes were apple, bat, beetle, bell, bone,

bottle, brick, camel, car, carriage. From the Leaf data set,

we used five shape classes with fifteen example curves per

class. The classes were Acer Opalus, Acer Rufinerve, Al-

nus Cordata, Alnus Viridis, Callicarpa Bodinieri. Since we

did not know the exact values of the shape distances be-

tween any two curves of these data sets, we used an indirect

way of evaluating the performance of our algorithm: we

did shape retrieval experiments and scored the results using

the bull’s eye test [15]. For this, we computed all pairwise

distances within each data set (from curves resampled to

N = 256 nodes), a total of (10 × 10)2 = 10000 distances
for MPEG7, (5 × 15)2 = 5625 distances for Leaf. These
distance computations were the most time-consuming part

of these experiments. We used both our laptop computer

and additional desktop computers for these computations.

To be able to compare the computation times, we normal-

ized the desktop computer times to equivalent times for the

laptop computer. The computation times for the distance

matrices with Algorithms 1 and 2, respectively, were 240

MPEG4 # retrieved Leaf # retrieved

20 15 10 30 25 20 15

A1 .978 .965 .950 1.0 .993 .982 .956

A2 .976 .966 .952 1.0 .994 .985 .961

Table 6. Shape retrieval hit rates. Percentages of successful re-

trievals for decreasing retrieval set size for Algorithms 1 and 2.

hours and 38.5 hours (6X speed-up) for MPEG7 shapes,

129 hours and 12.5 hours (10X speed-up) for Leaf shapes.

Note that, for curves with larger numbers of nodes, the con-

trast in computation time would be even more dramatic.

We then executed the shape retrieval tests as follows. For

each curve, say one of the bottle curves from the MPEG7

data, we chose the corresponding twenty curves with the

smallest distance to that bottle curve. This selection (or

query) would have 100% success if all ten bottle curves

were included in the retrieved/returned set of twenty curves,

50% success if only five were included. We repeated this for

all curves in the data set, summed the retrieval scores and

normalized the sum to a percentage to get an aggregate hit

rate. We found that we had near-perfect retrieval scores for

both Algorithms 1 and 2. So we made the retrieval set size

more stringent and gradually reduced it to ten curves from

twenty curves per retrieval. The two algorithms were still

very successful. As results show in Table 6, Algorithm 2

(A2) performed a little better than Algorithm 1 (A1).

Finally, to evaluate the effectiveness of the minimization

by both Algorithms 1 and 2, we compared the distance val-

ues for each curve pair from the two algorithms and checked

which one produced smaller distances implying smaller en-

ergy values and better minimization. We found that Algo-

rithm 2 produced smaller distances 82.0% of the time for
MPEG7 curves and 85.4% of the time for Leaf curves.

6. Conclusions

We propose a new fast iterative algorithm to compute

the elastic shape geodesic distance between closed planar

curves based on that of Srivastava et al. [19]. Their algo-

rithm uses dynamic programming (DP) for reparametriza-

tions and has cubic time complexity which is costly for

curves with many nodes. Our algorithm, on the other hand,

uses an iterative nonlinear constrained optimization algo-

rithm for reparametrizations initialized by a fast DP algo-

rithm. It has quadratic time complexity but actually runs in

subquadratic, almost linear time, scaling very well with in-

creasing number of nodes. We also see that, for most of our

examples, it produces smaller distance values than Srivas-

tava et al.’s which indicates it reaches better minima.

Acknowledgment

First author acknowledges support by NIST grant

70NANB13H018.



References

[1] MPEG-7 shape data set source web link.

http://www.dabi.temple.edu/ shape/MPEG7/

MPEG7dataset.zip. Accessed: 2014-11-10. 5, 7

[2] One-hundred species plant leaves data set source web link.

https://archive.ics.uci.edu/ml/datasets/One-

hundred+plant+species+leaves+data+set.

Accessed: 2014-11-10. 5, 7

[3] Source code from Statistical Shape Analysis and Modeling

Group, Florida State University.

http://ssamg.stat.fsu.edu/downloads/ClosedCurves2D3D.zip.

Accessed: 2014-06-20. 3, 5

[4] F. L. Bookstein. Size and shape spaces for landmark data in

two dimensions. Statistical Science, 1:181–242, 1986. 1

[5] F. L. Bookstein. Morphometric tools for landmark data:

Geometry and Biology. Cambridge University Press, Cam-

bridge, 1991. 1

[6] R. H. Byrd, J. C. Gilbert, and J. Nocedal. A trust re-

gion method based on interior point techniques for nonlinear

programming. Mathematical Programming, 89(1):149–185,

2000. 4

[7] R. H. Byrd, M. E. Hribar, and J. Nocedal. An interior point

algorithm for large-scale nonlinear programming. SIAM

Journal on Optimization, 9(4):877–900, 1999. 4

[8] J. L. Dryden and K. V. Mardia. Statistical Shape Analysis.

John Wiley and Sons, Chichester, 1998. 1

[9] U. Grenander. General Pattern Theory. Clarendon Press,

Oxford, 1994. 1

[10] W. Huang, K. A. Gallivan, A. Srivastava, and P.-A. Absil.

Riemannian optimization for elastic shape analysis. In The

21st International Symposium on Mathematical Theory of

Networks and Systems, 2014. 3

[11] W. Kabsch. A solution for the best rotation to relate two

sets of vectors. Acta Crystallographica Section A: Crystal

Physics, 32(5):922–923, 1976. 3

[12] W. Kabsch. A discussion of the solution for the best rotation

to relate two sets of vectors. Acta Crystallographica Section

A: Crystal Physics, 34(5):827–828, 1978. 3

[13] D. G. Kendall. Shape manifolds, procrustean metrics and

complex projective spaces. Bulletin of the London Mathe-

matical Society, 16:81–121, 1984. 1

[14] E. Klassen, A. Srivastava, W. Mio, and S. Joshi. Analysis of

planar shapes using geodesic paths on shape spaces. IEEE

Pattern Analysis and Machiner Intelligence, 10:372383,

2004. 1

[15] L. J. Latecki. Retrieval results for shape similarity on the

MPEG-7 data set. 5, 7, 8

[16] C. Mallah, J. Cope, and J. Orwell. Plant leaf classification

using probabilistic integration of shape, texture and margin

features. Computer Graphics and Imaging: Signal Pro-

cessing, Pattern Recognition and Applications (CGIM2013),

page 798, 2013. 5, 7

[17] W. Mio, A. Srivastava, and S. Joshi. On shape of plane

elastic curves. International Journal of Computer Vision,

73(3):307–324, 2007. 3

[18] E. Sharon and D. Mumford. 2d-shape analysis using con-

formal mappings. In Proceedings of IEEE Conference on

Computer Vision, page 350357, 2004. 1

[19] A. Srivastava, E. Klassen, S. Joshi, and I. Jermyn. Shape

analysis of elastic curves in Euclidean spaces. Pattern

Analysis and Machine Intelligence, IEEE Transactions on,

33(7):1415–1428, 2011. 1, 2, 3, 4, 5, 8

[20] R. A. Waltz, J. L. Morales, J. Nocedal, and D. Orban. An

interior algorithm for nonlinear optimization that combines

line search and trust region steps. Mathematical Program-

ming, 107(3):391–408, 2006. 4

[21] S.Wright and J. Nocedal. Numerical optimization, volume 2.

Springer New York, 1999. 5

[22] L. Younes. Computable elastic distance between shapes.

SIAM Journal of Applied Mathematics, 58:565586, 1998. 1


