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Abstract

We introduce a simple modification of local image de-

scriptors, such as SIFT, based on pooling gradient orienta-

tions across different domain sizes, in addition to spatial

locations. The resulting descriptor, which we call DSP-

SIFT, outperforms other methods in wide-baseline matching

benchmarks, including those based on convolutional neural

networks, despite having the same dimension of SIFT and

requiring no training.

1. Introduction

Local image descriptors, such as SIFT [24] and its vari-

ants, are designed to reduce variability due to illumina-

tion and vantage point while retaining discriminative power.

This facilitates finding correspondence between different

views of the same underlying scene. In a wide-baseline

matching task on the Oxford benchmark [28, 27], nearest-

neighbor SIFT descriptors achieve a mean average preci-

sion (mAP) of 27.50%, a 71.85% improvement over direct

comparison of normalized grayscale values. Other datasets

yield similar results [29]. Functions that reduce sensitiv-

ity to nuisance variability can also be learned from data

[26, 38, 40, 42, 30]. Convolutional neural networks (CNNs)

can been trained to “learn away” nuisance variability while

retaining class labels using large annotated datasets. In par-

ticular, [15] uses (patches of) natural images as surrogate

classes and adds transformed versions to train the network

to discount nuisance variability. The activation maps in

response to image values can be interpreted as a descrip-

tor and used for correspondence. [15, 12] show that the

CNN outperforms SIFT, albeit with a much larger dimen-

sion. Here we show that a simple modification of SIFT,

obtained by pooling gradient orientations across different

domain sizes (“scales”), in addition to spatial locations, im-

proves it by a considerable margin, also outperforming the

best CNN. We call the resulting descriptor “domain-size

pooled” SIFT, or DSP-SIFT.

Pooling across different domain sizes is implemented in
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Figure 1. In SIFT (top, recreated according to [24]) isolated scales

are selected (a) and the descriptor constructed from the image at

the selected scale (b) by computing gradient orientations (c) and

pooling them in spatial neighborhoods (d) yielding histograms that

are concatenated and normalized to form the descriptor (e). In

DSP-SIFT (bottom), pooling occurs across different domain sizes

(a): Patches of different sizes are re-scaled (b), gradient orienta-

tion computed (c) and pooled across locations and scales (d), and

concatenated yielding a descriptor (e) of the same dimension of

ordinary SIFT.

few lines of code, can be applied to any histogram-based

method (Sect. 3), and yields a descriptor of the same size

that outperforms the original essentially uniformly (Fig. 4).

Yet combining histograms of images of different sizes is

counterintuitive and seemingly at odds with the teachings

of scale-space theory and the resulting established practice

of scale selection [23] (Sect. 1.1). It is, however, rooted

in classical sampling theory and anti-aliasing. Sect. 2 de-

scribes what we do, Sect. 3 how we do it, and Sect. 5 why

we do it. Sect. 4 validates our method empirically.

1.1. Related work

A single, un-normalized cell of the “scale-invariant fea-

ture transform” SIFT [24] and its variants [8, 2, 7] can be

written compactly as a formula [41, 10]:

hSIFT(θ|I, σ̂)[x] =

∫
Nǫ (θ − ∠∇I(y))Nσ̂(y − x)dµ(y)

(1)



where I is the image restricted to a square domain, cen-

tered at a location x ∈ Λ(σ̂) with size σ̂ in the lattice

Λ determined by the response to a difference-of-Gaussian

(DoG) operator across all locations and scales (SIFT de-

tector). Here dµ(y)
.
= ‖∇I(y)‖dy, θ is the independent

variable, ranging from 0 to 2π, corresponding to an orien-

tation histogram bin of size ǫ, and σ̂ is the spatial pooling

scale. The kernel Nǫ is bilinear of size ǫ and Nσ̂ separable-

bilinear of size σ̂ [41], although they could be replaced

by a Gaussian with standard deviation σ̂ and an angular

Gaussian with dispersion parameter ǫ. The SIFT descriptor

is the concatenation of 16 cells (1) computed at locations

x ∈ {x1, x2, . . . , x16} on a 4× 4 lattice Λ, and normalized.

The spatial pooling scale σ̂ and the size of the image do-

main where the SIFT descriptor is computed Λ = Λ(σ̂) are

tied to the photometric characteristics of the image, since σ̂
is derived from the response of a DoG operator on the (sin-

gle) image.1 Such a response depends on the reflectance

properties of the scene and optical characteristics and res-

olution of the sensor, neither of which is related to the size

and shape of co-visible (corresponding) regions. Instead,

how large a portion of a scene is visible in each correspond-

ing image(s) depends on the shape of the scene, the pose

of the two cameras, and the resulting visibility (occlusion)

relations. Therefore, we propose to untie the size of the do-

main where the descriptor is computed (“scale”) from pho-

tometric characteristics of the image, departing from the

teachings of scale selection (Fig. 8). Instead, we use ba-

sic principles of classical sampling theory and anti-aliasing

to achieve robustness to domain size changes due to occlu-

sions (Sect. 5).

Pooling is commonly understood as the combination of

responses of feature detectors/descriptors at nearby loca-

tions, aimed at transforming the joint feature representa-

tion into a more usable one that preserves important in-

formation (intrinsic variability) while discarding irrelevant

detail (nuisance variability) [4, 19]. However, precisely

how pooling trades off these two conflicting aims is unclear

and mostly addressed empirically in end-to-end compar-

isons with numerous confounding factors. Exceptions in-

clude [4], where intrinsic and nuisance variability are com-

bined and abstracted into the variance and distance between

the means of scalar random variables in a binary classifica-

tion task. For more general settings, the goals of reducing

nuisance variability while preserving intrinsic variability is

elusive as a single image does not afford the ability to sepa-

rate the two [10].

An alternate interpretation of pooling as anti-aliasing

[36] clearly highlights its effects on intrinsic and nuisance

variability: Because one cannot know what portion of an

1Approaches based on “dense SIFT” forgo the detector and instead

compute descriptors on a regular sampling of locations and scales (Fig. 9).

However, no existing dense SIFT method performs domain-size pooling.

object or scene will be visible in a test image, a scale-space

(“semi-orbit”) of domain sizes (“receptive fields”) should

be marginalized or searched over (“max-out”). Neither can

be computed in closed-form, so the semi-orbit has to be

sampled. To reduce complexity, only a small number of

samples should be retained, resulting in undersampling and

aliasing phenomena that can be mitigated by anti-aliasing,

with quantifiable effects on the sensitivity to nuisance vari-

ability. For the case of histogram-based descriptors, anti-

aliasing planar translations consists of spatial pooling, rou-

tinely performed by most descriptors. Anti-aliasing visi-

bility results in domain-size aggregation, which no current

descriptor practices. This interpretation also offers a way

to quantify the effects of pooling on discriminative (recon-

struction) power directly, using classical results from sam-

pling theory, rather than indirectly through an end-to-end

classification experiment that may contain other confound-

ing factors.

Domain-size pooling can be applied to a number of dif-

ferent descriptors or convolutional architectures. We illus-

trate its effects on the most popular, SIFT. However, we

point out that proper marginalization requires the availabil-

ity of multiple images of the same scene, and therefore can-

not be performed in a single image. While most local image

descriptors are computed from a single image, exceptions

include [22, 10]. Of course, multiple images can be “hallu-

cinated” from one, but the resulting pooling operation can

only achieve invariance to modeled transformations.

In neural network architectures, there is evidence that

abstracting spatial pooling hierarchically, i.e., aggregating

nearby responses in feature maps, is beneficial [4]. This

process could be extended by aggregating across different

neighborhood sizes in feature space. To the best of our

knowledge, the only architecture that performs some kind

of pooling across scales is [31], although the justification

provided in [5] only concerns translation within each scale.

The same goes for [6], where pooling (low-pass filtering)

is only performed within each scale, and not across scales.

Other works learn the regions for spatial pooling, for in-

stance [19, 34], but still restrict pooling to within-scale, sim-

ilar to [20], rather than across scales as we advocate.

We distinguish multi-scale methods that concatenate de-

scriptors computed independently at each scale, from cross-

scale pooling, where statistics of the image at different

scales are combined directly in the descriptor. Examples

of the former include [18], where ordinary SIFT descrip-

tors computed on domains of different size are assumed to

belong to a linear subspace, and [34], where Fisher vec-

tors are computed for multiple sizes and aspect ratios and

spatial pooling occurs within each level. Also bag-of-word

(BoW) methods [35], as mid-level representations, aggre-

gate different low level descriptors by counting their fre-

quency after discretization. Typically, vector quantization



or other clustering technique is used, each descriptor is as-

sociated with a cluster center (“word”), and the frequency

of each word is recorded in lieu of the descriptors them-

selves. This can be done for domain size, by computing dif-

ferent descriptors at the same location, for different domain

sizes, and then counting frequencies relative to a dictionary

learned from a large training dataset (Sect. 4.4).

Aggregation across time, which may include changes

of domain size, is advocated in [17], but in the absence

of formulas it is unclear how this approach relates to our

work. In [13], weights are shared across scales, which is

not equivalent to pooling, but still establishes some depen-

dencies across scales. MTD [21] appears to be the first in-

stance of pooling across scales, although the aggregation is

global in scale-space with consequent loss of discrimina-

tive power. Most recently, [16] advocates the same but in

practice space-pooled VLAD descriptors obtained at differ-

ent scales are simply concatenated. Also [3] can be thought

of as a form of pooling, but the resulting descriptor only

captures the mean of the resulting distribution. In addition,

[39] exploits the possibility of estimating the proper scales

for nearby features via scale propagation but still no pool-

ing is performed across scales. Additional details in related

prior work are discussed in [11].

2. Domain-Size Pooling

If SIFT is written as (1), then DSP-SIFT is given by

hDSP(θ|I)[x] =

∫
hSIFT(θ|I, σ)[x]Es(σ)dσ x ∈ Λ (2)

where s > 0 is the size-pooling scale and E is an expo-

nential or other unilateral density function. The process

is visualized in Fig. 1. Unlike SIFT, that is computed on

a scale-selected lattice Λ(σ̂), DSP-SIFT is computed on a

regularly sampled lattice Λ. Computed on a different lattice,

the above can be considered as a recipe for DSP-HOG [8].

Computed on a tree, it can be used to extend deformable-

parts models (DPM) [14] to DSP-DPM. Replacing hSIFT

with other histogram-based descriptor “X” (for instance,

SURF [2]), the above yields DSP-X. Applied to a hidden

layer of a convolutional network, it yields a DSP-CNN, or

DSP-Deep-Fisher-Network [33]. The details of the imple-

mentation are in Sect. 3.

While the implementation of DSP is straightforward, its

justification is less so. We report the summary in Sect. 5

and the detailed derivation in [11], that provides a theoret-

ical justification and conditions under which the resulting

descriptors are valid. In Sect. 4 we compare DSP-SIFT

to alternate approaches. Motivated by the experiments of

[28, 29] that compare local descriptors, we choose SIFT

as a paragon and compare it to DSP-SIFT on the standard

benchmark [28]. Motivated by [15] that compares SIFT to

both supervised and unsupervised CNNs trained on Ima-

genet and Flickr respectively on the same benchmark [28],

we submit DSP-SIFT to the same protocol. We also run the

test on the new synthetic dataset introduced by [15], that

yields the same qualitative assessment.

Clearly, domain-size pooling of under-sampled semi-

orbits cannot outperform fine sampling, so if we were to

retain all the scale samples instead of aggregating them,

performance would further improve. However, computing

and matching a large collection of SIFT descriptors across

different scales would incur significantly increased compu-

tational and storage costs. To contain the latter, [18] as-

sumes that descriptors at different scales populate a linear

subspace and fit a high-dimensional hyperplane. The re-

sulting Scale-less SIFT (SLS) outperforms ordinary SIFT

as shown in Fig. 7. However, the linear subspace assump-

tion breaks when considering large scale changes, so SLS is

outperformed by DSP-SIFT despite the considerable differ-

ence in (memory and time) complexity.

3. Implementation and Parameters

Following other evaluation protocols, we use Maximally

Stable Extremal Regions (MSER) [25] to detect candi-

date regions, affine-normalize, re-scale and align them to

the dominant orientation. For a detected scale σ̂, DSP-

SIFT samples Nσ̂ scales within a neighborhood (λ1σ̂, λ2σ̂)
around it. For each scale-sampled patch, a single-scale un-

normalized SIFT descriptor (1) is computed on the SIFT

scale-space octave corresponding2 to the sampled scale σ.

By choosing Es to be a uniform density, these raw his-

tograms of gradient orientations at different scales are ac-

cumulated and normalized3 (2). Fig. 2(a) shows that mean

average precision (defined in Sect. 4.2) for different do-

main size pooling ranges. Improvements are observed as

soon as more than one scale is used, with diminishing re-

turn: Performance decreases with domain size pooling ra-

dius exceeding σ̂/2. Fig. 2(b) shows the effect of the num-

ber of size samples used to construct DSP-SIFT. Although

the more samples the merrier, three size samples are suf-

ficient to outperform ordinary SIFT, and improvement be-

yond 10 samples is minimal. Additional samples do not

further increase the mean average precision, but incur more

computational cost. In the evaluation in Sect. 4, we use

λ1 = 1/6, λ2 = 4/3 and Nσ̂ = 15. These parameters are

empirically selected on the Oxford dataset [27, 28].

2This is an updated version of the protocol described in [15], as dis-

cussed in detail in Appendix D of [11].
3We follow the practice of SIFT [24] to normalize, clamp and re-

normalize the histograms, with the clamping threshold set to 0.067 em-

pirically.
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Figure 2. Mean Average Precision for different parameters. (a)

shows that mAP changes with the radius s of DS pooling. The

best mAP is achieved at ŝ = σ̂/2; (b) shows mAP as a function of

the number of samples used within the best range (σ̂ − ŝ, σ̂ + ŝ).

4. Validation

As a baseline, the RAW-PATCH descriptor (named fol-

lowing [15]) is the unit-norm grayscale intensity of the

affine-rectified and resized patch of a fixed size (91× 91).

The standard SIFT, which is widely accepted as a

paragon [27, 29], is computed using the VLFeat library

[41]. Both SIFT and DSP-SIFT are computed on the SIFT

scale-space corresponding to the detected scales. Instead of

mapping all patches to an arbitrarily user-defined size, we

use the area of each selected and rectified MSER region to

determine the octave level in the scale-space where SIFT

(as well as DSP-SIFT) is to be computed.

Scale-less SIFT (SLS) is computed using the source code

provided by the authors [18]: For each selected and recti-

fied patch, the standard SIFT descriptors are computed at 20
scales from a scale range of (0.5, 12), and the standard PCA

subspace dimension is set to 8, yielding a final descriptor of

dimension 8256 after a subspace-to-vector mapping.

To compare DSP-SIFT to a convolutional neural net-

work, we use the top-performer in [15], an unsupervised

model pre-trained on 16000 natural images undergoing 150
transformations each (total 2.4M). The responses at the in-

termediate layers 3 (CNN-L3) and 4 (CNN-L4) are used for

comparison, following [15]. Since the network requires in-

put patches of fixed size, we tested and report the results on

both 69× 69 (PS69) and 91× 91 (PS91) as in [15].

Although no direct comparison with Multiscale Tem-

plate Descriptors (MTD) [21] is performed, SLS can be

considered as dominating it since it uses all scales without

collapsing them into a single histogram. The derivation in

Sect. 5 suggests, and empirical evidence in Fig. 2(a) con-

firms, that aggregating the histogram across all scales sig-

nificantly reduces discriminative power. Sect. 4.4 compares

DSP-SIFT to a BoW which pools SIFT descriptors com-

puted at different sizes at the same location.

4.1. Datasets

The Oxford dataset [27, 28] comprises 40 pairs of im-

ages of mostly planar scenes seen under different pose, dis-

tance, blurring, compression and lighting. They are orga-

nized into 8 categories undergoing increasing magnitude of

transformations. While routinely used to evaluate descrip-

tors, this dataset has limitations in terms of size and restric-

tion to mostly planar scenes, modest scale changes, and no

occlusions. Fischer et al. [15] recently introduced a dataset

of 400 pairs of images with more extreme transformations

including zooming, blurring, lighting change, rotation, per-

spective and nonlinear transformations.

4.2. Metrics

Following [27], we use precision-recall (PR) curves to

evaluate descriptors. A match between two descriptors is

called if their Euclidean distance is less than a threshold τd.

It is then labeled as a true positive if the area of intersection

over union (IoU) of their corresponding MSER-detected re-

gions is larger than 50%. Both datasets provide ground truth

mapping between images, so the overlapping is computed

by warping the first MSER region into the second image and

then computing the overlap with the second MSER region.

Recall is the fraction of true positives over the total num-

ber of correspondences. Precision is the percentage of true

matches within the total number of matches. By varying

the distance threshold τd, a PR curve can be generated and

average precision (AP, a.k.a area under the curve, AUC)

can be estimated. The average of APs provides the mean

average precision (mAP) scores used for comparison.

4.3. Comparison

Fig. 3 shows the behavior of each descriptor for varying

degree of severity of each transformation. DSP-SIFT con-

sistently outperforms other methods when there are large

scale changes (zoom). It is also more robust to other trans-

formations such as blur, lighting and compression in the

Oxford dataset [28], and to nonlinear, perspective, light-

ing, blur and rotation in Fischer’s [15]. DSP-SIFT is not

at the top of the list of all compared descriptors in view-

point change cases, although “viewpoint” is a misnomer as

MSER-based rectification accounts for most of the view-

point variability, and the residual variability is mostly due

to interpolation and rectification artifacts. The fact that

DSP-SIFT outperforms CNN in nearly all cases in Fischer’s

dataset is surprising, considering that the neural network

is trained by augmenting the dataset using similar types of

transformations.

Fig. 4 shows head-to-head comparisons between these

methods, in the same format of [15]. DSP-SIFT outper-

forms SIFT by 43.09% and 18.53% on Oxford and Fischer

respectively. Only on two out of 400 pairs of images in Fis-

cher dataset does domain-size pooling negatively affect the

performance of SIFT, but the decrease is rather small. DSP-

SIFT improves SIFT on every pair of images in the Ox-

ford dataset. The improvement of DSP-SIFT comes without
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middle of the third row. The right 6 panels show the same for Fischer’s dataset [15].
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Figure 4. Head-to-head comparisons. Similarly to [15], each point represents one pair of images in the Oxford (top) and Fischer (bottom)

datasets. The coordinates indicate average precision for each of the two methods under comparison. SIFT is superior to RAW-PATCH,

but is outperformed by DSP-SIFT and CNN-L4. The right two columns show that DSP-SIFT is better than SLS and CNN-L4 despite the

difference in dimensions (shown in the axes). The relative performance improvement of the winner is shown in the title of each panel.

increase in dimension. In comparison, CNN-L4 achieves

11.54% and 11.53% improvements over SIFT by increasing

dimension 64-fold. On both datasets, DSP-SIFT also con-

sistently outperforms CNN-L4 and SLS despite its lower

dimension.

4.4. Comparison with Bag­of­Words

To compare DSP-SIFT to BoW we computed SIFT at 15
scales on concentric regions with dictionary sizes ranging

from 512 to 2048, trained on over 100K SIFT descriptors

computed on samples from ILSVRC-2013 [9]. To make the
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Figure 5. DSP-SIFT vs. SIFT-BOW. Similarly to Fig. 4, each

point represents one pair of images in the Oxford (left) and Fis-

cher (right) datasets. The coordinates indicate average precision

for each of the two methods under comparison. The relative per-

formance improvement of the winner is shown in the title of each

panel. DSP-SIFT outperforms SIFT-BOW by a wide margin on

both datasets.

comparison fair, the same 15 scales are used to compute

DSP-SIFT. By doing so, the only difference between these

two methods is how to pool across scales rather than what

or where to pool. In SIFT-BOW, pooling is performed by

encoding SIFTs from nearby scales using the quantized vi-

sual dictionary, while DSP-SIFT combines the histograms

of gradient orientations across scales directly. To compute

similarity between SIFT-BOWs, we tested both the intersec-

tion kernel and ℓ1 norm, and achieved a best performance

with the latter at 20.62% mAP on Oxford and 39.63% on

Fischer. Fig. 5 shows the direct comparison between DSP-

SIFT and SIFT-BOW with the former being a clear winner.

4.5. Complexity and Performance Tradeoff

Fig. 7 shows the complexity (descriptor dimension) and

performance (mAP) tradeoff. Table 1 summarizes the re-

sults. In Fig. 7, an “ideal” descriptor would achieve mAP

= 1 by using the smallest possible number of bits and land

at the top-left corner of the graph. DSP-SIFT has the same

lowest complexity as SIFT and is the best in mAP among

all the descriptors. Looking horizontally in the graph, DSP-

SIFT outperforms all the other methods at a fraction of com-

plexity. SLS achieves the second best performance but at

the cost of a 64-fold increase in dimension. In general, the

performance of CNN descriptors is worse than DSP-SIFT

but, interestingly, their mAPs do not change significantly if

the network responses are computed on a resampled patch

of size 69× 69 to obtain lower dimensional descriptors.

4.6. Comparison with SIFT on Larger Domain Sizes

Descriptors computed on larger domain sizes are usu-

ally more discriminative, up to the point where the domain

straddles occluding boundaries (Fig. 10). When using a

detector, the size of the domain is usually chosen to be a

factor of the detected scale, which affects performance in a

way that depends on the dataset and the incidence of occlu-

sions. In our experiments, this parameter (dilation factor)

is set at 3, following [27], and we note that DSP-SIFT is

less sensitive than ordinary SIFT to this parameter. Since

DSP-SIFT aggregates domains of various sizes (smaller and

larger) around the nominal size, it is important to ascer-

tain whether the improvement in DSP-SIFT comes from

size pooling, or simply from including larger domains. To

this end, we compare DSP-SIFT by pooling domain sizes

from 1/6th through 4/3rd of the scale determined by the

detector, to a single-size descriptor computed at the largest

size (SIFT-L). This establishes that the increase in perfor-

mance of DSP-SIFT over ordinary SIFT comes from pool-

ing across domain sizes, not just by picking larger domain

sizes. In the example in Fig. 6, the largest domain size

yields an even worse performance than the detected scale

(Fig. 6(b)). In a more complex scene where the test im-

ages exhibit occlusion, this will be even more pronounced

as there is a tradeoff between discriminative power (calling

for a larger size) and the probability of straddling an occlu-

sion (calling for a smaller size).

Method Dim.
mAP

Oxford Fischer

SIFT 128 .2750 .4532

DSP-SIFT 128 .3936 .5372

CNN-L4-PS69 512 .3059 .4779

SIFT-BOW 2048 .2062 .3963

CNN-L3-PS69 4096 .3164 .4858

CNN-L4-PS91 8192 .3068 .5055

SLS 8256 .3320 .5135

RAW-PATCH 8281 .1600 .3479

CNN-L3-PS91 9216 .3056 .4899

Table 1. Summary of complexity (dimension) and performance

(mAP) for all descriptors sorted in order of increasing complexity.

The lowest complexities and the best performances are highlighted

in bold. We also report mAP for CNN descriptors computed on

69×69 patches as in [15]. The fourth row shows comparison with

a bag-of-words of SIFT descriptors computed at the same location

but different domain sizes, described in detail in Sect. 4.4.

5. Derivation

In this section we describe the trace of the derivation of

DSP-SIFT, which is reported in the appendix of [11]. Cru-

cial to the derivation is the interpretation of a descriptor as

a likelihood function [36].

1. The likelihood function of the scene given images is a

minimal sufficient statistic of the latter for the purpose of

answering questions on the former [1]. Invariance to nui-

sance transformations induced by (semi-)group actions on

the data can be achieved by representing orbits, which are

maximal invariants [32]. The planar translation-scale group
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Figure 6. DSP-SIFT vs. SIFT-L. Similarly to Fig. 4, each point

represents one pair of images in the Oxford dataset. The coordi-

nates indicate average precision for each of the two methods under

comparison. The relative performance improvement of the winner

is shown in the title of each panel. 6(a) shows that DSP-SIFT out-

performs SIFT computed at the largest domain size. This shows

that the improvement of DSP-SIFT comes from the pooling across

domain sizes rather than choosing a larger domain size. 6(b) shows

that choosing a larger domain size actually decreases the perfor-

mance on the Oxford dataset.

can be used as a crude first-order approximation of the ac-

tion of the translation group in space (viewpoint changes)

including scale change-inducing translations along the op-

tical axis. This draconian assumption is implicit in most

single-view descriptors.

2. Comparing (semi-)orbits entails a continuous search

(non-convex optimization) that has to be discretized for im-

plementation purposes. The orbits can be sampled adap-

tively, through the use of a co-variant detector and the as-

sociated invariant descriptor, or regularly - as customary in

classical sampling theory.

3. In adaptive sampling, the detector should exhibit high

sensitivity to nuisance transformations (e.g.,small changes

in scale should cause a large change in the response to the

detector, thus providing accurate scale localization) and the

descriptor should exhibit small sensitivity (so small errors

in scale localization cause a small change in the descriptor).

Unfortunately, for the case of SIFT (DoG detector and gra-

dient orientation histogram descriptor), the converse is true.

4. Because correspondence entails search over samples

of each orbit, time complexity increases with the number

of samples. Undersampling introduces structural artifacts,

or “aliases,” corresponding to topological changes in the

response of the detector. These can be reduced by “anti-

aliasing,” an averaging operation. For the case of (approx-

imations of) the likelihood function, such as SIFT and its

variants, anti-aliasing corresponds to pooling. While spa-

tial pooling is common practice, and reduces sensitivity

to translation parallel to the image plane, scale pooling –

which would provide insensitivity to translation orthogo-

nal to the image plane – and domain-size pooling – which
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Figure 7. Complexity-Performance Tradeoff. The abscissa is the

descriptor dimension shown in log-scale, the ordinate shows the

mean average precision.

would provide insensitivity to small changes of visibility,

are not. This motivates the introduction of DSP-SIFT, and

the rich theory on sampling and anti-aliasing could provide

guidelines on what and how to pool, as well as bounds on

the loss of discriminative power coming from undersam-

pling and anti-aliasing operations.

6. Discussion

Image matching under changes of viewpoint, illumina-

tion and partial occlusions is framed as a hypothesis testing

problem, which results in a non-convex optimization over

continuous nuisance parameters. The need for efficient test-

time performance has spawned an industry of engineered

descriptors, which are computed locally so the effects of

occlusions can be reduced to a binary classification (co-

visible, or not). The best known is SIFT, which has been
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Figure 8. Scale-space vs. Size-space. Scale-space refers to a con-

tinuum of images obtained by smoothing and downsampling a

base image. It is relevant to searching for correspondence when

the distance to the scene changes. Size-space refers to a scale-

space obtained by maintaining the same scale of the base image,

but considering subsets of it of variable size. It is relevant to

searching for correspondence in the presence of occlusions, so the

size (and shape) of co-visible domains are not known.

shown to work well in a number of independent empirical

assessments [27, 29], that however come with little analysis

on why it works, or indications on how to improve it. We

have made a step in that direction, by showing that SIFT

can be derived from sampling considerations, where spatial

binning and pooling are the result of anti-aliasing opera-

tions. However, SIFT and its variants only perform such

operations for planar translations, whereas our interpreta-

tion calls for anti-aliasing domain-size as well. Doing so

can be accomplished in few lines of code and yields signifi-

cant performance improvements. Such improvements even

place the resulting DSP-SIFT descriptor above a convolu-

tional neural network (CNN), that had been recently re-

ported as a top performer in the Oxford image matching

benchmark [15]. Of course, we are not advocating replac-

ing large neural networks with local descriptors. Indeed,

there are interesting relations between DSP-SIFT and con-

volutional architectures, explored in [36, 37].

Domain-size pooling, and regular sampling of scale “un-

hinged” from the spatial frequencies of the signal is di-

vorced from scale selection principles, rooted in scale-space

theory, wavelets and harmonic analysis. There, the goal is

to reconstruct a signal, with the focus on photometric nui-

sances (additive noise). In our case, the size of the domain

where images correspond depends on the three-dimensional

shape of the underlying scene, and visibility (occlusion) re-

lations, and has little to do with the spatial frequencies or

“appearance” of the scene. Thus, we do away with the link-

ing of domain size and spatial frequency (“uncertainty prin-

ciple”, Fig. 9).

DSP can be easily extended to other descriptors, such as

HOG, SURF, CHOG, including those supported on struc-

tured domains such as DPMs [14], and to network architec-

tures such as convolutional neural networks and scattering

Figure 9. The “uncertainty principle” links the size of the domain

of a filter (ordinate) to its spatial frequency (abscissa): As the data

is analyzed for the purpose of compression, regions with high spa-

tial frequency must be modeled at small scale, while regions with

smaller spatial frequency can be encoded at large scale. When the

task is correspondence, however, the size of the co-visible domain

is independent of the spatial frequency of the scene within. While

approaches using “dense SIFT” forgo the detector and compute

descriptors at regularly sampled locations and scales, they perform

spatial pooling by virtue of the descriptor, but fail to perform pool-

ing across scales, as we propose.

networks [6], opening the door to multiple extensions of the

present work. In addition, a number of interesting open the-

oretical questions can now be addressed using the tools of

classical sampling theory, given the novel interpretation of

SIFT and its variants introduced in this paper.
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Figure 10. The discriminative power of a descriptor (e.g., mAP

of SIFT) increases with the size of the domain, but so does the

probability of straddling an occlusion and the approximation error

of the imaging model implicit in the detector/descriptor. This ef-

fect, which also depends on the detected scale, is most pronounced

when occlusions are present, but is present even on the Oxford

dataset, shown above.
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