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Abstract

We frame the problem of local representation of imaging

data as the computation of minimal sufficient statistics that

are invariant to nuisance variability induced by viewpoint

and illumination. We show that, under very stringent condi-

tions, these are related to “feature descriptors” commonly

used in Computer Vision. Such conditions can be relaxed

if multiple views of the same scene are available. We pro-

pose a sampling-based and a point-estimate based approx-

imation of such a representation, compared empirically on

image-to-(multiple)image matching, for which we introduce

a multi-view wide-baseline matching benchmark, consisting

of a mixture of real and synthetic objects with ground truth

camera motion and dense three-dimensional geometry.

1. Introduction

For visual data, a “feature descriptor” is a function of

images designed to be “insensitive” to nuisance variability

and yet “discriminative” with respect to intrinsic properties

of the scene or object of interest. Nuisance variability may

be due to changes of viewpoint and illumination, and intrin-

sic properties include three-dimensional shape and mate-

rial properties of the scene, or object-specific deformations.

The best-known local descriptors are SIFT [20], HOG [7]

and their variants [3], which we refer to collectively as HoG

(histogram of gradient): For an image region centered at a

point, they are histograms of the orientation of its gradient

in that region, variously normalized.

On the other hand, representation learning via neural net-

works [18] constructs functions that are insensitive to nui-

sance variability by training a convolutional architecture

supported on the entire image domain. There have been

several studies of the empirical performance of local fea-

ture descriptors, including their comparison [24], and their

generative abilities [37, 29]. However, efforts to elucidate

their relationships have only recently begun to appear [5, 4].

But what is an ideal representation? In terms of being “dis-

criminative” of the intrinsic properties of the scene, such as

its shape and reflectance, one could do no better than a (min-

imal) sufficient statistic, for instance the likelihood function

[30]. In terms of being “insensitive” to nuisance factors,

such as viewpoint and illumination, one could do no better

than a (maximal) invariant to their action on the data. So, an

ideal representation would be a minimal sufficient statistic

that is maximally invariant to nuisance factors [30].

Does such a representation exist? If so, can it be computed?

If not, can it be approximated? Can existing descriptors be

related to it? If so, under what conditions? If not, how can

we construct better approximations of an ideal representa-

tion?

1.1. Related Work

There are many engineered descriptors of one image

[20, 7, 3, 35], that differ on where and how the local his-

tograms are aggregated and normalized, with many im-

plementation details affecting performance [6]. Some en-

tail learning [39, 19] to minimize classification (correspon-

dence) error. Relatively few local descriptors aggregate

multiple views: [9] combines spatial (averaged SIFT) and

temporal statistics; [16] performs feature selection from tra-

jectories of key points. Deformable parts models [14] are

also learned from multiple views to capture intrinsic vari-

ability.

One could also learn away nuisance variability through

a neural network architecture [18, 27]. This approach has

been steadily improving performance in large-scale pattern

recognition [10], but not in correspondence, where it is out-

performed by engineered descriptors, even some built using

a single image [12]. Rather than performing direct compar-

ison between different descriptors, we instantiate an ideal

local representation relative to a simple image-formation

(Lambert-Ambient, or LA) model, and relate various de-

scriptors to it.



1.2. Summary

To quantify how “discriminative” a descriptor is, we

characterize its dependency on intrinsic properties of the

scene, namely shape S and reflectance1 ρ. To quantify

how “insensitive” it is, we describe its dependency on nui-

sance factors such as viewpoint and illumination. In [22]

the LA model is described as the simplest to capture the

phenomenology of image formation for the purpose of cor-

respondence. Local illumination changes are modeled, to

first-order approximation, as monotonic continuous trans-

formations of the range of the image, also known as con-

trast transformations. They form a group2, and under cer-

tain conditions [31] the gradient orientation is a maximal

invariant. So we can eliminate first-order dependency on

illumination by replacing the image3 I with its gradient

orientation θ(x) = ∠∇I(x)
.
= ∇I(x)/‖∇I(x)‖, at lo-

cations x where ∇I(x) 6= 0. For a local neighborhood

B ⊂ R
2, the likelihood function, computed at a location

x ∈ B and conditioned on a given shape S and reflectance

ρ, is a minimal sufficient statistic [30], and can be thought

of as a probability density on θ, p
B
(θ|ρ, S) with marginals4

px(θ|ρ, S). If there are additional groups G acting on the

scene (for instance changes of spatial position and orienta-

tion, G = SE(3)) they can be marginalized, thus obtaining

a density

px,G(θ|ρ, S). (1)

The marginalized likelihood is a maximal contrast-invariant

that is also G-invariant. With respect to this ideal represen-

tation, our goals are to: (i) Instantiate the formal notation

above using the LA model and derive an expression for (1)

suitable for computation (Sec. 2.1). (ii) Show that HoG ap-

proximates an ideal descriptor when the scene is planar and

the viewer is constrained to translating parallel to it (Sec.

2.1). (iii) Derive a sampling approximation of (1), which we

call MV-HoG, where the scene (S, ρ) is replaced with a col-

lection of images of it, captured from multiple viewpoints

{It}
T
t=1 (Sec. 3.1). (iv) Derive a point-estimate based ap-

proximation of (1), which we call R-HoG, where the scene

(S, ρ) is replaced with a point estimate (Ŝ, ρ̂) reconstructed

from a finite sample {It}
T
t=1, possibly using structured illu-

mination (Sec. 3.2).

1In the LA model S ⊂ R3 is a multiply-connected piecewise smooth

surface in Euclidean space, and ρ : S → R+ is a positive-valued scalar

function called “albedo.” As we model illumination via contrast trans-

formations of the albedo, we interpret ρ modulo contrast changes as the

reflectance of the surface S.
2If strictly monotonic, lest they form a monoid.
3Here I : D ⊂ R2 → R+; x 7→ I(x) is a gray-scale image, x ∈ D

is a point on the plane. In practice, I takes a finite number of values on a

quantized domain, extended to the entire plane by zero-padding.
4If we knew the viewpoint, under the assumptions of the LA Model,

the conditional density would be spatially independent, (10); otherwise,

marginalizing viewpoint introduces spatial dependency, so the product of

the marginals is only an approximation, (12).

2. Engineered Features Revisited

A “cell” of the HOG/SIFT descriptor5 h of an image I
in a region centered at a pixel x is a histogram of the ori-

entation of its gradient, θ, around x. If the histogram is not

normalized, we call it uHoG (un-normalized HoG) and in-

dicate it with
hx(θ|I) uHoG. (2)

Given one image I , this un-normalized histogram returns a

positive number for each orientation θ, related to the num-

ber of pixels around x where the image gradient orientation

is close to θ. Variants of HoG differ in where they compute

and how they aggregate and normalize such histograms. For

instance, SIFT [7] evaluates the histogram above on a 4× 4
grid B = {xi, i = 1, . . . , 16}, and concatenates the re-

sult into a vector [hx1
, . . . , hx16

], that is then normalized,

clamped, and re-normalized. Discrete bins are computed

using a bilinear interpolation kernel κǫ with ǫ = 2π/#bins,
and a linear spatial weighting kernel κσ with σ the area of

each cell in the 4 × 4 grid, further weighted by the magni-

tude of the image gradient ‖∇I‖. If we extend the sum to

the continuum, we can write the histogram in each cell as

[36, 11]

hx(θ|I) =

∫

κǫ

(

θ − ∠∇I(y)
)

κσ(x− y)‖∇I(y)‖dy (3)

where the argument of the orientation kernel is intended

modulo 2π. Alternatively, histograms can be normalized

independently at each location x:

h̄x(θ|I) =
hx(θ|I)

∫

S1
hx(θ|I)dθ

, h = [hx1
, hx2

, . . . , hxi
, . . . ].

(4)

Note that in HoG, described above, the nuisance group G is

absent. We introduce it next.

2.1. Ideal descriptor of one view and its HoG

As a preliminary step to computing the minimal suffi-

cient invariant statistic (1), and to understand its relation

to single-view descriptors, consider a special case obtained

by assuming that the scene is a plane parallel to the im-

age plane, with albedo equal to the image irradiance. Then,

conditioning on the image I , we have px,G(θ|I), which we

wish to relate to uHoG (2).

To guarantee contrast-invariance, one could replace the

intensity I(x) ∈ R
+ with the curvature of the iso-

contours [1], or with its dual, the orientation of the gradient,

∠∇I(x) ∈ S
1 where ∇I(x) 6= 0. Let (G,P ) be a probabil-

ity space, with G a group and P a probability distribution on

the group, and suppose that to each g ∈ G we can associate

a “transformed” image Ig . For each pixel x ∈ R
2 where

5Here θ ∈ S1 is an angle (the free variable) and h : D × S1 →
R+; (x, θ) 7→ hx(θ) for a fixed image I .



∇Ig(x) 6= 0, we can then define a (marginal) probability

density function over θ, for instance:

px,G(θ|I, g)
.
= Nε (θ − ∠∇Ig(x)) (5)

where the difference is intended in S
1, and correspond-

ingly Nǫ denotes an angular Gaussian [38]. Kernels κ other

than Gaussian can also be considered without significant

changes to the arguments that follow. Using P , we can

marginalize6 this distribution to eliminate its dependency

on g ∈ G:

px,G(θ|I)
.
=

∫

G

px,G(θ|I, g)dP (g). (6)

To understand the relationship with uHoG, we restrict G to

be the group of planar translations, G = R
2, and choose a

particular measure for R2, dµ(v|I)
.
= ‖∇Iv(x)‖dv where,

if v ∈ G, Iv(x) = I(x + v) is the transformed image.

We then marginalize with respect to the (un-normalized)

distribution dP (v) = Nσ(v)dµ(v|Iv). This corresponds

to assuming that the scene is flat, parallel to the image-

plane (fronto-parallel) and constrained to translate parallel

to it. The likelihood function is given by px,G(θ|I, v) =
Nε(θ − ∠∇Iv(x)). Integrating against dP (v), we obtain

hx(θ|I) =

∫

G

px,G(θ|I, v)dP (v) =

=

∫

R2

Nε(θ − ∠∇Iv(x))Nσ(v)dµ(v|Iv)

=

∫

R2

Nε(θ − ∠∇I(y))Nσ(y − x)‖∇I(y)‖dy, (7)

which is one cell of uHoG (3) once we restrict to the discrete

lattice and replace the Gaussian kernels with (bi-)linear

ones. The full descriptor is just the concatenation of a num-

ber of cells, suitably normalized; for the case of a single

cell,

px,G(θ|I) =
hx,G(θ|I)

∫

hx,G(θ|I)dθ
(8)

which leads us to conclude that HOG/SIFT approximates

the ideal representation at a point under the assumption

that the scene is flat and fronto-parallel, undergoing purely

translational motion parallel to the image plane.

3. Ideal Descriptor Approximations

To move one step closer to the ideal representation, and

to relax the stringent assumptions implicit in HOG/SIFT,

suppose for now that we have complete knowledge of the

6The integral is well defined by Fubini’s theorem; px,G(θ|I, g) is a

measurable function of g and bounded so the marginalization converges.

Thus, we can integrate over θ and exchange the integrals. But while

marginalization guarantees invariance to g ∈ G, it does not yield a maxi-

mal invariant, which is instead described in [30].

underlying scene (S, ρ). A pinhole camera projects each

point on the scene to the image plane via7 π : S → D ⊂ R
2

and its associated inverse π−1
S : D → S, where π−1

S (x) is

the point of the first intersection of the pre-image (a line)

of x with the scene S. Under the assumptions of the LA

model, there exists an open subset G0 ⊆ SE(3) with com-

pact closure and – after a suitable change of reference frame

– containing the identity, such that each g ∈ G0, with the

action

Ig(x) = ρ ◦ g ◦ π−1
S (x) (9)

can be associated with a domain diffeomorphism wg :
R

2 → R
2, with Ig(x) = I(wg(x)). Here “◦” denotes func-

tion composition. When emphasizing the dependency of wg

on shape, we indicate it with wg(x|S). Let P be a proba-

bility measure on G0, e.g., the normalized restriction of the

Haar measure on SE(3) to G0, which is no longer a group,

but a subset of G, where the probability of actions outside

G0 is assigned to zero. Then the marginalized descriptor,

for a known scene, is given by

px,G0
(θ|ρ, S) =

∫

G0

Nε(θ − ∠∇ρ ◦ g ◦ π−1
S (x))dPG0

(g)

=

∫

G0

Nε(θ − ∠∇I(wg(x|S)))dPG0
(g). (10)

The first approximation step is to reduce the dimensionality

of G0 ⊂ SE(3) = SO(3)×R
3 to simplify marginalization.

This can be done locally around a point π−1
S (x) through the

use of a co-variant detector, a function of the image that

returns multiple isolated elements of subsets of G0 that co-

vary with g. For instance, a translation-scale detector [20]

returns isolated locations on the image plane, xi, and their

corresponding scales σi, which can be used to define a local

reference frame centered at xi with unit σi. To first approx-

imation, as we qualify in the next paragraph, these co-vary

with the translation component of G0: A spatial transla-

tion parallel to the image plane induces a planar transla-

tion of xi, and a spatial translation orthogonal to the image

plane induces a change of scale σi. Thus, locally around

π−1
S (xi), we can annihilate the effects of spatial translation

simply by canonizing the location-scale group, i.e. impos-

ing xi = 0, σi = 1, by applying the inverse transformation

of that determined by the co-variant detector. This proce-

dure can be applied to any planar group transformation, in-

cluding the entire group of diffeomorphisms [32]. In par-

ticular, planar rotation can be canonized using the direction

of gravity as a reference [17], leaving only “out-of-plane”

rotations to be marginalized in (10).
In reality, spatial translations do not co-vary with pla-

nar translation-scale transformations, for the former in-

7π incorporates the projection by dividing the coordinates of a point

in S by the third component and applying a planar affine transformation

depending on the intrinsic calibration of the camera [22].



duces (shape-dependent) deformations of the image do-
main (9) in addition to non-invertible transformations due
to occlusions, which are absent in the latter. Such shape-
dependent image variability is lost in any descriptor com-
puted from a single image: Any finite-dimensional pla-
nar group-covariant detector co-varies with spatial transla-
tions only when the scene is flat and the neighborhood of
size σi centered in xi, Bσi

(xi), does not straddle occluding
boundaries. Fortunately, we are not constrained to building
descriptors using a single image; instead, we can capture
residual deformations after canonization by marginalizing
with respect to out-of-plane rotations in SO(3). In addition,
we can also marginalize small residual changes in transla-
tion v and scale σ using some prior PNσ

× PEs
, where8

dPNσ
(v) = Nσ(v)dµ(v) and dPNs

(σ) = Es(σ)dσ with
E a unilateral density (e.g., exponential) to ensure σ > 0.
Thus, our un-normalized conditional distribution becomes:

hx,G(θ|ρ, S) =

∫
G0

Nε(θ − ∠∇Ig(x))dPG0
(g) ≃ (11)

∫
Nε(θ − ∠∇I(wg(y)))dPSO(3)(g)Nσ(y − x))Es(σ)dµ(y)dσ.

If out-of-plane rotations are neglected, or if the scene is

planar, one image is sufficient to construct an idea descrip-

tor, which then reduces to DSP-SIFT, recently introduced

in [12]. To obtain the ideal descriptor of a region B, we

must consider the joint distribution of all pixels within:

hx1,...,xk,G(θ1, . . . , θk|ρ, S). Aggregating histograms in

high dimensions is challenging but the joint distribution

can be approximated by a collection of one-dimensional

marginals. The simplest approximation is to neglect spatial

correlations altogether: From (10),

px1,...,xk,G0
(θ1, . . . , θk|ρ, S) =

=

∫

G0

k
∏

i=1

Nε(θi − ∠∇I(wg(xi|S)))dPG0
(g)

≃
k
∏

i=1

hxi,G(θi|ρ, S). (12)

As already pointed out4, under the assumptions of the LA

model, if the vantage point g ∈ SE(3) was known, then

the conditional density above would indeed factorize into

the product of marginals computed independently at each

pixel. However, marginalizing viewpoint introduces spa-

tial dependencies, so the above is just an approximation.9

8It should be noted that this approximation step does not reduce the

generality of the approach: In practice, one would have to discretize the

group G0 anyway in order to perform the marginalization in (10), and co-

variant detectors are just an adaptive discretization mechanism. A trivial

detector is one that returns regular samples of the group, for instance a dis-

cretization of planar translations and scales as customary in “dense SIFT.”

Indeed, this discretization is necessary also to compactify the translational

component of G0, that otherwise would have to be marginalized with re-

spect to an improper measure.
9Coarse as it seems, this is nevertheless the approximation implicit

Even this approximation, however, requires knowledge of

the scene (S, ρ) to be computed. We now address how to

cope with absence of such knowledge.

3.1. Sampling approximation: MV­HoG

If we do not have complete knowledge of the scene,
(S, ρ), but we have a collection of images of it {It}

T
t=1,

we can approximate (11) by Monte-Carlo sampling, after
noticing that It(x) = ρ ◦ gt ◦ π−1

S (x) = I(wgt(x)) with
{wgt |t = 1, · · · , T} and gt ∼ PG0

with the restriction G0

determined by visibility. Under sufficient excitation condi-
tions on the sample {It}

T
t=1, asymptotically for T → ∞,

we can approximate the integral with

hx,G(θ|{It}
T
t=1)

.
=

1

T

T∑
t=1

∫
R2

Nε(θ−∠∇It(y))Nσ(y−x)dµ(y).

Scale σ can also be marginalized as in (11). Sufficient ex-

citation conditions mean that the orbit in SE(3) is sampled

along all directions (in the Lie Algebra), which is a tall or-

der, as it requires every surface element to be seen from all

vantage points, at all distances, while gt remains in G0. This

requirement can be mitigated by restricting the marginaliza-

tion to SO(3) or even to just out-of-plane rotations, using

(11) in conjunction with a co-variant detector or other sam-

pling mechanism.

Alternatively, we can use whatever data is available to

reconstruct a model (a point estimate) of the scene, which

can then be used to render synthetic samples from the orbits

of SE(3).

3.2. Point­estimate approximation: R­HoG

Samples {It} can be used to compute an approximation

of ρ, S, for instance in the sense of maximum-likelihood,

with suitable regularization [13, 15]

ρ̂, Ŝ = arg max
ρ,S,gt

p({It}|ρ, S) + λR(S)

subject to It = ρ ◦ gt ◦ π
−1
S + nt (13)

where R(S) is, for instance, surface area
∫

S
dA, nt is white

and Gaussian, and λ is a scalar multiplier, and then compute

(10) restricted to out-of-plane rotations:

hx,G(θ|ρ̂, Ŝ) =

∫

SO(3)

Nε(θ−∠∇ρ̂◦g◦π−1

Ŝ
(x))dPSO(3)(g)

(14)

or its spatially regularized version:

hx,G(θ|ρ̂, Ŝ) =
∫

SO(3)×R2

Nε(θ−∠∇ρ̂◦g◦π−1

Ŝ
(y))dPSO(3)(g)Nσ(y−x)dµ(y)

in most single-view descriptors, that consider the concatenation of (inde-

pendently aggregated, scalar) histograms. Some single-view descriptors

attempt to recapture some of the lost spatial correlations by joint (re)-

normalization [7].



or its scale-marginalized version as in (11). Convergence

and unbiasedness of the maximum-likelihood estimator en-

sures convergence of R-HoG to (11). Note that it is possi-

ble for the reconstruction to be significantly different from

S and yet R-HoG be similar to the ideal descriptor, so long

as the re-projections ρ̂ ◦ g ◦ π−1

Ŝ
(x) are compatible with

wgt(x|S). This can happen, for instance, when Ŝ differs

from S in regions where ρ is constant. Also note that, in

theory, two views with non-trivial baseline are sufficient to

reconstruct an approximation of Ŝ and ρ̂, locally in the co-

visible region. Therefore, R-HoG is preferable when T is

small and the sample It is unlikely to be sufficiently excit-

ing. Normalized versions of each descriptor are obtained as

p(θ|X) =
hx,G(θ|X)

∫

hx,G(θ|X)dθ
, (15)

where X = I for HOG, X = {It} for MV-HoG, X =
{ρ̂, Ŝ} for R-HoG, and X = {ρ, S} for the ideal descriptor

that marginalizes the nuisance assuming a known scene.

While MV-HoG had a stringent sampling requirement, R-

HoG has its own challenges, in that obtaining a reliable,

dense reconstruction of a scene and its photometry can be

a tall order. However, an estimate of the surface is only

needed locally, where smooth surfaces can be approximated

with parametric models of low order. Also, calibrated re-

construction is not necessary, so a projective reconstruction

can be obtained through solving systems of linear equa-

tions [22]. Alternatively, a structured model can be inferred

through factorization methods such as principal component

analysis or sparse coding, whereby S is represented by the

coefficients of a linear combination of a collection of “basis

elements” {Si}.

4. Dataset and Ground Truth

Since our focus here is to leverage on multiple views

to build better descriptors, which can then be matched to

single-images in wide-baseline tests, to perform compar-

isons we need a dataset where multiple training images (of

the same scene) are available, whereas correspondence test-

ing can be performed on single images.

Many datasets are available to test image-to-image

matching, e.g., [25], where both training and test sets are

individual images, each of a different scene. Testing our

approach on such datasets would require forgoing marginal-

ization of out-of-plane rotation, thus reducing our approach

to DSP-SIFT, which has been tested on [25] by [12].

Fewer datasets are available for testing multi-view de-

scriptors [26, 39]. The latter contains three scenes: Trevi,

Half Dome and Notre Dame and provides pixel-level corre-

spondence by back-projecting 3D reconstructed keypoints

onto images, which can be used for evaluation. To enable

the comparison, we extract a subset containing only fea-

tures having more than 10 samples. We randomly hold out

(a) Sample objects

TrainTest

PositiveNegative

(b) Test samples

(c) Cereal (d) Robot

Figure 1. Dataset, Test Samples and Qualitative Match Visualiza-

tion. (a): Samples from the real and synthetic object dataset. (b):

Positive test samples from the object; negative samples are ten-

fold more numerous. (c), (d) show correct (green) and wrong (red)

matches claimed by SV-SIFT (Top) and MV-HoG (Bottom). The

latter yields many more correct matches, similar to R-HoG.

5 samples for testing and use the rest for descriptor aggre-

gation. Negative samples are randomly selected from the

other scenes.

Almost perfect results are obtained on [39] (Fig. 2), thus

limiting the value of the dataset; we have therefore con-

structed a new dataset, similar in spirit to [26], but with

a separate test set and dense ground truth for validation,

using a combination of 31 real and 15 synthetic objects.

The latter are generated by texture-mapping random images

onto surface models available in MeshLab. The former are

household objects of the kind seen in Fig. 1. Some with

significant texture variability, others with little; some with

complex shape and topology, others simple. In each case,

a sequence of (training) images per object is obtained by

moving around the objects in a closed trajectory. For real

objects, a 400-frame-trajectory circumnavigates them to re-



veal most visible surfaces; for synthetic ones, 100 frames

span a smaller orbit.

Ground Truth: We compare descriptors built from the

(training) video and test single frames, by first selecting test

images where a sufficient co-visible area is present. To es-

tablish ground truth, we reconstruct a dense model of each

(real) object using an RGB-D (structured light) range sensor

with YAS [2]. The reconstructed surface enables dense cor-

respondence between co-visible regions in different images

by back-projection. This is further validated with standard

tools from multiple-view geometry by epipolar RANSAC.

Occlusions are determined using the range map. Further

implementation details are described in [11].

Detection and Tracking: We use FAST [28] as a mecha-

nism to (conservatively) eliminate regions that are expected

to have non-discriminative descriptors, but this step could

be forgone. Scale changes are handled in a discrete scale-

space, i.e. images are downsampled by half up to 4 times

and FAST is computed at each level. Short-baseline cor-

respondence is established with standard MLK [21]. A se-

quence of image locations is returned by the tracker for each

region, which is then sampled in a rectangular neighbor-

hood at the scale of the detector. We report experiments

on two window sizes, 11 × 11 and 21 × 21, illustrative of

a range of experiments conducted. The sequence of such

windows is then used to compute the descriptors.

5. Evaluation and Comparison

We briefly describe the descriptors and classifiers in-

volved in the evaluation and refer to [11] for the implemen-

tation details, parameter selections and training procedures.

Single-View Descriptors: We use SIFT from [36] as base-

line (SV-SIFT), computed on each patch at each frame as

determined by the detector and tracker. We also com-

pare single-view descriptor representatives DAISY [35] and

SURF-128 [3] computed on the individual images.

Multiple-View Descriptors: MV-HoG is implemented ac-

cording to Sect. 3.1 using the tracks returned by the MLK

tracker. We also tested Random Forest [19] as an alternative

way of utilizing multiple samples. We present to the RFs

the training samples, and refer to this as A-RF. Deformable

parts models would be too slow to test on our dataset, so we

forgo that comparison.

Reconstructive Descriptors: To compute an approxima-

tion of R-HoG in Sect. 3.2, we compute dense 3-D re-

constructions both from some tracked sequences and using

a structured-light sensor. Where visual reconstruction was

successful, performance was similar, but dense reconstruc-

tion was laborious and the quality was not consistent across

samples, so to make the evaluation independent of recon-

struction methods, we report the results using a structured

light sensor only. We use the keyframe where features are

first extracted, and sample a viewing hemisphere with 576

(a) SV-HoG (b) MV-HoG

Figure 3. Distance Distribution. The horizontal axis indicates the

distance between two descriptors in increasing order from left to

right. The distribution of distances between corresponding fea-

tures are shown in green and that of mismatches in red. The error

(overlapping area) in 3(b) is considerably smaller than 3(a). This

leads to a lower risk of misclassification in MV-HoG.

vantage points. The R-HoG is built upon these synthesized

samples. As in the multiple view case, we also feed synthe-

sized patches to the Random Forest (R-RF).

Classifier and Strategies: Given a descriptor database, the

simplest method to match a test query is via nearest neigh-

bor (NN) search. We compare five combinations using the

same NN search method: (i) single view SV-SIFT, SURF

and DAISY – computed on a random image from the train-

ing sequence, (ii) Ave-SIFT [9] – averaged SIFT of all

frames, (iii) Orb-SIFT – all of the SV-SIFTs stored to repre-

sent the orbit which includes the best possible exemplar for

each feature [16], (iv) MV-HoG and (v) R-HoG.

Network Architecture: We also compare our methods

with a simple network architecture in the form of a gated

restricted Boltzmann machine (G-RBM) [23, 34, 33], em-

ployed by the authors in correspondence tasks similar to

those considered in this paper. We use the same matching

strategy as Orb-SIFT, so we call the network Orb-GRBM.

Details of the G-RBMs are in [11].

5.1. Metrics

We use precision-recall curves (PR-curves) to quantita-

tively evaluate the descriptors proposed and compare them

to existing methods. For each query patch, nearest neigh-

bor search returns a predicted label and its associated dis-

tance. By changing a distance thresh τd, a precision-recall

curve can be generated. Precision and recall are defined

as p = #true matches
#false matches+#true matches

, r = #true matches
#positive samples

. The

positive samples are the test queries that have correspon-

dences in the training databases as opposed to the negative

samples which are never seen in training. The matches are

the queries that pass the distance threshold test. A match is

considered to be a true match if the predicted label is correct

according to the ground truth. As only one predicted label

is obtained for each query, r could remain < 1 once any

predicted label is wrong. We report the F1-score
(

2pr
p+r

)

for

each PR curve. Similarly, random forests (A-RF and R-RF)
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Figure 2. Precision-Recall Curves. Precisions (ordinate) over recall rates (abscissa) with F1-scores in the legends.

return an averaged probability as a confidence score for the

predicted label. A precision-recall curve can be generated

by changing a belief threshold τp.

5.2. Empirical Results

Qualitative results are shown in Fig. 1 and [11]. In

Fig. 2, PR curves are shown for all the datasets on two

different patch sizes. R-HoG and MV-HoG are compara-

ble on 11 × 11 patches and outperform other methods. On

21×21 patches, the 3D-reconstruction generates artifacts in

the view-set generation, so the performance of R-HoG de-

creases below that of MV-HoG in both the real and synthetic

datasets. It should not be surprising that Orb-SIFT performs

the best among all the other methods, as it entails exhaus-

tive search over the orbit of transformed views. However,

its precision drops sharply when the number of negatives is

large, as it inherits the vulnerability of SV-SIFT to outliers.

Also, MV-HoG is consistently better than Ave-SIFT across

all datasets. Note that both involve averaging histograms,

but Ave-SIFT averages normalized descriptors computed in

each frame, and then re-normalized, whereas MV-HoG ag-

gregates gradient orientation over time, and only normal-

izes the descriptor at the end, using the same procedure and

clamping threshold as Ave-SIFT. This shows that temporal

aggregation improves performance compared to simply av-

eraging single-view descriptors computed independently.

Fig. 3 shows the distance distributions between descrip-

tors of corresponding and non-corresponding patches. SV-

HoG is computed from a random single sample from each

track, and MV-HoG is aggregated over the whole track. The

overlapping area between the two distributions indicates the

probability of making a classification error in descriptor

matching. The distributions in Fig. 3(b) have much less

overlapping area than that in Fig. 3(a). It shows that the

discriminative power of the descriptor is improved by ag-

gregating over multiple views.

5.3. Support Region, Spatial Aggregation, Sample
Sufficiency and Complexity

The size of the domain where descriptors are computed

impacts performance (Fig. 2): the larger, the better, so long

as the domain remains co-visible (i.e. gt ∈ G0). Fig. 4(b)
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Figure 4. (a) Sufficient excitation. Left: Accuracy (maximum re-

call) as a function of a proxy of sufficient excitation (see text).

Right: Excitation as a function of the number of frames. All re-

sults are averaged over multiple runs using frames i, . . . , i+k−1
where i is selected at random. (b) F1-score varies with spatial ag-

gregation parameter σ. (c) Time complexity as a function of the

number of features with FLANN precision at 0.7. Higher preci-

sion will further increase computational load.

shows the effect of the spatial parameter σ in MV-HoG

(Sect. 3.1). A slight spatial aggregation enhances robust-

ness until σ reaches a critical value, beyond which discrim-

inative power drops. Multiple view descriptors perform

scene-dependent blurring, and therefore remain more dis-

criminative, as long as sufficient excitation conditions are

met. Clearly, if a sequence of identical patches is given

(video with no motion), the descriptor will fail to capture the

representative variability of images generated by the under-

lying scene. In this case, MV-HoG reduces to DSP-SIFT

[12], which differs from SV-SIFT because of domain-size

aggregation (averaging over σ). In Fig. 4(a) we explore the

relation between performance gain and excitation level of

the training sequence. As a proxy of the latter, we measure

the variance of the intensity relative to the mean using the ℓ2
distance. The right plot shows that the variance reaches the

maximum when most frames are seen. We normalize the

variance so that 1 means maximum excitation. The left plot

shows accuracy increases with excitation. The fact that ac-

curacy does not saturate is due to the fact that the sufficient

excitation is only reachable asymptotically. At test time,

all descriptors of n features have the same storage com-

plexity O(n) except that Orb-SIFT stores every instance

(O(kn)). The search can be done in approximate form us-

ing approximate nearest neighbors [8]. Fig. 4(c) shows the

training time using the fast library for approximate near-

est neighbors (FLANN) vs MV-HoG on a commodity PC

with 8GB memory and Xeon E3-1200 processor. MV-HoG

scales well and is more memory-efficient while Orb-SIFT

requires more training time and occupies more than 60% of

the available memory. Another advantage of MV-HoG is

that the descriptor can be updated incrementally, and does

not require storing processed samples.

6. Discussion

By interpreting the SIFT/HOG family as the probabil-

ity density of sample images conditioned on the underly-

ing scene, with nuisances marginalized, and observing that

a single image does not afford proper marginalization, we

have been able to extend it using nuisance distributions

learned from multiple training samples of the same underly-

ing scene. The result is a multi-view extension of HoG that

has the same memory and run-time complexity as its single-

view counterpart, but better trades off sensitivity with dis-

criminative power, as shown empirically, even with the clas-

sifier trivialized.

Our method has several limitations: It is restricted to

static (or slowly-deforming) objects; it requires correspon-

dence in multiple views to be assembled (although it re-

duces to DSP-SIFT if only one image is available), and

is therefore sensitive to the performance of the tracking

(MV-HoG) or reconstruction (R-HoG) algorithm. The for-

mer also requires sufficient excitation conditions to be satis-

fied, and the latter requires sufficiently informative data for

multi-view stereo to operate, although if this is not the case

(for instance in textureless scenes), then by definition the

resulting descriptor is insensitive to nuisance factors; it is

also, of course, uninformative, as it describes a constant im-

age, and therefore this case is of no interest. It also requires

the camera to be calibrated, but for the same reason, this is

irrelevant as what matters is not that the reconstruction be

correct in the Euclidean sense, but that it yields consistent

reprojections.

Our empirical evaluation of R-HoG yields a performance

upper bound, as we use a better approximation of the re-

construction (from a structured light sensor or ground truth)

rather than multi-view stereo that, while possible, yielded

inconsistent results across different samples. As the quality

(and speed) of the latter improve, the difference between

the two will shrink. We have also neglected the effects

of sampling artifacts in the approximation of the ideal de-

scriptor. However, in practice we have found them to be of

second-order, compared to the approximation implicit in the

spatial independence of the locally-aggregated histograms.

Also, we wish to point out that ideal representations, in the

sense of sufficient statistics that are (maximally) invariant,

are not unique. However, they are equivalent from the in-

formational standpoint [30]. Analytical evaluation of our

approach is forthcoming [31].
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