
Dynamically Encoded Actions based on Spacetime Saliency

Christoph Feichtenhofer1 Axel Pinz1 Richard P. Wildes2

1Institute of Electrical Measurement and Measurement Signal Processing, TU Graz, Austria
2Department of Electrical Engineering and Computer Science, York University, Toronto, Canada

{feichtenhofer, axel.pinz}@tugraz.at wildes@cse.yorku.ca

Abstract

Human actions typically occur over a well localized ex-
tent in both space and time. Similarly, as typically cap-
tured in video, human actions have small spatiotemporal
support in image space. This paper capitalizes on these
observations by weighting feature pooling for action recog-
nition over those areas within a video where actions are
most likely to occur. To enable this operation, we define
a novel measure of spacetime saliency. The measure re-
lies on two observations regarding foreground motion of
human actors: They typically exhibit motion that contrasts
with that of their surrounding region and they are spatially
compact. By using the resulting definition of saliency dur-
ing feature pooling we show that action recognition perfor-
mance achieves state-of-the-art levels on three widely con-
sidered action recognition datasets. Our saliency weighted
pooling can be applied to essentially any locally defined
features and encodings thereof. Additionally, we demon-
strate that inclusion of locally aggregated spatiotemporal
energy features, which efficiently result as a by-product of
the saliency computation, further boosts performance over
reliance on standard action recognition features alone.

1. Introduction
Recently, a great amount of effort has addressed video-

based action recognition, with many approaches employ-
ing the Bags-of-visual-Word (BoW) principle consisting of
three general steps: 1) In the primitive feature extraction
step, local features are extracted either from interest points
or densely from regular locations by application of hand-
designed or learned filters. 2) A feature transformation step
generates intermediate representations that map local fea-
tures into more effective representations for the underlying
task (e.g. by using unsupervised or supervised learned vi-
sual words). 3) A pooling step accumulates transformed
features over pre-defined regions. Steps 2) and 3) may be
applied several times in a hierarchical manner (as e.g. in
deep learning methods [20, 23, 37]). Finally, these pooled,
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Figure 1. Our proposed measure of spacetime saliency to enhance
feature pooling for action recognition. (a)-(c) Input frames of
a video from the J-HMDB dataset [19] showing a catch action.
(d) Ground truth puppet mask annotation [19]. (e) The puppet
flow generated from ground truth body part annotations [55]. (f)
Our spacetime saliency measure, ST, for weighting the contribu-
tion of local spatiotemporal features for action recognition. Note
the large similarities between the user-annotated puppet flow and
our saliency measure which is computed efficiently from motion
statistics without any form of supervision.

transformed features are fed into a classifier for decision.
For action recognition, typical techniques used in the

BoW steps are: 1) SIFT [28], HOG3D [21], spacetime cor-
relation patches [36], Histograms of Optical Flow (HOF)
[25], Motion Boundary Histograms (MBH) [12], trajecto-
ries [42], and Spatiotemporal Oriented Energy (SOE) [13];
2) Locality-constrained Linear Coding (LLC) [45], Super
Vector (SV) [52], Vector of Locally Aggregated Descriptors
(VLAD) [17] and Fisher Vectors (FV) [32]; 3) average- and
max-pooling with geometry embedded by aggregating with
Spatial Pyramid Matching (SPM) [27, 50]. Classification is
mostly realized using a Support Vector Machine (SVM) [9].

Pooling typically has been performed across an entire
video, sometimes in conjunction with spatial pyramids [27].
Some research, however, has investigated selective pooling
over regions where actors are likely to be present. From
the perspective of what might be accomplished in principle,
research has shown that hand annotated ground truth indi-
cating where actors are present can improve action recogni-
tion [19] (see e.g. Figure 1(d) and 1(e)). From a more prac-
tical perspective, various approaches have been developed
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for automatic recovery of areas where actors are likely to be
present. Some of this research relies on explicit detection of
human actors or objects to be acted upon [34, 40]. Other re-
search has instead relied on grouping various dynamic mea-
surements (e.g. dense trajectories [35], SOEs [46], track-
lets [14]) with subsequent pooling restricted to the resulting
groups. Still other research has more abstractly defined and
realized a measure of actionness [6] by analogy with that of
objectness employed in conjunction with object detection
[8]; however, that work did not explicitly embed its measure
in a complete action recognition algorithm. Somewhat dif-
ferently, research has sought to discard feature codes that do
not arise from action regions via a two-stage process of im-
age stabilization and suppression of non-moving edges [22].
Other less related work, as it relies on human performance
data, used eye tracking to constrain action recognition [41].

The most closely related work to ours is previous re-
search that has made explicit use of notions of saliency to
capture foreground regions where actions are most likely
to occur. One such approach [3] made use of three types
of saliency measures to pool dense trajectory features [42].
In distinction from our work, they employ three very sim-
ple saliency measures (detected corners, image brightness
and motion magnitude) and focus their work on the learning
component of the system, where they propose a weighted
SVM classifier. Also related is work that combines colour
and motion gradients via a graph-based saliency measure
to select foreground actions [39]. Their approach relies
on computation of optical flow, while ours instead relies
on spatiotemporal oriented filtering, which can capture a
wider range of dynamic patterns (e.g. multiple motions in
a region of analysis where action parts overlap, and tempo-
ral flicker [13]) and also is less computationally expensive.
Their computational expense is further increased in com-
parison to ours by use of a 3D MRF optimization process to
generate foreground weights.

In this work we tackle the problem of selective pooling
from a different direction. We present a novel approach to
action recognition, based on spacetime saliency, as illus-
trated in Fig. 1, which shows a sequence of a person catch-
ing a ball as our running example. Our approach dynam-
ically encodes and pools primitive feature measurements
via a new definition of spacetime saliency weights based
on directional motion energy contrast and spatial variance
to capture actions. These complementary weights allow
the approach to reap the benefit of pooling over regions of
likely action occurrence so that recognition is uncorrupted
by irrelevant or distracting data. In general, the encoding
and pooling approach can be applied essentially to any lo-
cal feature measurements; here it is illustrated using vari-
ous combinations of improved dense trajectories [43] and a
novel extension to SOEs. Significantly, in empirical evalu-
ation the approach is competive with and can even exceed

the previous state-of-the-art in action recognition on three
standard datasets, including J-HMDB [19], HMDB51 [24]
and UCF101 [38].

2. Spacetime saliency-based feature encoding

This section documents the proposed approach to en-
coding and pooling of primitive features to capture actions.
Since the approach is largely applicable to any local feature
measurements, it initially is cast in terms of arbitrary feature
vectors, f(x), with x = (x, y, t)> image spacetime coordi-
nates. The essential notion is to define a local measure of
foreground motion saliency, S(x), that is highest in regions
likely to contain an action. In the remainder of this sec-
tion, we begin by defining our local measure of motion in
terms of spatiotemporal oriented energy filtering operations.
With these measurements in hand, we define our measure of
saliency, S(x). Finally, we show how to use this measure
to dynamically encode and pool features, f(x), to capture
actions.

2.1. Directional motion energy

There are three steps to the proposed approach to cap-
turing directional motion energy as the measurements over
which saliency is defined. The first step involves operating
on input video imagery with filters tuned for various spa-
tiotemporal orientations. The second step combines the raw
filter outputs to capture a specific set of motion directions.
The third step normalizes the combined filter outputs for
better photometric invariance.

The first step is realized by convolving the video
with 3D Gaussian third derivative filters, G(3)

3D(θi, σj) =

κ ∂3

∂θ3i
exp

(
−x

2+y2+t2

2σ2
j

)
, with θi and σj denoting the 3D

filter orientations and scales, respectively, and κ providing
normalization to yield

EST(x; θi, σj) = |G(3)
3D(θi, σj) ∗ V(x)|2, (1)

with the grayscale spacetime volume, V , indexed by x =
(x, y, t)>, formed by stacking all video frames of a se-
quence along the temporal axis, t. Subscript ST on EST

denotes spatiotemporal orientation.
The second step combines the spatiotemporal responses,

(1), to yield measures of motion information along certain
directions independent of spatial appearance, as follows. In
the frequency domain, motion occurs as a plane through the
origin [47]. Therefore, summation across a set of x− y − t
energy measurements consistent with a single frequency do-
main plane through the origin is indicative of the associated
spacetime orientation, e.g. motion direction, independent of
purely spatial orientation. Let the plane be defined by its
normal, n̂ = (nx, ny, nt)

>, then measurements of orienta-



tion consistent with this plane are given as

ET(x; n̂k, σj) =

N∑
i=0

EST(x; θi, σj), (2)

with θi one of N + 1 equally spaced orientations consistent
with the frequency domain plane andN = 3 the order of the
employed Gaussian derivative filters; for details see [13].
Here, the subscript T on ET serves to denote that the spa-
tiotemporal measurements have been “marginalized” with
respect to purely spatial orientation. To further suppress
noise and smooth the filter responses (2), they are blurred
by a 5-tap Gaussian G(1)

3D for subsequent processing.
The derived measurements, (2), can be taken as provid-

ing measures of the motion energy along the specified di-
rections, n̂. This interpretation is justified by Parseval’s
theorem [29], which states that the sum of the squared val-
ues over the spacetime domain is proportional to the sum
of the squared magnitude of the Fourier components over
the frequency domain. Thus, for every location, x, the local
motion energy ET(x; n̂k, σj) measures the power of local
structure along each considered orientation n̂k and scale σj .

Owing to the bandpass nature of the Gaussian deriva-
tive filters, the spatiotemporal orientation measurements are
invariant to additive photometric variations (e.g., as might
arise from local image brightness change in imaged scenes).
To provide additional invariance to multiplicative photo-
metric variations for the energy measurements, (2), each
motion direction selective measurement is normalized with
respect to the sum of all filter responses at that point as

ÊT(x; n̂k, σj) =
ET(x; n̂k, σj)∑M

m=1ET(x; n̂m, σj) + ε
, (3)

where M denotes the number of orientation measurements
considered, to yield a normalized set of measurements, ÊT.
Note that ε is a small constant added to the sum of the ener-
gies over all orientations. This bias operates as a noise floor
and avoids numerical instabilities at low overall energies.
To explicitly capture lack of oriented spacetime structure,
another feature channel

ÊεT(x;σj) =
ε∑M

m=1ET(x; n̂m, σj) + ε
, (4)

is added to the contrast-normalized filter responses, (3).
Note, e.g., that regions lacking oriented structure will have
the summation in (4) evaluate to 0; hence, ÊεT will tend to 1
and thereby indicate relative lack of structure.

Our motion energy decomposition of a video showing a
person catching a ball are shown in Fig. 2. The various pan-
els depict 1 pixel/frame motion energy along the rightward
n̂r = (1, 0, 1)>, leftward n̂l = (−1, 0, 1)>, upward n̂u =
(0, 1, 1)> and downward n̂d = (0,−1, 1)> directions as

well as horizontal and vertical flicker n̂hf = (1, 0, 0)> and
n̂vf = (0, 1, 0)> (infinite velocity), static n̂s = (0, 0, 1)>

(zero velocity) and unstructured energy.
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Figure 2. 10th (a), 15th (b) and 20th (c) frame of a video from the
HMDB dataset [24], showing a catch action. Normalized energies
(3) for the 15th frame are shown in (d)-(j) for various frequency
planes n̂: rightward (d), leftward (e), downward (g), upward (f),
horizontal flicker (h), vertical flicker (i) and static (j). Further, (k)
illustrates the no structure channel, (4).

2.2. Spacetime saliency

Our essential notion is to define a local measure of
saliency, S(x), that is highest in regions likely to contain an
action. To define this measure we rely on two general ob-
servations regarding actions. First, actions typically involve
a foreground motion that is distinct from the surrounding
background. Indeed, even in the presence of global camera
motion, a foreground action will exhibit a different (super-
imposed) pattern of motion. For example, a participant in a
sporting event will yield a motion that is distinct from that
of overall camera motion when he or she is engaged in their
sporting activity. We refer to this property as motion con-
trast. Second, action patterns typically are spatially com-
pact, while background motions are more widely distributed
across an image sequence. For example, even interactions
between two people (e.g. a hug, handshake or kiss) occupy
a relatively small portion of an image. We refer to this sec-
ond property as motion variance. In combination, these
two properties are used to define our measure of space-
time saliency, S(x), for capturing foreground action mo-
tion. While our notions of saliency being defined in terms of



both local contrast and global variance are present in other
definitions of image saliency (e.g., [7, 15, 31, 49, 54]), it
appears that our approach is the first to instantiate them in
terms of motion measurements for action recognition.

2.2.1 Motion contrast

As a preliminary step to computing motion contrast, we per-
form a coarse segmentation of the imagery to obtain regions
between which contrast is defined. In the current implemen-
tation, this segmentation is performed in terms of SLIC su-
perpixels [1], setting the average number of pixels in each
superpixel to 1000. Figures 3(a)-3(c) illustrate the segmen-
tations for the ball catching sequence shown earlier in Fig-
ure 2. To represent the temporal properties of each spatial
element i, we average the normalized energies within it

Ê
(i)
T (n̂, σj) =

1

‖Ωi‖
∑
x∈Ωi

ÊT(x; n̂, σj), (5)

with Ωi the spatial support of superpixel i. In performing
the energy aggregations, (5), since a region without struc-
ture cannot be distinguished from a static region, we com-
bine the static and unstructured channels of the elements

Ê
(i,s+ε)
T = Ê

(i)
T (n̂s, σj) + Ê

(i,ε)
T (σj) (6)

An example for the resulting energy distribution is shown
in Figures 3(d)-3(j).

Given two elements, i and j, their motion contrast is
calculated in terms of the difference between their motion
characteristics, i.e. distributions of directional motion en-
ergies, (3), weighted by their spatial distance. Difference
in motion characteristics is given in terms of the Hellinger
distance (also known as the Bhattacharyya distance) [2],

d
(i,j)
H =

∣∣∣∣∣∣∣∣√Ê(i)
T −

√
Ê

(j)
T

∣∣∣∣∣∣∣∣
2

. (7)

We choose the Hellinger distance, since the directional mo-
tion energies, ÊT, represent `1 normalized distributions,
which typically are compared more effectively by using his-
togram distance measures, compared to e.g. the Euclidean
distance. Note that the Hellinger distance can simply be
computed by element-wise square-rooting before comput-
ing the Euclidean distance [2].

Spatial distance plays into the saliency calculation via
multiplicative weighting with an exponential on the Eu-
clidean distance between the centre of mass coordinates of
the elements, i and j, x(i) and x(j), respectively,

e−||x
(i)−x(j)||22 . (8)

Finally, to obtain an overall measure of contrast for element
i, its pairwise contrast with all other elements, j, is summed

S(i)
T,CTR =

J∑
j=1

d
(i,j)
H e−||x

(i)−x(j)||22 , (9)

with J the total number of elements, i.e. superpixels. Ex-
ample contrast measurements, S(i)

T,CTR, for the ball catching
sequence are shown in Figure 3(k).

2.2.2 Spatial motion variance

The second measure of saliency is based on the common
observation that foreground motion typically occurs in a
spatially localized region of a video, whereas background
motion (including no motion, i.e. static) is typically widely
distributed over the video. Our second saliency measure
therefore ranks local regions as highly salient if the spatial
variance of their motion characteristics is low.

We define spatial variance of motion by analogy with the
standard definition of the variance of a (discrete random)
variable, xi, with probability mass function, p(xi), i.e. as∑n
i=1 p(x

i) × (xi − µ)2 with µ =
∑n
i=1 p(x

i) × xi. In
our analogy, we let xi = x(i) be the centroid coordinates
of segment i and p(xi) = e−d

(i,j)
H , i.e. an exponential in the

difference between the motion characteristics of elements i
and j, (7). Correspondingly, we define the correlate of the
expected value, µ, to be the weighted average position of
energy Ê(i)

T , (5), i.e.

ĒT
(i)

= γi

J∑
j=1

x(j)e−d
(i,j)
H , (10)

with weights e−d
(i,j)
H by direct analogy with the standard

definition of µ, J taken so the summation ranges over all
superpixels and γi = 1∑J

j=1 e
−d

(i,j)
H

necessitated by the need

for normalization. Thus, the definition of spatial variance
of motion of segement i becomes

E
(i)
VAR =

J∑
j=1

||x(j) − ĒT
(i)||22e−d

(i,j)
H . (11)

Our measure of spatial variance of motion, (11), in-
creases as the the motion of i becomes more spread out
across an image, while for saliency we seek the opposite.
Given that E(i)

VAR is normalized by construction, we arrive at
the desired measure simply by defining

S(i)
T,VAR = 1− E(i)

VAR. (12)

Example variance measurements, S(i)
T,VAR, for the ball catch-

ing sequence are shown in Figure 3(l).
Finally, the overall spacetime saliency is given by com-

bining the two saliency measures so far defined, to yield

S(i)
T =

S(i)
T,CTR + S(i)

T,VAR

2
. (13)

Example overall saliency measurements, S(i)
T , for the ball

catching sequence are shown in Figure 1(f); additional ex-
amples are provided on the project webpage.
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Figure 3. Mean RGB colours of SLIC superpixels for the 10th (a), 15th (b) and 20th (c) frame of a catch sequence from the HMDB
dataset; original frames shown in Fig. 2. The distribution of energies summed over superpixels are shown in (d)-(j). Image (d) shows
the combination of static and unstructured energy via summation; images (e)-(j) show mean oriented energies in the superpixels across
various directions, n̂: rightward (e), leftward (f), downward (h), upward (g), horizontal flicker (h), and vertical flicker (i). Images (k) and
(l) illustrate our resulting computations of motion contrast (9) and spatial motion variance (12), respectively.

2.3. Dynamic feature encoding via saliency

Our spacetime saliency measure, S(i)
T , can be used for

weighted pooling with any encoding method in the BoW
framework to enhance the contribution of local features
f(x) by their saliency ST(x). Here, ST(x) is derived di-
rectly from S(i)

T by having the saliency of x be defined as
that of the superpixel element i to which it belongs, i.e.

ST(x) = S(i)
T ; x ∈ Ωi, (14)

with Ωi the support of superpixel i, as before. Hence, fea-
tures from spatial regions that likely correspond to the fore-
ground motion of an action will have higher importance in
the encoding procedure. As a concrete example, we illus-
trate use with Fisher vector (FV) encoding, as it provides
the current state-of-the-art in video action recognition (e.g.
[4, 16, 26, 43, 48, 51]).

FVs [32, 33] capture the gradient of the log-likelihood of
the features, f(x), with respect to the parameters of a gen-
erative model. The model is learned on training descriptors
via a Gaussian Mixture Model, (GMM), p(f(x)|θ), with pa-
rameters θ = (wk, µk, σk)>, k = 1, . . . ,K, with wk being
the weight, µk the mean, and σk the diagonal covariance of
the kth mixture. Training of the GMM parameters is real-
ized with the expectation maximization algorithm. For each
of the k = 1, . . . ,K mixtures, the soft assignment for a fea-
ture vector f(x) ∈ RD is denoted by p(k|f(x),θ).

p(k|f(x),θ) =
wkpk(f(x)|µk, σk)∑K
j=1 wjpj(f(x)|µj , σj)

. (15)

An FV models mean and covariance gradients between fea-
tures {fl(x)}Ll=1 and the GMM modelled distribution

c(FV) = [c
(µ)
1 , c

(σ)
1 , . . . , c

(µ)
K , c

(σ)
K ]. (16)

To apply our saliency measure, ST(x), to FVs, we em-
ploy it as a local weighting function during aggregation of
the first- and second-order gradients:

c
(µ)
k =

1

N
√
wk

L∑
l=1

p(k|fl(x),θ)

(
fl(x)− µk

σk

)
ST(x),

(17)
and

c
(σ)
k =

1

N
√

2wk

L∑
l=1

p(k|fl(x),θ)

(
(fl(x)− µk)2

σ2
k

− 1

)
ST(x).

(18)
Thus, for each feature type, we calculate a FV that is explic-
itly weighted in favour of spacetime saliency where actions
are most likely to occur.

For classification, each resulting Fisher vector is used to
train one-vs-rest SVM classifiers. During recognition, each
feature type is processed by its one-vs-rest SVM classifier
to yield match scores for a test video. All SVM scores sub-
sequently are combined via averaging to yield a late fusion
classification according to the maximum score. While more
sophisticated fusion strategies could be considered (e.g. de-
termination of fusion weights via cross-validation on train-
ing data), such considerations are left for future research.



3. Primitive features
To emphasize the generality of the proposed approach,

the previous section cast saliency weighted encoding and
pooling in terms of of arbitrary features, f . This section
briefly documents the two kinds of features that are used in
the empirical evaluation of the approach presented in this
paper. The two classes of features are selected as they are
instances of two types used in BoW-based action recogni-
tion, as presented in the introduction: motion-based features
and spatiotemporal orientation features. Moreover, in em-
pirical evaluation they will be shown to be complementary
in improving recognition performance.

The employed motion-based features are Dense Trajec-
tories (DT) [42] or Improved Dense Trajectories (IDT) [43].
The descriptors employed in conjunction with these features
include HOG [11], HOF [25] and MBH [10] descriptors.
Details of the involved computations are exactly as in the
original DT and IDT work and are suppressed here in the
interest of space.

The employed spatiotemporal orientation features are a
novel extension to (appearance marginalized) Spatiotempo-
ral Oriented Energies (SOEs), originally applied to action
recognition elsewhere [13]. In particular, we make use of
multiscale oriented filtering to enrich the descriptor (the
previous approach used only a single scale) as well as differ-
ent subregion aggregations and normalization, which were
found to improve performance in preliminary experiments.
The resulting representation is well suited to capturing ac-
tions, as it allows the relative configuration of primitive
measurements within a neighborhood to be made explicit,
e.g. as useful in capturing the relative movements of limbs
or actors. We term these features Locally Aggregated Tem-
poral Energies (LATE).

Given local energy measurements, (3) and (4), defined
at each point, x, we construct the LATE descriptor as fol-
lows. We sample the local measurements with a spatiotem-
poral stride of ∆x by centering cuboids of size rx× ry× rt
around x. In order to capture the local neighborhood struc-
ture within each cuboid, these regions are then subdivided
into cx × cy × ct sub-regions over which energy measure-
ments are aggregated into histograms. Within each sub-
region the aggregation takes the form of a simple sum over
the sub-region’s support, Ω(x), to yield

EAGG(x; n̂k, σj) =
∑

x̃∈Ω(x)

ÊT(x̃; n̂k, σj). (19)

Next, for each sample point, x, a feature vector, fLATE(x), is
constructed by stacking the energy measurements, (19), that
were summed within each sub-region of the surrounding
cuboid. Finally, we apply RootSIFT normalization [2] (i.e.
square rooting each vector element) followed by `2 normal-
ization to the feature vector. LATE features are extracted

in this manner for several spatial scales, while leaving the
temporal scale unchanged.

4. Implementation details

We densely extract multi-scale LATE features in a scale-
space pyramid with |σ| = 5 different scales by downsam-
pling the image (i.e. spatial dimensions only) by factors of√

2. We use a spatiotemporal stride of ∆x = (x, y, t)> =
(8, 8, 16)> for dense feature extraction. The features are
computed over regions of size rx× ry × rt = 16× 16× 16
that are further divided into cx × cy × ct = 2 × 2 × 3
sub-regions for aggregation. Using 8 energy filterings,
parametrized by n̂ results in DLATE = 2 × 2 × 3 × 8 = 96
dimensional LATE descriptors. The 8 values of n̂ are cho-
sen to correspond to rightward n̂r = (1, 0, 1)>, leftward
n̂l = (−1, 0, 1)>, upward n̂u = (0, 1, 1)> and downward
n̂d = (0,−1, 1)> motion as well as horizontal and verti-
cal flicker n̂hf = (1, 0, 0)> and n̂vf = (0, 1, 0)> (infinite
velocity motion), static n̂s = (0, 0, 1)> (zero velocity mo-
tion) and unstructured energy ÊεT(x;σj), e.g. as illustrated
in Fig. 2. All DT and IDT parameters are used as in [42, 43]
and we use their publicly available code to extract the de-
scriptors.

For encoding, a random subset of features consisting of
100.000 descriptors from the training data, are used to learn
a visual vocabulary. A GMM with K = 256 mixtures is
fit to each of the subsampled training descriptors (HOG,
HOF, MBH and LATE). PCA whitening is applied to the
raw descriptors to reduce their dimension by a factor of two.
Data decorrelation via PCA also supports the diagonal co-
variance assumptions in the employed GMM [18]. Before
training the GMM all features are augmented with their nor-
malized x, y and t coordinates. After dynamic aggregation
of the local descriptors’ mean (17) and covariance (18) gra-
dients, the FVs are signed square-rooted and `2 normalized.
Square-rooting is applied twice, once to the raw encodings
and once again after `2 normalization [5].

For training, all feature vectors extracted from the train-
ing set are used to train one-vs-rest linear SVM classifiers.
The SVM’s regularization loss trade-off parameter is set to
C = 100. During classification, each feature type is clas-
sified by its one-vs-rest SVM to yield SVM scores for a
test video. All SVM predictions are subsequently combined
via averaging in a late fusion to yield an overall classifica-
tion of the video according to the maximum score. Note
that more advanced late fusion strategies than averaging can
be applied to improve performance further, e.g. by deter-
mining fusion weights via cross-validation on the training
data. Furthermore, fusion could also be carried out on the
descriptor level or on the encodings level which generally
achieves slightly higher performance [4] at the cost of pro-
cessing very high dimensional vectors for classification.



5. Empirical evaluation
5.1. Datasets and experimental protocols

We evaluate our approach on three widely considered ac-
tion recognition datasets. The first is HMDB51 [24], which
arguably is the most challenging action recognition dataset
to date. HMDB51 contains 6766 videos that have been an-
notated for 51 actions. The authors of the dataset also pro-
vide stabilized versions of the videos; however, we only use
the original videos in our experiments.

The second dataset we consider is J-HMDB [19], which
is a subset of HMDB51 consisting of 21 categories in-
volving only a single person in action. Nevertheless, this
dataset remains very challenging, since the excluded cat-
egories from the original HMDB51 are mostly facial ex-
pressions (e.g. smiling), interactions between people (e.g.
shaking hands) and actions that can only be done in a spe-
cific way and thus allow little intra-category variation (e.g.
a cartwheel).

The third dataset we evaluated our approach on is
UCF101 [38], which consists of 13320 realistic action
videos in 101 categories and thereby is the largest action
recognition dataset to date. It provides huge diversity in
terms of action classes, large variations in background, il-
lumination, camera motion and viewpoint, as well as ob-
ject appearance, scale and pose. However, in terms of scale
variations it is less challenging than HMDB due to a fixed
resolution of 320×240 for all clips.

For all three datasets, we use the same evaluation pro-
tocol as suggested by the authors, which consists of three
provided splits into training and test data. Performance is
reported as the mean average accuracy over the three splits.
We use exactly the same implementation parameters for
evaluation on all datasets, as documented in Sec. 4.

5.2. Comparison to ground truth (GT) annotations

Weighting Features Descriptors Acc.

GT-mask[19] DT MBH+HOG+HOF+Traj 60.4
GT-mask[19] GT-flow MBH+HOG+HOF+Traj 62.4

ST DT MBH+HOG+HOF 63.3
ST DT MBH+HOG+HOF+LATE 63.8
ST IDT MBH+HOG+HOF 64.1
ST IDT MBH+HOG+HOF+LATE 65.9

Table 1. Mean classification accuracy over three train/test splits on
J-HMDB. GT-mask means ground truth foreground puppet mask
and GT-flow means ground truth puppet flow annotations.

We begin by comparing our algorithm to an alternative
that makes use of groundtruth to restrict action recognition
to operate only in foreground regions where actions occur.
In this regard, Table 1 reports results for our approach on
the elaborately annotated J-HMDB dataset [19]. We inves-
tigate the effect of having ideal foreground separation of
the actor (GT-mask), as well as ideal trajectories based on

ground truth optical flow (GT-flow). The annotations are
provided in the form of a puppet mask as e.g. shown in Fig-
ure 1(d)) and the puppet flow as e.g. shown in Figure 1(e);
details on puppet annotations are available elsewhere [55].
It is seen that our algorithmically derived saliency weight
result at 64.1% mean accuracy actually surpasses that of
groundtruth foreground masks, 60.4%.

Interestingly, even giving all dense trajectory descriptors
(i.e. MBH+HOG+HOF+Traj) the advantage of being com-
puted from groundtruth primitives (i.e. GT-flow) only in-
creases their performance to 62.4% mean accuracy. This
slight increase by 2% suggests that all the trajectory descrip-
tors share similar information and therefore are not very
complementary [19]. In contrast, augmenting the IDT de-
scriptors with our novel LATE descriptor, (19), further im-
proves performance of our approach to 65.9%.

5.3. Comparison to alternative saliency approaches
Weighting Features Descriptors Accuracy

[39] STIP HOG+HOF 69.30

ST STIP HOG+HOF 77.33
ST Grid (Sec. 3) LATE 78.22
ST IDT MBH 89.78
ST IDT HOG 88.89
ST IDT HOF 84.89
ST IDT MBH+HOG+HOF 90.89
ST IDT + Grid (Sec. 3) MBH+HOG+HOF+LATE 92.22

Table 2. Mean classification accuracy for weighted encoding of
different features on a subset of HMDB51 [39], only including the
classes Biking, Golf swing, Pull ups, Horse riding and Basketball.

We now explicitly evaluate our spacetime saliency mea-
sure, ST, in comparison to two alternative approaches that
previously have employed algorithmically derived saliency
for action recognition.

The first alternative [39] is based on a graph-based no-
tion of saliency defined over colour and optical flow gradi-
ents, as noted in Sec. 1. The alternative approach was only
evaluated against a subset of HMDB restricted to the action
classes of Biking, Golf swing, Pull ups, Horse riding and
Basketball. Correpsondingly, our evaluation is restricted in
the same fashion in this comparison (note that this subset
is idiosyncratic, not that defined by J-HMDB). Results are
shown in Table 2. Results for the alternative were only re-
ported for features sampled according to STIP [25] with
HOG [11] and HOF [25] descriptors. A wider variety of
feature sampling and descriptor approaches are presented
for the proposed approach. In all cases, the proposed spa-
tiotemporal saliency-based approach outperforms the alter-
native, with improvements ranging between approximately
9 and 23% in mean accuracy. Moreover, it is notewor-
thy that LATE provides a more efficient representation of
video, e.g., for the entire HMDB51, the LATE descriptors
consume an order of magnitude less memory than the IDT
representation.

A second particularly interesting point of comparison



is to the other approach that makes use of spatiotemporal
saliency to weight feature pooling [3]. In that case, three
types of saliency measures are used to pool LLC [45] en-
coded DT [42] features in a spacetime pyramid and per-
form classification with a weighted SVM model, as dis-
cussed in Sec 1. In Table 4 one observes that this alter-
native method (DT + Saliency’13 [3]) is outperformed by
the proposed approach by 51.8 vs. 57.4 mean accuracy on
the entire HMDB51.

5.4. Evaluation of Feature Aggregation Schemes

Method Features Aggregation Descriptor
HOG HOF MBH

[42] DT FV 33.3 36.9 44.6
[51] DT SDV 33.1 37.3 44.3
[51] DT STP [51] 34.4 38.1 46.9
[51] DT SSCV 36.9 39.7 48.0
[43] IDT FV 40.2 48.9 52.1

Proposed DT ST 43.9 44.5 53.2
Proposed IDT ST 45.1 51.9 54.6

Table 3. Mean classification accuracy for different aggregation
schemes of various features and descriptors on HMDB51.

Recently, Yang and Tian [51] compared the performance
of different aggregation schemes for features sampled ac-
cording to dense trajectories (DT) [42] and Improved Dense
Trajectories (IDT) [43] with various descriptors on the
HMDB51 dataset. In Table 3, we show the performance
of our weighted FV aggregation based on motion saliency
for the same descriptors. Our approach is compared to those
originally presented for DT [42] and IDT [43], which also
used Fisher vector encoding (FV), but without any notion
of saliency weighting. We also show the performance of
additional novel feature aggregation approaches for action
recognition [51]. Interestingly, it is seen that merely chang-
ing the feature sampling from DT to IDT allows FV to
outperform the other aggregation schemes operating over
DT. Further improvement is had by including our saliency
weighted FVs, which yields the best overall performance.

5.5. Comparison with the state-of-the-art

In Table 4 we compare our approach against the state-
of-the-art in action recognition. For both the HMDB51
and UCF101 datasets, direct comparison between our re-
sults for IDT + ST (penultimate row) with those for the al-
ternatives documents the performance change provided by
inclusion of the proposed saliency weighting. It is seen that
improvement is provided on HMDB51, while results are es-
sentially the same as the best alternatives for UCF101 as
performance is becoming largely saturated on that dataset.
Interestingly, it also is seen that additional inclusion of the
LATE descriptors further boosts performance on all datasets
(bottom row), which suggests a degree of complementarity
between the novel LATE descriptors and the more standard

HMDB51 UCF101

DT + Saliency’13 [3] 51.8
DT + FV’13 [43] 52.2
DT + SSCV’14 [51] 53.9
DT + Actons’13 [53] 54.0 ST ConvNet’14 [20] 65.4
DT + MVSV’14 [4] 55.9 DT + MVSV’14 [4] 83.5
IDT + SFV’14 [30] 56.2 DT + bimodal’14 [48] 84.2
IDT + FV’13 [43] 57.2 IDT + FV’13 [44] 85.9
IDT + DaMN’14 [16] 57.9 IDT + DaMN’14 [16] 87.0
TS ConvNet’14 [37] 57.9 TS ConvNet’14 [37] 87.6

DT + ST 57.4 DT + ST 84.3
DT + LATE + ST 58.5 DT + LATE + ST 85.5
IDT + ST 61.5 IDT + ST 86.4
IDT + LATE + ST 62.2 IDT + LATE + ST 87.7

Table 4. Mean classification accuracy over three train/test splits on
HMDB51 and UCF101. The bottom four rows show results for the
proposed approach using DT and IDT feature sampling with HOG
+ HOF + MBH descriptors (DT + ST and IDT + ST) as well as
with further addition of LATE descriptors (DT + LATE + ST and
IDT + LATE + ST). Results for alternative approaches are shown
in the upper portion of the table.

HOG, HOF and MBH descriptors. Finally, it is notable that
by combing Fisher vectors (FV) with Stacked Fisher Vec-
tors (SFV) even further improvement can be had with IDT
to yield mean accuracy of 66.8% on HMDB [30], albeit at
the cost of doubling the representation dimensionality and
large computational complexity. Since our approach con-
sistently improves IDT with FV, we anticipate that it would
even further improve the FV/SFV combination.

6. Conclusion
This paper has presented a novel approach to pooling

within the BoW framework applied to action recognition.
Pooling is performed with a novel saliency-based weight-
ing function that has highest values in regions of foreground
motion where an action is most likely to occur. The ap-
proach can be applied in conjunction with any locally de-
fined features and encoding methods. Here, it has been
instantiated using Improved Dense Trajectories (IDT) and
novel Locally Aggregated Temporal Energy (LATE) fea-
tures. LATE involves neighborhood aggregation of local
temporal energy to capture the spatiotemporal layout of
the individual measurements, e.g. to capture the relative ar-
rangement of different action parts. During encoding we
enhance the contribution of local features by weighting with
their respective saliency.

The overall action recognition system is competitive
with and can even improve over the previous state-of-the-art
on the HMDB51, J-HMDB and UCF101 datasets. These re-
sults suggest the importance of explicitly concentrating pro-
cessing on regions where an action is likely to occur during
recognition.
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[31] F. Perazzi, P. Krähenbühl, Y. Pritch, and A. Hornung.
Saliency filters: Contrast based filtering for salient region
detection. In Proc. CVPR, 2012.

[32] F. Perronnin and C. Dance. Fisher kernels on visual vocabu-
laries for image categorization. In Proc. CVPR, 2007.

[33] F. Perronnin, J. Sánchez, and T. Mensink. Improving the
Fisher kernel for large-scale image classification. In Proc.
ECCV, 2010.

[34] A. Prest, C. Schmid, and V. Ferrari. Weakly supervised
learning of interactions between humans and objects. PAMI,
34(3):601–614, 2012.

[35] M. Raptis, I. Kokkinos, and S. Soatto. Discovering discrim-
inative action parts from mid-level video representations. In
Proc. BMVC, 2013.

[36] E. Shechtman and M. Irani. Space-time behavior-based
correlation-or-how to tell if two underlying motion fields are
similar without computing them? PAMI, 29(11):2045–2056,
2007.

[37] K. Simonyan and A. Zisserman. Two-stream convolutional
networks for action recognition in videos. In Proc. NIPS,
2014.

[38] K. Soomro, A. R. Zamir, and M. Shah. UCF101: A dataset
of 101 human actions calsses from videos in the wild. Tech-
nical Report CRCV-TR-12-01, UCF Center for Research in
Computer Vision, 2012.

[39] W. Sultani and I. Saleemi. Human action recognition across
datasets by foreground-weighted histogram decomposition.
In Proc. CVPR, 2014.

[40] M. Ullah, S. Parizi, and I. Laptev. Improving bag-of-features
action recognition with non-local cues. In Proc. BMVC,
2010.

[41] E. Vig, M. Door, and D. Cox. Space-variant descriptor
sampling for action recognition based on saliency and eye-
movements. In Proc. ECCV, 2012.
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