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Abstract

Depth cameras have helped commoditize 3D digitization
of the real-world. It is now feasible to use a single Kinect-
like camera to scan in an entire building or other large-scale
scenes. At large scales, however, there is an inherent chal-
lenge of dealing with distortions and drift due to accumu-
lated pose estimation errors. Existing techniques suffer from
one or more of the following: a) requiring an expensive
offline global optimization step taking hours to compute;
b) needing a full second pass over the input depth frames
to correct for accumulated errors; c) relying on RGB data
alongside depth data to optimize poses; or d) requiring the
user to create explicit loop closures to allow gross alignment
errors to be resolved. In this paper, we present a method that
addresses all of these issues. Our method supports online
model correction, without needing to reprocess or store any
input depth data. Even while performing global correction of
a large 3D model, our method takes only minutes rather than
hours to compute. Our model does not require any explicit
loop closures to be detected and, finally, relies on depth data
alone, allowing operation in low-lighting conditions. We
show qualitative results on many large scale scenes, high-
lighting the lack of error and drift in our reconstructions.
We compare to state of the art techniques and demonstrate
large-scale dense surface reconstruction “in the dark”, a
capability not offered by RGB-D techniques.

1. Introduction
The availability of cheap depth cameras has transformed

the face of 3D reconstruction. Over the past few years,
researchers have demonstrated real-time high-quality 3D sur-
face reconstructions [14, 10], even at large scales [4, 21, 15].
However, with these new capabilities have also come new
challenges. One particular issue is of sensor drift which often
occurs when scanning larger scenes. Here accumulation of

frame-to-frame pose estimation errors results in distortions
in the reconstructed 3D models.

To address these issues, researchers have explored a num-
ber of approaches for globally optimizing 3D models. The
problem of bundle adjustment across RGB images is well
understood [19] and some techniques combine depth data
with RGB to directly build on top of this concept, adding
depth data as an additional prior in the optimization step
[9]. Others systems more explicitly detect loop closures and
distribute the accumulated error across the underlying pose
graph [18, 7].

More recently, Zhou and Koltun [23, 24] have demon-
strated impressive globally optimized 3D surface models
that extend the frame-to-model incremental tracking and re-
construction technique utilized in KinectFusion [14, 10, 6]
to support drift-free reconstructions of larger scenes. In their
first work, [23], they explicitly analyze pose trajectories to
extract points of interest. These form sub-graphs around
which errors can be distributed, and connections with other
nodes formed. In their follow-up work, [24], non-rigid warps
are computed across fragments of KinectFusion scans to sup-
port globally consistent large-scale models. Whilst resulting
in compelling results, this body of work suffers from a num-
ber of issues. Firstly, these global optimization methods are
expensive, requiring hours if not tens of hours to reconstruct
a single model. Secondly, these approaches can require mul-
tiple passes of the depth data, meaning that the depth data
needs to be stored, and reprocessed after global registration
[23]. Thirdly, this approach uses an RGB-D SLAM system
[7] in order to initially optimize the pose trajectory. This
reliance on an initial bundle adjustment step essentially hin-
ders the use of the system in challenging lighting conditions.
This ultimately leads to an experience that cannot support
online correction during scene scanning.

Similarly to [23, 24], Henry et al. [8] propose to glob-
ally align smaller volumes. These are, though, the result
of an online segmentation of the scene in non-overlapping



locally planar surfaces, called Patch Volumes, which are
then rendered to permit camera tracking by ICP. Instead,
in terms of online correction of dense models, the work of
Whelan et al. [20] employs a deformation graph connected
to a pose graph. As poses are refined, vertices on the de-
formation graph are moved, and a global optimization that
maintains local rigidity is performed on all other vertices
and propagated to the mesh via linear blend skinning. This
approach, however, relies on more explicit loop closures to
be performed by the user, to distribute the accumulated er-
ror across the underlying pose graph, greatly limiting usage
scenarios.

In this paper, we present a new technique for global op-
timization of large-scale volumetric 3D models. Unlike
existing systems, our global optimization method can be
performed in minutes directly on the subvolumes that are
captured live, without the need to reprocess, re-fuse or store
existing input data. Our method does not require an explicit
loop closure in order to redistribute error, as such sub-chains
of volumes can be optimized over in an online manner. Al-
though very large exploration may require place recognition
techniques, our approach can still handle common large scale
scenarios without relying on visual features.

Compared to patch volumes [8], our subvolumes do not
require an explicit segmentation step, being rather a byprod-
uct of the real-time, low-drift, camera tracking algorithm.
Also, our subvolumes do overlap, which enables on-line
surface alignment, while in [8] a global optimization is per-
formed only when a loop closure is detected by matching
visual features between RGB images. Conversely, we do
not carry out loop closure detection and can keep tracking
at video rate while simultaneously optimizing subvolumes’
poses. Instead, [8] stops camera tracking while optimizing
patch volumes’ poses, which requires typically from tens of
ms to tens of seconds.

Finally our method does not rely on any RGB data, at any
stage of the pipeline (even initialization). This means that
our system can support large-scale corrected models, even in
low-lighting conditions or other challenging conditions such
as in complete darkness. We show qualitative results in many
large scale scenes, highlighting minimal drifts and errors.
We compare to state of the art techniques and demonstrate
reconstruction that is on a par with these more expensive
globally optimized methods [23], whilst outperforming real-
time moving volume techniques [16, 21, 4, 15].

2. Preliminaries
We are given a sequence of depth images {Dt}Mt=1 where

z = Dt (x, y) is the depth of the closest scene point on the
ray through sensor pixel (x, y) in frame t, evaluated by bi-
linear interpolation for non-integral (x, y) and returning a
sentinel value for locations where sensor data is not avail-
able. Associated with each depth frame is a transformation

Tt encoding the sensor position and relating all measure-
ments to a global 3D coordinate system. Given accurate
estimates of Tt and sufficiently large memory, it would be
possible to compute a global signed distance function (SDF)
representation of the sequence and extract a surface repre-
sentation [6]. In practice, however, the transformations are
locally reliable, but subject to drift over time, and often there
is insufficient memory to form the global SDF, even using
octree-like compression techniques [22, 4, 17].

A key tool in this work is the weighted truncated signed
distance function (TSDF) representation [6]. This is a pair of
functions (F,W ) from R3 → R where F (u) is the distance
from u to the zero level set of F , while the weighting func-
tion W (u) encodes a measure of confidence in the value of
F at u, which may be defined in a number of ways [3]. Typ-
ical representations of such functions are through trilinear
interpolation on a voxel grid, from which the zero level set
can be converted to a triangulated mesh through Marching
Cubes [12]. At any point u on a TSDF F we define the
normalized gradient of F

∇̂F (u) ,
∇F (u)

‖∇F (u)‖
(1)

returning an undefined value where F is constant.

3. Problem Statement
Our proposal builds upon the successful KinectFusion

framework [14, 10]. Accordingly, the model of the envi-
ronment is a TSDF estimated in a 3D voxel grid and stored
onto the GPU global memory as a linear array. However,
similarly to [3], rather than relying on ICP alignment we
track the camera by direct minimization of the distance of
sensed points in the current frame to the surface using the
TSDF.

To fuse depth measurements, every voxel is projected
onto the image plane and compared to the sensed depth
value:

∆z (u, t) = Dt

(
π
(
T−1
t ∗ u

))
− ζ

(
T−1
t ∗ u

)
(2)

where π is a R3 → R2 function which projects 3D points
onto the image plane and ζ simply extracts the third coor-
dinate of its argument, i.e. ζ (x, y, z) = z. The TSDF is
updated if ∆z > −δ, where δ represents the truncation dis-
tance. Then, the updated TSDF (F new,W new) is given
by

F new (u) =
F (u)W (u) + min

(
1, ∆z(u,t)

δ

)
W (u) + 1

(3)

W new (u) = W (u) + 1 (4)

Though delivering impressive, state-of-the-art surface
reconstructions of small to medium sized workspaces, it is



well known that KinectFusion does not scale well to large-
size environments, the reason being twofold. Firstly, dense
estimation of the signed distance function requires an amount
of GPU memory that limits applicability beyond medium-
size rooms. Secondly, large exploratory sequences inevitably
lead to drift in trajectory estimation that causes fusion of
misaligned measurements into the global TSDF model. This,
in turn, further deteriorates the tracking process.

4. Low-drift Local Modeling

To overcome the above issues and be able to scan large
environments with a KinectFusion-like framework, we adopt
a simple variant of the moving volume approach described
in [21, 16, 4]. Rather than relying on a fixed volumetric
model, these methods fuse TSDF measurements into an ac-
tive volume which is moved alongside the estimated camera
trajectory. In our approach, we initially place the camera
at the center of the active volume and, when the estimated
camera translation differs from the volume center more than
a given threshold, shift the active volume. For efficiency
reasons, we allow only shifts by multiples of the voxel size,
as proposed by Whelan et al. [21], and avoid resampling of
the function as proposed by Roth and Vona [16]. However,
unlike other approaches [4, 21], we do not stream voxels nor
triangulated points to/from the host memory as a result of a
volume shift. Instead, as it will be described later, we keep a
global model of the environment made out of a collection of
local TSDF models.

Based on the observation that drift is typically small over
a short time interval, our active volume is built from the last
K depth frames only. To avoid applying Eq. (3) and Eq. (4)
K times at each step to construct the model, after fusion of
the last TSDF measurements we simply erode the model by
undoing the application of these equations for the (t−K)’th
frame. Accordingly, the currently tracked frame Dt and its
estimated pose Tt are pushed into a FIFO queue whileDt−K
and Tt−K get popped and their associated measurements
removed from the TSDF volume by applying

F new (u) =
F (u)W (u)−min

(
1, ∆z(u,t−K)

δ

)
W (u)− 1

(5)

W new (u) = W (u)− 1 (6)

As long as fewer than K frames have been processed, no
erosion is performed on the volume. After integration of the
K’th frame, i.e. the queue is filled, the whole active volume
is copied from the GPU to the host memory and saved as the
first subvolume. Then, the erosion process runs continuously
as the active volume integrates new measurements. We
do, however, keep track of how many frames have been
integrated and, every K such frames, we simply copy the
active volume to create a subvolume before proceeding.

(a) (b)

Figure 1: The inherent drift introduced in camera pose esti-
mation by a moving volume method often leads to tracking
failures (a) or inconsistencies due to fusion of misaligned
TSDF measurements (b).

We believe that the proposed method in itself is valuable
for creating a collection of low-drift local reconstructions
of the explored environment. Indeed, even when closing
the loop of a medium-size room, measurements integrated
at the beginning of the sequence can be misaligned and
a standard moving volume approach would either fail to
track or attempt to fuse misaligned TSDF measurements
(see Fig. 1), inevitably corrupting the final reconstruction.
Instead, the erosion procedure allows us to continuously
track the sensors pose against a locally reliable model of
the local space. This reduces the possible sources of error
that may yield failures with any specific tracking method
adopted. Moreover, the active volume on the GPU memory
corresponds to the fusion of a particular subset of camera
frames, i.e. the last K ones, so it is an ideal candidate for
retrieving low-drift local reconstructions, i.e. subvolumes,
as suggested by Zhou et al. [24]. Unlike [24], though, our
approach is fully integrated in the tracking pipeline and, as
its complexity depends only on the number voxels, it can
operate in real-time.

To this end, we reduce the time needed to copy a complete
volume from the GPU to the host memory by subdividing
the volume grid into blocks of 16× 16× 16 voxels. Then:

• blocks including only null voxels, i.e. having zero
weight, are immediately discarded;

• blocks made out truncated distance values are marked
as empty and only the maximum weight is retained;

• blocks containing at least one non-truncated distance
value are completely downloaded.

Since not all the blocks are taken, this representation exploits
the sparsity of the TSDF, but the final structure is not de-
signed for fast data queries. Therefore, on the host side we
create a multi-resolution grid by further grouping blocks into
4×4×4 bricks. Then, if a brick includes only empty blocks,
again only the maximum weight is saved. In Fig. 2 we show
triangulated meshes extracted from typical subvolumes with



(a) Subv. 0, leftmost column. (b) Subv. 10, front wall.

(c) Subv. 20, rightmost column. (d) Subv. 45, leftmost column.

Figure 2: A subvolume is a TSDF produced by fusing K
depth frames. Here we show surfaces extracted from subvol-
umes obtained on the stonewall sequence (cfr. the leftmost
image in Fig. 8).

K = 50. The corresponding final reconstruction given by
registration and blending (see Sec. 5 and 6) is depicted in
the leftmost image of Fig. 8.

5. Subvolume Registration
As described in the previous section, every K frames a

new subvolume (Fj ,Wj) is produced and saved on the host
main memory together with its pose, referred to hereinafter
as Vj . Such poses are initially translation-only (cfr. center
image of Fig. 3) and, although each subvolume enjoys low-
drift ”locally”, the collection of subvolumes resulting from a
large exploratory motion would inevitably exhibit drift and
present misalignments. As shown in Fig. 3, we handle this
issue by globally optimizing subvolumes’ poses each time
a new subvolume is spawned, while non-rigid deformations
are addressed through a novel volume blending scheme (see
Sec. 6). It is noteworthy to point out that the result of this
optimization is not required by the camera tracking module,
which can therefore keep operating in real-time and push new
subvolumes into a shared buffer allowing pose optimization
to be run as a concurrent process.

The proposed optimization framework is inspired by the
well-known ICP method [5, 2]. A cost function is set up as
follows:

1. for each subvolume, the zero-level set is extracted so to
attain a set of points together with their normals;

2. for each subvolume, we consider its bounding box and
find those other subvolumes having an overlapping

Figure 3: Subvolume Fj : R3 → [−1, 1] is a truncated
signed distance function associated with a global transforma-
tion Vj . The estimated subvolumes are initially axis-aligned
(i.e. Vj is translation-only), while the optimized transforma-
tions are general isometries. Due to sensor noise, though,
true subvolumes are often subjected to a non-rigid transfor-
mation.

bounding box;

3. for each point in the current subvolume’s point set, we
search for correspondences by following the gradient
of the distance function in overlapping subvolumes (see
Subsec. 5.1);

4. each valid correspondence introduces a point-to-plane
distance constraint in the optimization problem [5] (see
Subsec. 5.2);

5. if a pose appears as underconstrained, at least one pose-
to-pose error term is added to ensure global consistency
(see Subsec. 5.2);

Then, we optimize for subvolumes’ poses by minimizing a
suitable cost function. The pose of the lastly created sub-
volume is kept fixed during the optimization to get the final
estimates in the same reference frame as the tracked camera.
Accordingly, the next subvolume can be immediately placed
in a position consistent with previous subvolume’s pose, pro-
vided, of course, that camera tracking has not undergone a
failure. The cost function is minimized until convergence,
then a new set of correspondences is computed and the cost
minimized again. The whole match/optimize process is it-
erated until final convergence. The next two subsections
delineate the point matching stage and the optimization prob-
lem, respectively.

5.1. The Correspondence Set

Given a subvolume (Fj ,Wj), with zero-level set points{
p

(j)
i

}
and computed normals n(j)

i = ∇̂Fj
(
p

(j)
i

)
, we de-

fine the minimal bounding box enclosing all its valid voxels
and find the subset S(j) of subvolumes having overlapping
bounding boxes. Then, for each point p(j)

i we traverse the
candidate set and, for every k ∈ S(j), compute the distance



Fa

Fb

Figure 4: From each point (black diamonds) on the zero-
level set (yellow) of Fb, we move in the direction of ∇̂Fa to
find a match (black circles).

function and its gradient at V−1
k ∗Vj ∗p(j)

i by trilinear inter-
polation (see Fig. 4). If defined, a match is set for this point
as follows:

qjik = V−1
k ∗Vj ∗ p(j)

i −

Fk

(
V−1
k ∗Vj ∗ p(j)

i

)
∇̂Fk

(
V−1
k ∗Vj ∗ p(j)

i

)
. (7)

The procedure is then repeated for all sampled points in all
subvolumes.

5.2. The Optimization Problem

Given the correspondence set, a cost function is built and
minimized. For each point pair

(
p

(j)
i ,qjik

)
we note that,

while we have no guarantees about the shape of Fk at qjik ,
we already have estimated the normal vector for p(j)

i in Fj .
Therefore, we derive a point-to-plane constraint as:

ejik =
(
p

(j)
i −V−1

j ∗Vk ∗ qjik
)
· n(j)

i . (8)

The minimization problem is finally written as

arg min
{V1,...,VN}

∑
j

∑
i

∑
k

∥∥∥ejik ∥∥∥2

(9)

and solved by Ceres [1] with a Levenberg-Marquardt
method [11, 13].

It could happen that the correspondence set for a par-
ticular subvolume, say Fh, is empty or it has a very low
cardinality, leading to an underconstrained problem or to a
poor pose estimate. In that case, pose-to-pose constraints
can be introduced in order to reinforce the estimate given
by camera tracking. Up to two error terms are added, i.e.
one connecting to the previous subvolume, if any, and one
connecting to the following subvolume, if any. If Zh−1,h is
the tracker estimate which maps points from Fh reference
frame to Fh−1 reference frame, the associated pose-to-pose
error term is given by:

eh−1,h = Φ log
(
Zh−1,h ∗V−1

h ∗Vh−1

)
, (10)

where log : SE3→ se3 is the logarithmic map and Φ a 6×6
stiffness matrix. We empirically set Φ to the identity matrix.
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Figure 5: Building a single global volume by subvolume av-
eraging forces to traverse the whole collection even for zero-
weight voxels. Therefore, evaluation of the global volume
shown on the left is faster than the one on right including the
same subvolumes with the same extent but different poses.

6. Volume Blending
In the previous sections we have described how subvol-

umes are created and their poses optimized to obtain a correct
reconstruction of a large environment. However, the differ-
ent data sources of the subvolumes generate slightly different
positions of the distance function’s zero-level set, mainly
due to the limited noise filtering achievable through only
K integrations. Hence, multiple overlapped surfaces and
artifacts, such as non-rigid deformations, may appear. To ad-
dress this issue, a possible approach would be the estimation
of a global volume FG extending across the space covered
by all the subvolumes. We could define such global TSDF
as the fusion of all the depth frames through the subvolumes’
TSDF trilinear interpolation:

FG (u) =

∑
j Fj

(
V−1
j ∗ u

)
Wj

(
V−1
j ∗ u

)∑
jWj

(
V−1
j ∗ u

) . (11)

However, resampling the subvolumes into a new global vol-
ume requires traversing the whole collection even though the
queried position is out of all the bounding boxes, i.e. it is a
null voxel. Indeed, this can be discovered only by querying
every single subvolume. Moreover, the size of the global
volume is directly dependent on the camera path, so that an
extensive exploration might produce a large amount of null
voxels (see Fig. 5). Therefore, computation time is affected
more by the relative position of subvolumes rather than by
their number and extent.

To address and overcome this problem, we avoid compu-
tation of a global volume and instead propose to blend each
volume with its neighbors. Let (Fj ,Wj) be a subvolume
and S(j) the subvolumes having bounding boxes that overlap
with its own. Then at each voxel u the TSDF is updated as:

Fj (u) =∑
k Fk

(
V−1
k ∗Vj ∗ u

)
Wk

(
V−1
k ∗Vj ∗ u

)∑
kWk

(
V−1
k ∗Vj ∗ u

) , (12)



Figure 6: Reconstruction of the burghers sequence by the
implemented moving volume method.

Figure 7: Optimization statistics for stonewall (blue squares),
copyroom (red triangles) and bookshop1 (yellow circles).

where k ∈ S(j). Also, for higher speed, we skip the com-
putation if Wj (u) = 0 or Fj (u) = 1. On one hand, if the
subvolumes do not overlap, the time required is zero. On
the other hand, if all the subvolumes were overlapped, the
complexity would be quadratic in the number of subvolumes.
However, we experimentally found that the computation
time is strongly dominated by the total number of voxels,
rather than the amount of overlapping, so that the blend-
ing approach is roughly five to ten times faster than global
volume resampling.

It is worth pointing out here that the volume blending
process is only aimed at improving the final surface recon-
struction, but neither the camera tracking nor the subvolume
mapping stages require this feature to work properly.

Table 1: Statistics for the dataset used in our experiments.

Sequence #frames #subvolumes
stonewall 2700 55
copyroom 5490 110

lounge 3000 61
burghers 11230 225

dark room 4841 97
bookshop1 5000 101
bookshop2 5700 115

Table 2: Our method (top table) requires significantly less
time than Zhou and Koltun [23] (bottom table) for both
pose optimization and final surface reconstruction. POI det.:
Points-Of-Interest detection; Reg.: fragment registration;
Opt.: pose optimization.

Sequence
Pose Optimization

Volume Blending
Min Max Average

stonewall 0.154s 30.136s 5.388s 3m 3s
copyroom 0.085s 35.297s 11.238s 10m 30s

lounge 0.084s 15.149s 5.830s 4m 3s
burghers 0.047s 5m 4s 1m 30s 22m 27s

dark room 0.064s 45.882s 12.416s 7m 17s

Sequence
Pose Optimization Depth Map

IntegrationPOI det. Reg. Opt. Total
stonewall 1m 17m 1h 54m 2h 12m 21m
copyroom 1m 14m 52m 1h 7m 47m

lounge 1m 12m 16m 29m 40m
burghers 5m 40m 10m 55m 2h 1m

dark room – – – – –

7. Results

We devised several qualitative experiments to assess the
quality of our reconstructions comparatively to existing meth-
ods, such as, in particular, an implementation of a moving
volume approach with voxel streaming and the method pro-
posed in [23]. As for the RGB-D data, we have considered
four sequences from the dataset introduced by Zhou and
Koltun [23], namely stonewall, copyroom, lounge, burghers,
and three sequences captured by ourselves: dark room, book-
shop1, bookshop2. The number of frames in each sequence
is reported in Tab. 1 together with the number of subvolumes
spawned by our method.

Fig. 1 and Fig. 6 show reconstructions attained by the
moving volume method. As already pointed out in Sec. 4,
both Figures highlight how the accumulated drift causes
misalignments showing up as artifacts in the final reconstruc-
tion. For the sake of comparison, the results achieved by our
method can be observed in Fig. 8, 9 and 10a.



Figure 8: Reconstruction of stonewall sequence given by our approach (on the left) and by [23] (on the right). While preserving
high frequency details, some artifacts remain in [23], e.g. above the capital.

Figure 9: Reconstruction of copyroom sequence given by our approach (on the left) and by [23] (on the right).

As regards the comparison to [23], Fig. 8 and 9 point out
that their reconstructions tend to include finer details but, at
the same time, more high-frequency artifacts, such as, e.g.,
the wall above the pillar in Fig. 8 and the ground floor in
Fig. 9. Overall, the quality of the reconstructions provided
by the two methods are comparable, although, unlike our
proposal, [23] uses an off-line post-processing method rely-
ing on an external tracking and mapping engine, i.e. RGB-D
SLAM [7], rather than a full-fledged on-line SLAM system.
Therefore, low-light conditions or even complete darkness
would not allow [23] to operate due to the lack of descriptive
visual features to match. In contrast, our system is able to
recover the full geometry of dark room explored in com-
plete darkness, as shown in Fig. 10b. We do not show any
RGB frame from dark room because they are almost entirely
black.

Besides, we report three additional reconstructions. The
lounge sequence in Fig. 10a is a straightforward sequence,
allowing us to show the quality reached by our method. The
bookshop1 and bookshop2 sequences in Fig. 10c deal with
mapping large environments.

To analyze the impact on performances of the optimiza-
tion step, we consider the number of required iterations and
the time spent for pose optimization as the number of subvol-
umes increase. Fig. 7 reports these data for three sequences,
i.e. stonewall, where the camera moves around an object,
copyroom, with the camera performing a complete loop in-
side a room, and bookshop1, an exploratory sequence. As
shown, the number of iterations (top chart) is somehow con-
stant and low, whereas the time spent (bottom chart) seems to
increase linearly with the number of optimized subvolumes’
poses. Moreover, the optimization step usually requires less
than a minute, which is far less than the time needed by other
high quality reconstruction methods, e.g. [23].

Finally, Tab. 2, provides a detailed comparison between
the computational cost of our method and that of [23]. It is
worth highlighting that our method triggers pose optimiza-
tion upon subvolume spawning, and each such run has a
different computational effort. Conversely, [23] carries out
a single global optimization based on the initial guess pro-
vided by RGB-D SLAM [7]. However, even the maximum
time required by our pose optimization is much less than that
required by [23], the latter being also unable to process the
dark room sequence due to the lack of RGB data. It is also
worth pointing out that our volume blending step is from 5 to
10 times faster than the global volume resampling deployed
by [23].

8. Conclusions And Future Work

We have presented a novel technique for addressing large-
scale globally optimized surface reconstruction and track-
ing. Our tracking framework builds upon the well-known
KinectFusion algorithm. However, while integrating new
measurements, old frames are eroded, thus keeping a low-
drift volume built from the last K frames only. The erosion
process has a complexity dependent on the number of voxels,
so the whole tracking algorithm still runs in real-time. The
choice of K may turn out critical in a real-world scenario,
as it defines what is to be considered a low-drift local re-
construction. A small K could hinder the noise attenuation
brought in by integration of multiple frames, whereas a large
K could introduce into the volume misaligned TSDF mea-
surements. Clearly, the optimum value should be related to
the camera motion and we plan to better investigate on this
issue in our future work.

Online subvolumes are the second key concept of this pa-
per. As shown, they provide a seamless and almost drift-free
dense representation of the environment and enable large



(a) Burghers (left) and lounge (right) sequences.

(b) Top view (left) and a detail (right) from the dark room sequence.

(c) Bookshop1 (left) and bookshop2 (right) sequences.

Figure 10: Final reconstructions achieved by our method.

scale surface reconstruction through a simple but effective
iterative solution. The proposed method works online, and
allows fused volumes to continuously correct based on new
measurements. However, each run requires an amount of
time which increases as new subvolumes are spawned, be-
cause a global optimization is always performed. A valuable
alternative in the future could be to solve only local prob-
lems, including building cost functions for a subset of the
subvolumes’ poses, thus limiting the maximum optimization
time.

Finally, we have proposed to finely reconstruct the ex-
plored 3D models by blending together the subvolumes,
instead of re-sampling a new global TSDF model. On one

hand, we have shown how this technique yields state-of-art
surface reconstruction at a fraction of the cost required by
previous proposals. On the other hand, a blended subvolume
could be used in the future to populate the active volume
with reliable TSDF measurements which could then reduce
the drift introduced by the camera tracking algorithm.

In all, this provides new capabilities for drift-free online
corrected 3D surface representations at large scales, which
link together the advantages of volumetric techniques for
cheap and high quality depth map fusion, with more tractable
global optimization methods, which remove the reliance on
heavy offline computation, preprocessing of the raw depth
data or RGB data.
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