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Abstract

Outliers pose a problem in all real structure from mo-
tion systems. Due to the use of automatic matching methods
one has to expect that a (sometimes very large) portion of
the detected correspondences can be incorrect. In this pa-
per we propose a method that estimates the relative trans-
lation between two cameras and simultaneously maximizes
the number of inlier correspondences.

Traditionally, outlier removal tasks have been addressed
using RANSAC approaches. However, these are random in
nature and offer no guarantees of finding a good solution.
If the amount of mismatches is large, the approach becomes
costly because of the need to evaluate a large number of
random samples. In contrast, our approach is based on the
branch and bound methodology which guarantees that an
optimal solution will be found. While most optimal methods
trade speed for optimality, the proposed algorithm has com-
petitive running times on problem sizes well beyond what is
common in practice. Experiments on both real and synthetic
data show that the method outperforms state-of-the-art al-
ternatives, including RANSAC, in terms of solution qual-
ity. In addition, the approach is shown to be faster than
RANSAC in settings with a large amount of outliers.

1. Introduction
Two-view relative pose estimation is one of the corner-

stone problems in computer vision. Most structure from
motion pipelines solve it as a subproblem in order to build
an overall reconstruction. In this paper, we study the spe-
cial case of translation estimation between two views. Ei-
ther the camera is known not to rotate or the relative rotation
can be estimated by other means. There are many situations
where the camera undergoes pure translation, for example
in robotic applications. In addition, known rotation formu-
lations have been shown to be useful subproblems for the
structure from motion pipeline. They were first addressed
in an algebraic framework in [16], and later with reprojec-
tion errors in the L∞-framework of [10]. However, these

works assume that there are no outlier correspondences.
In this paper we are interested in estimation and out-

lier rejection in the presence of large amounts of outliers.
For multiple view geometry problems, the predominant ap-
proach for dealing with outliers is RANSAC [5, 14, 9]. The
method has been applied to related geometry problems such
as relative pose estimation with rotation around one axis
[6, 13]. This formulation is motivated by the fact that many
modern cell phones are able to directly measure the grav-
itation vector. A disadvantage with these methods is the
randomness of the results and that the solution space is re-
stricted to the hypotheses given by minimal subsets of the
data. Furthermore, in settings with a large amount of mis-
matches this approach becomes costly because of the need
to evaluate a large number of random samples. The ap-
proach offers no optimality guarantees meaning that even
if there is a good solution the algorithm is not guaranteed to
find it.

In [7], Fredriksson et al. gave an optimal algorithm for
the two-view translation problem in the presence of outliers.
For a given error threshold ε the algorithm finds a translation
with the maximal amount of inlier correspondences, with a
theoretical time complexity of O(n2 log n). It was demon-
strated that in settings with large amounts of outliers the
approach not only produces better results but is also faster
than RANSAC.

In this paper we present a branch and bound approach
that is significantly faster than [7] with the same kind of
theoretical guarantees. The branch and bound methodol-
ogy has been applied to a variety of geometry problems.
In [8], a branch and bound framework is introduced that
searches over all rotations. As a subroutine, the translation
of the camera is estimated using linear programming. It is
assumed that no outliers are present in the data. The linear
program could in principle be replaced with our approach to
obtain an algorithm that works in the presence of outliers.
A related algorithm for dealing with outliers is given in [3].
In [11] a method for uncalibrated reconstruction based on
an algebraic cost function and a mixed integer formulation
is proposed. While these methods guarantee optimality of
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the solution they are often based on computationally costly
search schemes, with worst case exponential running time,
resulting in prohibitively slow algorithms.

In this paper we present a branch and bound approach
tailored for the two-view translation problem that outper-
forms Fredriksson et al. [7]. The key to designing an ef-
fective formulation is to find strong bounding functions that
can be evaluated efficiently. We achieve this by a division of
the parameter space S2 using spherical triangles. Checking
feasibility of a correspondence within a parameter triangle
reduces to computing a few intersections between great cir-
cles, which can be done extremely efficiently using a sim-
ple cross-product. We show that the method outperforms
RANSAC in terms of quality of the solution and can in
some cases be faster, in particular if the portion of outliers is
high. In addition, the approach outperforms [7] with orders
of magnitude while providing the same optimality guaran-
tees.

1.1. Background

In this work we consider the spherical camera model
which has previously been used in e.g. [8, 7]. For spher-
ical cameras the projections are formed by first applying a
Euclidean transformation which takes the 3D-points to the
camera’s coordinate system followed by normalization. The
projection of a 3D-point X in a spherical camera (R, t) is
formed as

v =
R(X − t)

‖R(X − t)‖
. (1)

This means that the image points are on the unit sphere in
R3. This is in contrast to a projective camera where the im-
age points lie on a plane. This paper considers the problem
of two-view estimation with known relative rotation. By ro-
tating the image points we can w.l.o.g. assume that R = I ,
i.e. the projection of a 3D-point X in the two images is
given by

v1 =
X

‖X‖
and v2 =

X − t

‖X − t‖
. (2)

Now we can define what we mean by a point pair being an
inlier.

Definition 1. The corresponding point pair (v̂1, v̂2) is
called an inlier for the translation t if there exist some
X ∈ R3 such that1

∠(v̂1,X) ≤ ε and ∠(v̂2,X − t) ≤ ε (3)

for a given error threshold ε ∈ R+.

Next we state the problem we are interested in solving.

1∠(a, b) denotes the angle between the vectors a and b

Problem 1. Given a threshold ε and a set of putative point
pairs between two images find the translation t which max-
imizes the number of inliers.

Due to scale ambiguity we can restrict ourselves to trans-
lations of unit length.

2. Spherical epipolar geometry
For the case we consider, the epipolar constraint reduces

to t, v1 and v2 being coplanar. This means that there exists
some X ∈ R3 with projections v1 and v2 if and only if the
translation t is coplanar with v1 and v2. If we allow for the
reprojections to have an angular error of ε the translation
must instead reside in one of two wedges determined by
the point pair as is illustrated in Figure 1. Only one of the
wedges corresponds to a valid reconstruction. The wedge
can be described using two normals n+ and n−, and con-
tains all points such that the dot products with the normals
are positive, i.e.

W = {x ∈ S2 | n+ · x ≥ 0, n− · x ≥ 0}. (4)

The normals defining the wedge for the pair (v1,v2) are
given by

n± = sin(β/2)(n×w)± cos(β/2)n, (5)

where

w =
v1 + v2

‖v1 + v2‖
, n =

v1 × v2

‖v1 × v2‖
, (6)

and α, β satisfies

sin(β/2) = sin(ε)/ sin(α/2), cos(α) = v1 · v2. (7)

The complete derivations can be found in [7, 8].

3. Optimal estimation with branch and bound
To find the optimal translation we employ a branch

and bound strategy. Branch and bound has been used
extensively for geometric problems in the past [17, 8, 2,
15, 4] and is particularly suited for problems with low-
dimensional solution spaces. The idea in branch and bound
is to iteratively subdivide the search space and for each sub-
division compute an upper bound for any solution candidate
inside it. If the upper bound of any subdivision is lower than
any solution found so far it can be safely discarded. Com-
puting bounds and subdividing the space is then iterated un-
til convergence.

3.1. Dividing the solution space

For translation estimation the solution space consists of
the unit sphere S2 in R3. For the first iteration we divide
the unit sphere into eight equally sized spherical triangles



Figure 1: The pair (v1, v2) determines two wedges formed
by two great circles on the sphere. The great circles are
tangent to the ε-cones around v1 and v2, respectively. Any
translation candidate which lies inside the wedges will have
the pair as an inlier. Only one of the wedges corresponds to
a valid reconstruction.

covering the whole sphere. During the optimization we re-
fine the partition of the search space by splitting triangles
along the longest edge into smaller triangles, in a branch
and bound fashion. Similar to a wedge, a spherical triangle
on S2 is bounded by the intersection of three planes,

T = {x | x ∈ S2, nk · x ≥ 0, k = 1, 2, 3}. (8)

The subdivision of the search space is illustrated in Figure 2.
In [4] the authors perform branch and bound on S2 × S2

where they also subdivide the sphere using spherical trian-
gles.

Figure 2: The search space is subdivided into triangles.
Each triangle is recursively divided into smaller and smaller
triangles.

3.2. Computing the bounds

In our branch and bound scheme we consider groups of
translations represented by triangles on the sphere. Our goal
is to bound the number of inliers the translations within a
group can have in order to either discard it from further
consideration or further subdivide it to search for an opti-
mal solution. The idea for computing the bounds is similar
to the one used in [1]. As described in Section 2 each point

pair gives rise to a wedge on S2. The point pair is an in-
lier to a translation candidate if the translation lies inside
the wedge formed by the point pair. Therefore, if a wedge
intersects the triangle there will be at least one translation in
the group for which this point correspondence is an inlier.
Thus, counting the number of wedges that either intersect
the triangle or completely contains it gives an upper bound
on the number of inliers each translation in the triangle can
have.

Note that there may not be a single translation in the
group that is contained withing all these wedges. To find
a lower bound we also check how many wedges contain the
center point of the triangle.

The lower and upper bounds for two triangles are illus-
trated in Figure 3.

(a) UB: 2, LB: 0 (b) UB: 2, LB: 1

Figure 3: Upper and lower bounds for the triangles. In
(a) we see three wedges. Two of them intersect the trian-
gle and none completely contain the triangle so the upper
bound becomes two. Since the center point is not contained
in any wedge the lower bound becomes zero. In (b) only
the green wedge intersects the triangle while the red wedge
contains the triangle completely. So the upper bound be-
comes two. Since the center point is contained in the red
wedge the lower bound becomes one.

The subdivision of the space into triangles, where the
edges belong to great circles, allow us to efficiently com-
pute the intersections. To find the intersections between a
triangle and a wedge we simply have to compute the six
possible cross products between the plane-normals of the
triangle and wedge respectively and check if they lie within
the triangle. Some care has to be taken to ensure that the
correct signs are chosen. To find wedges which have no
intersections but completely contain the triangle we simply
choose the center point of the triangle and check if it is con-
tained in the wedge.

3.3. Implementation details

To greatly lower the computational cost for computing
the upper bounds of the triangles we employ the match-list
approach which was also used in [1]. The idea is that for



any triangle the set of possible inliers is a subset of the pos-
sible inliers for the parent triangle. So for each triangle we
keep track of which wedges it intersected and how many
wedges it was completely contained in. When computing
the bounds for a new triangle we only need to check the
wedges which intersected the parent triangle.

The experiments were run on a computer with an Intel i7
3.4 GHz processor with 16 GB RAM. The algorithms where
implemented in C++ and run on a single core.

The algorithm is summarized in Algorithm 1. In the ex-
periments we will refer to this algorithm as BNB.

Algorithm 1: Branch and bound for two-view transla-
tion estimation.

Add initial triangles to queue
lower bound = 0
while queue not empty do

T = remove head from queue
if T.upper bound ≤ lower bound then

continue
end
[T1, T2] =branch(T )
Compute bounds for T1 and T2
if T1.lower bound > lower bound then

lower bound = T1.lower bound
current best = T1.center

end
if T1.upper bound > lower bound then

Add T1 to the queue.
end
/* Repeat the two previous If

clauses for T2. */
end

3.4. Comparison to Fredriksson et al.

We now present an experiment where we compare the
performance of BNB to the performance of the method pro-
posed in [7]. We consider the same 136 image pairs which
were used in their experiment evaluation. The image pairs
have no rotation between them and contain on average 7200
point pairs. In Figure 4 two of the images are shown. Since
both methods solve the problem optimally we only compare
the running times of the algorithms. In Figure 5 we can see
a histogram of the running times for the two algorithms.
The average running times were 0.8 s for BNB and 26 s for
[7].

We also performed a running time comparison on syn-
thetic data for problems of varying sizes. In the experiment
we generate problem instances of varying sizes which con-
tained approximately 10% inliers. The results can be seen
in Figure 6. We can see that even for moderately sized prob-

Figure 4: One image pair out of 136. The image points are
shown in red.
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Figure 5: Histogram over the running times for the 136 im-
age pairs. In blue BNB and in purple Fredriksson et al. [7].
The average running times are 0.8 s and 26 s.

lems the method of [7] becomes intractable while the pro-
posed method has no problems solving large problems.

3.5. Comparison to non-optimal methods

We also compared our method to a RANSAC based ap-
proach. The minimal solver for translation estimation re-
quires two point pairs,

t = (v1 × v2)× (v′1 × v′2). (9)

Since a RANSAC two point solver gives no guarantee of
finding the optimal solution we plot the number of inliers
of the best solution found by both methods against time.
The result can be seen in Figure 7. Since RANSAC is a
randomized algorithm we repeated the experiment multiple
times and estimated a 95% confidence interval for its per-
formance. The dotted lines in Figure 7 show this confidence
interval. This experiment was constructed using the first im-
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Figure 6: Comparisons of the running times on synthetic
data for Fredriksson et al.[7] (purple) and BNB (blue). The
number of inliers are kept at 10% and the number of point
pairs vary between 50 and 50000.

age pair from the experiment in Section 3.4. The image pair
contained about 5000 point pairs.

3.5.1 Synthetic data

Now we compare the running time for BNB against the two
point RANSAC solver for synthetic data. The number of
point pairs is set to be 100000 and we vary the outlier ra-
tio. Since the two point solver never can be sure of finding
a good solution, the number of iterations is chosen so that
it has 99% chance of selecting at least one outlier-free sam-
ple. This results in about 100 iterations for 80% outliers and
about 50000 iterations for 99% outliers. The running times
can be seen in Figure 8.

4. Extension to one-to-many matchings
Scenes which contain repeated structures pose a difficult

problem for reconstruction algorithms since it can give rise
to ambiguous point pairs. Unfortunately repetition is a fre-
quent occurrence in real world scenes, e.g. windows on a
house facade. To deal with ambiguous point pairs it is com-
mon to require that an image points corresponding candi-
date is significantly better than the next best candidate [12].
In scenes with repeated structure this can lead to a greatly
reduced number of point pairs.

One approach to deal with this is to allow each image
point to belong to several point pairs. This is what we
call the one-to-many matching problem. A naive approach
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Figure 7: Comparisons of the running times for RANSAC
(green) and BNB (blue). The figure is generated using the
first image pair, with about 5000 point pairs. The dot-
ted green lines are the 95% confidence intervals for the
RANSAC solution. The blue curve shows the evolution of
the lower bound.

would be to simply add all these point pairs. This however
allows a single point to count as an inlier multiple times
possibly leading to sub-optimal solutions.

The branch and bound method presented in Section 3
can easily be adapted to the one-to-many matching prob-
lem. The extension allows us to find solutions which are
optimal in the sense that they maximize the unique num-
ber of point inliers in one of the images. While this is not
enough to guarantee to finding a true one-to-one matching
we will show that it is a good heuristic.

In the one-to-many matching problem we can have mul-
tiple wedges which correspond to a single point in the first
image. To accurately compute the upper bound in a trian-
gle we simply compute how many unique points that have
wedges which intersect or embed the triangle. The modi-
fied algorithm is exactly the same as BNB except that we
compute the bounds differently. In the experiments we will
refer to this algorithm as BNBu.

4.1. Comparison to naive formulation

In this experiment we compare the modified branch and
bound (BNBu) method with solving the naive formulation
(BNB) where we simply add more point pairs for every
point. To evaluate the solutions we count the number of
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Figure 8: Comparisons of the running times on synthetic
data for RANSAC (green) and BNB (blue). The number of
point pairs are kept at 100000 and the outlier ratio varies
between 90% and 99%.

Size 7.2k 72k 144k

Inliers 362 600 693
Percent inliers 5% 0.8% 0.5%

Table 1: Average number of inliers found by BNBu, de-
pending on the problem size of the 136 image pairs. Every
image has about 7200 feature points.

inlier point pairs which are uniquely matched in both im-
ages.

We consider the image pairs from [7], but we allow for
the image points in one of the images to be a member of
multiple point pairs. Table 1 shows how the number of in-
liers found by BNBu varies when we add more point pairs.

We compare the two proposed algorithms to [7] (up to
36k points) and RANSAC using the two-point solver. Since
the RANSAC approach has no convergence guarantee we
use 500 and 50000 iterations, corresponding to more than
99% chance of a good solution for problems with 90% re-
spectively 99% outliers. The results for the different meth-
ods are in Table 2 and Table 3. For the larger instances the
method from Fredriksson et al. [7] was not able to solve the
problem in reasonable time (more than one hour).

Size 7.2k 72k 144k

Fredriksson et al. [7] 360 - -
BNB 360 584 666
BNBu 362 600 693
RANSAC 500 316 441 536
RANSAC 50000 355 574 655

Table 2: Average number of unique (in both images) inliers
between the 136 image pairs. Out of an average 7200 fea-
ture points.

Size 7.2k 72k 144k

Fredriksson et al. [7] 26s - -
BNB 0.8s 28s 97s
BNBu 1.3s 39s 128s
RANSAC 500 0.060s 0.76s 1.5s
RANSAC 50000 5.9s 68s 113s

Table 3: Average running time for the 136 image pairs for
the one-to-many matching experiment.

4.2. All-to-all matching

All-to-all matching problems can arise in situations
where the image points locally are indistinguishable from
each other or in other situations where descriptor based
matching fails. Examples of this can be e.g. images taken at
night where the only visible objects are point shaped light
sources from stars or street lights. The all-to-all problems
are very hard to solve using the naive approach since algo-
rithms often find translations with inlier point pairs that con-
tradict each other. These ambiguous point pairs can not be
counted and hence the solution fulfills few unique wedges.
We compare BNB and BNBu in synthetic experiments. The
number of image points vary from 40 to 100, resulting in
1600 and 10000 possible point pairs. In the experiments a
solution is defined as valid if the angle to the ground truth
translation is less than five degrees. The results can be seen
in Table 4 and the running times is in Figure 9.

5. Conclusion and future work

In this paper we have presented an efficient branch and
bound method for translation estimation in the presence of
outliers. The method is guaranteed to find the optimal solu-
tion and in experiments we show that the proposed method
can outperform the heuristic random sampling methods in
both speed and solution quality. While most optimal meth-
ods trade speed for optimality, the proposed algorithm has
competitive running times on problem sizes well beyond



Size 40 60 80 100

BNBu 0.50 ± 0.1 0.49 ± 0.1 0.73 ± 0.1 0.49 ± 0.1
BNB 0.25 ± 0.06 0.01 ± 0.09 0.02 ± 0.03 0.01 ± 0.02

Table 4: All-to-all experiments. All image points in one
image are matched to all image points in the corresponding
image. The table contains the mean together with the 95%
confidence intervals of finding a good solution for BNBu
and BNB.
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Figure 9: Number of image points plotted against running
time for the branch and bound methods BNB (blue) and
BNBu (orange) in the all-to-all experiments.

what is common in practice.
We also considered the problem of ambiguous point

pairs by extending the method to handle instances where
each image point in one image can have many possible
matches in the other. This problem is solved optimally in
the sense that we maximize the number of unique inliers in
one of the images. Through experiments on real data we
show that this can increase the number of inlier point pairs
substantially.

Future work includes solving the multiple match prob-
lem optimally in both images simultaneously.
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