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Abstract

We present an approach for correcting the bias in 3D
reconstruction of points imaged by a calibrated stereo rig.
Our analysis is based on the observation that, due to quan-
tization error, a 3D point reconstructed by triangulation es-
sentially represents an entire region in space. The true lo-
cation of the world point that generated the triangulated
point could be anywhere in this region. We argue that the
reconstructed point, if it is to represent this region in space
without bias, should be located at the centroid of this re-
gion, which is not what has been done in the literature. We
derive the exact geometry of these regions in space, which
we call 3D cells, and we show how they can be viewed as
uniform distributions of possible pre-images of the pair of
corresponding pixels. By assuming a uniform distribution
of points in 3D, as opposed to a uniform distribution of the
projections of these 3D points on the images, we arrive at a
fast and exact computation of the triangulation bias in each
cell. In addition, we derive the exact covariance matrices
of the 3D cells. We validate our approach in a variety of
simulations ranging from 3D reconstruction to camera lo-
calization and relative motion estimation. In all cases, we
are able to demonstrate a marked improvement compared
to conventional techniques for small disparity values, for
which bias is significant and the required corrections are
large.

1. Introduction
Pixelation, or quantization, error has long been ac-

knowledged as a limiting factor for stereo vision systems
[1, 10, 14, 2]. Since digital camera pairs map points from
the continuous world to a discrete set of pixel pairs, their
observations are subject to pixelation error. As a result, dis-
tinct world points become indistinguishable after projection
and reconstruction by triangulation. Pixelation effectively
groups sets of points in the world, which we hereafter refer
to as 3D cells, by assigning to each group a single 3D loca-
tion: the reconstructed point. In classical stereo vision the
reconstructed point is the intersection of two rays that pass

through the two camera centers and the centers of the two
corresponding pixels. It represents an entire region formed
by the intersection of two infinitely long pyramids created
by the camera centers and the pixels, shown in Fig. 1(a).
The sides of each pyramid are formed by the planes defined
by the camera centers and edges of the pixels. 3D cells
are larger, more elongated and asymmetric the further away
from the cameras they are. This means that points far from
the cameras are often subject to large error.

Assuming that points in the 3D cell are uniformly dis-
tributed in space, then the expected value of the recon-
structed point is the first moment, or the centroid, of the

(a) Illustration of a 3D cell

{

(b) Cross-section of the cell

Figure 1. Illustrations of quantization error in stereo vision. (a) a
3D cell created by the intersection of the viewing cones (pyramids)
emanating from corresponding pixels in the left and right camera.
(b) Cross-section of the 3D cell. The dark dot is the centroid of the
cell and should be used as the reconstructed point, instead of the
intersection of the rays that is currently used.
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3D cell. Conventional stereo vision, however, does not use
the centroid as the reconstructed point, causing systematic
error. Several authors [1, 14, 16] have reported the bias
in long range stereo vision, but to the best of our knowl-
edge, the treatment and correction to the systematic error
proposed here is novel. Our approach differs from previous
work in that it is an exact and computationally simple so-
lution that is able to remove the bias. An illustration of the
proposed solution can be seen in Fig. 1(b) which shows the
intersection of the rays (dashed lines) and the centroid of the
3D cell (dark dot). The distance between the two is the bias
of conventional reconstruction. The bias can be computed
as shown in the remainder of the paper and the coordinates
of the reconstructed point can be corrected.

Bias has largely been neglected in stereo vision because,
for close ranges (small disparities), the 3D cells are almost
symmetric and the difference between the classical recon-
structed point and the centroid of the 3D cell is negligible.
For long ranges, on the other hand, the variance of the re-
construction errors is very large, both for classical recon-
struction methods and for the correction proposed in this
paper. Our approach does not guarantee that a single recon-
structed point can be converted from an essentially useless
outlier to an inlier. Instead, it ensures that the overall accu-
racy of a stereo system relying on measurement of distant
points can be improved significantly on average. We show
several examples of such improvements in Section 4.

The second contribution of this paper is a novel way to
derive the covariance matrix of a reconstructed point by
computing the second moments of a uniform distribution in
the corresponding 3D cell. This estimate is exact and more
accurate than common approximations that propagate un-
certainty from the image plane to the reconstructed points
under Gaussian assumptions [10]. Note that higher order
moments of these distributions exist, but we ignore them in
this work. We propose a test for the validity of our new
covariance estimation method and show that it is indeed su-
perior to conventional covariance propagation [10].

In summary, the contributions of this paper are:

• an exact bias correction method for 3D reconstruction,
and

• an exact estimation of the covariance matrix of a re-
constructed 3D point.

These contributions are validated in simulations of tri-
angulation, localization of a stereo rig given 3D landmarks
using Horn’s absolute orientation algorithm [7], and rela-
tive motion estimation for a stereo rig using Horn’s algo-
rithm on reconstructed 3D points. The only assumption is
that points are uniformly distributed in 3D. We make no
assumptions on how the projections of these points or the
disparity are distributed in the images.

2. Related Work
While several authors have observed the bias in 3D re-

construction dating back to at least 30 years ago [11], none
of them have presented a closed-from, effective correction
for it. In most cases, the covariance of the reconstructed
point is either only modeled in the Z (range) direction, or is
approximated by some form of covariance propagation. In
this section, we briefly review methods that have made ob-
servations relevant to the problem we address in this paper.

A common assumption that appears reasonable, but is
incorrect, is to model the points as generated from uniform
distributions on the two image planes. This is equivalent to
assuming a uniform distribution on the image plane of the
reference camera and a uniform distribution for the dispar-
ity. Both formulations lead to non-uniform distributions of
points in 3D, since depth and disparity are inversely pro-
portional. We argue that 3D points have equal probability
of appearing anywhere in space and start our analysis by
modeling the distribution of points in 3D as uniform.

McVey and Lee [11] are arguably the first to publish a
study on the error of stereo vision as a function of cam-
era parameters. Later, Blostein and Huang [1] investigated
the errors in stereo reconstruction under the assumption that
correct correspondences across the two images had been
found. They also assumed that the exact unknown 3D point
is uniformly distributed in the world. (We make the same
assumptions, up to this point.) Blostein and Huang fur-
ther assume that the reconstructed point is restricted to a
quadrilateral in 3D and derive the probability of the errors
in all direction being less than specified tolerance values.
The major findings are that these probabilities are functions
of the disparity and that errors in range dominate errors in
other directions. Rodriguez and Aggarwal [14] derived a
probability density function for the error in range as a func-
tion of the parameters of the imaging system. They assumed
that the x coordinates of the corresponding pixels were cor-
rupted independently by uniform quantization noise. Under
these assumptions, they were able to compute the expected
value of the relative range error given the system param-
eters. A similar analysis was carried out for convergent,
non-parallel stereo by Chang et al. [2].

Matthies and Shafer [10] proposed the use of 3D Gaus-
sian distributions to model triangulation errors, in contrast
to previous research that used scalar error models for the
range only. They point out that quantization noise on the
images follows a uniform distribution and that the result-
ing distribution in 3D is skewed. For convenience, how-
ever, they approximate the uniform image noise by a 2D
Gaussian distribution, which they propagate to 3D to ob-
tain the final error distribution. They acknowledge that the
approximation does not capture the bias or the tails of the
distribution, which are significant for small disparity val-
ues. Kriegman et al. [8] also modeled the uncertainty in



image coordinates as Gaussian. Due to the nonlinearity of
the triangulation equation, the resulting uncertainty in 3D is
not Gaussian, but can be approximated as such locally by
linearization and uncertainty propagation.

The publication that is more closely related to ours is that
of Sibley et al. [16] who proposed a bias reduction tech-
nique for long range stereo. Unlike the above approaches,
as well as ours, Sibley et al. detected the features with sub-
pixel accuracy and experimentally verified that localization
error on the images is normally distributed around the true
subpixel locations. Under this assumption, range estima-
tion is biased towards overestimating the true range. Since
an analytical solution for the bias appears to be impossible
within this framework, the authors resort to an approximate
bias reduction technique based on a Taylor series expansion.
Due to different assumptions, our results are not directly
comparable with those of Sibley et al. It should be noted,
however, that our bias correction is closed-form and exact,
while we also provide an exact estimate of the covariance
of the coordinates of the reconstructed points.

Recently, Fooladgar et al. [4] analyzed the localization
error in stereo based on a similar observation to ours: entire
regions of 3D points are mapped to the same pixels. This
causes uncertainty, which can be modeled by approximating
the volume of the intersection of two cones emanating from
one pixel each in the left and right camera, assuming that
pixels are circular. Due to this choice the shape and volume
of the intersection can only be approximated. Besides using
the volume as a measure of uncertainty and evaluating the
sensitivity with respect to various parameters, no attempt to
correct the errors is made.

Triangulation [6] also addresses the estimation of the 3D
coordinates of a point given the image coordinates of at least
two of its projections. Despite this apparent similarity, how-
ever, the emphasis of the triangulation literature is on noise
due to miscalibration and perturbation in image coordinates.
Instead, here, we assume perfect knowledge of calibration.
There is also a relationship between our work and inverse
depth parametrization [3]. The latter has been proposed to
address issues that arise due to the high uncertainty of 3D
points with very small disparity values. In our terminology,
these difficulties are due to the large size of cells that corre-
spond to small disparity values. We consider structure from
motion to be out of the scope of this paper and defer this
discussion.

3. Bias Correction and Covariance Estimation
In this section, we compute the first and second moments

of a 3D cell that corresponds to a given pair of pixels in the
two cameras. The first moments are used for bias correction
and the second moments for covariance estimation. We rely
on the approach of Lien and Kajiya [9] for integration over
polyhedral domains.
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(b) The decomposition of a cell

Figure 2. The orthogonal unit tetrahedron has a vertex at the origin
and the three unit length edges aligned with the axes. The cells can
be decomposed into 12 tetrahedra, each of which can be mapped to
the orthogonal unit tetrahedron by an appropriate transformation.

3.1. Bias Correction

Denote by S any 3D cell as described in Section 1. Since
any world-point in S corresponds to the same pixel pair, the
logical choice for the reconstructed point, which we denote
by µ, is the expected value of a uniform distribution on S.
This expected value is given by

µ =
1

VS

∫
S
u dVu, (1)

where VS is the volume of the 3D cell S, 1/VS is its density,
and dVu = duxduyduz is the volume element.

Let v1,v2, . . . ,v8 denote the eight vertices of the hex-
ahedral cell S , and divide each one of the six quadrilateral
faces of S into two triangles, so that the boundary of S con-
sists of twelve triangular faces. Let v0 denote any point
in space. Then S can be decomposed into twelve possibly
overlapping (depending on whether v0 is an interior or exte-
rior point of S) tetrahedra T`, for ` = 1, . . . , 12, formed by
the twelve triangular faces of S and the common point v0;
see Fig. 2(b). In what follows, we find the expected value µ
of the uniformly distributed cell S in terms of the geometric



centers ū` of the 12 constituent tetrahedra T`.
To find the center ū` of the tetrahedron T`, we first ex-

press T` as a linear transformation of the orthogonal unit
tetrahedron To = conv{0, e1, e2, e3}, where conv{·} de-
notes the convex hull and ei are the vectors of the standard
basis in R3, as shown in Fig. 2(a). In particular, let

u = A`x (2)

with

A` =
[
vi − v0 vj − v0 vk − v0

]
, (3)

where v0, vi, vj , and vk are the four vertices that define the
tetrahedron T`. The order of the vertices vi, vj , and vk is
specified clockwise so that the normal vector to the vivjvk

face points away from the tetrahedron; see Fig. 2(b). Then,

vi − v0 = A`e1,

vj − v0 = A`e2,

vk − v0 = A`e3,

so A` maps the orthogonal unit tetrahedron To =
conv{0, e1, e2, e3} to the tetrahedron T ∗` = conv{0,vi −
v0,vj − v0,vk − v0}, that is essentially the desired tetra-
hedron T` = conv{v0,vi,vj ,vk} translated by v0, i.e., by
abuse of notation T ∗` = T` − v0. Let ū∗` denote the center
of mass of the tetrahedron T ∗` , which is equal to the mean
of its four vertices:

ū∗` = |det(A`)|A`x̄o =
1

4
VT`(vi + vj + vk − 3v0).

The center of mass of the orthogonal unit tetrahedron is
x̄o = [1/4 1/4 1/4]T .

To compute the volume of a tetrahedron, we need the
relationship between the volume element dVx in the x co-
ordinates and the volume element dVu in the u coordinates,
which is

dVu =

∣∣∣∣det

(
∂u

∂x

)∣∣∣∣ dVx,
where | · | denotes the absolute value and the matrix ∂u

∂x
denotes the Jacobian of the transformation (2) defined as

∂u

∂x
=
∂A`x

∂x
= A`.

Therefore, the term |det(A`)| captures the amount by which
the transformationA` distorts the volume element. The vol-
ume of the tetrahedron T` is equal to that of T ∗` . Given that
VTo =

∫
To dVx = 1

6 is the volume of the orthogonal unit
tetrahedron To,

VT` = VT ∗
`

=

∫
T ∗
`

dVu = det(A`)

∫
To
dVx =

∣∣det(A`)
∣∣

6

(4)

Figure 3. Plotting the distance from world points placed along the
optical axis to their representative points using the classical notion
of reconstructed points (red) and the proposed correction (blue).
The x-axis is range (depth) and is divided in blocks correspond-
ing to disparity levels. Due to quantization, all points within a
block are represented by the same point after reconstruction. The
error is 0 when the original point is identical to the reconstructed
point and increases as the original point moves away from the re-
constructed point. Uncorrected reconstruction (red curve) under-
estimates depth leading to larger errors in the far range, especially
for small disparities.

Using the above decomposition of S in the twelve tetrahe-
dra T`, (1) becomes

µ =
1

VS

12∑
`=1

∫
T`

u dVu =
1

VS

12∑
`=1

VT` ū`, (5)

where

VS =

12∑
`=1

VT` (6)

is the volume of the 3D cell S. A tetrahedron can have
positive or negative contribution to the integral over T`
depending on the sign of det(A`) in (4). In particular,
sign(det(A`)) = +1 if S and T` occupy the same half
space defined by the common face shared by S and T`,
and sign(det(A`)) = −1 if S and T` occupy different half
spaces; see Lien and Kajiya [9]. If v0 is an interior point
of S, as illustrated in Fig. 2(b), then sign(det(A`)) = +1
for all ` = 1, . . . , 12. On the other hand, if v0 is an exterior
point of S, then sign(det(A`)) will be positive for some `
and negative for others.

The point µ in (5) is not equal to the classical notion of
a reconstructed point in stereo vision, which is the intersec-
tion of the rays that pass through the two camera centers
and the two pixel centers. Essentially, Section 3.1 proposes
a new set of points with which a stereo rig can represent the
world. To illustrate the comparison, consider a sequence of
points on a straight line along the viewing direction starting
midway between the left and right cameras in a stereo rig



and extending to infinity. Using the classical and corrected
methods, the distances from each point on the line to the
respective representative points are plotted in Fig. 3. World
points that lie on the optical axis fall in 3D cells symmetric
about this axis, so the representative point for each method
will also lie on the optical axis. This is why we see the er-
ror go to zero for each method once in each disparity region
and increase linearly in either direction as points on the line
get further away from the representative point. Note also in
Fig. 3 that the classical reconstructed point typically under-
estimates the true range, but with the proposed correction,
overestimates and underestimates occur almost equally of-
ten. In fact, when we sample points in the world uniformly
in all three directions in Section 4, we see that reconstruc-
tion with the correction is, on average, completely unbiased.

3.2. Covariance Estimation for a 3D Cell

The proposed correction also provides us with a fast and
accurate way of computing the covariance of the recon-
structed points via the second central moment of the 3D
cells. The second central moment of any region S with uni-
form density 1/VS is given by

C =
1

VS

∫
S

(u− µ)(u− µ)T dVu, (7)

where µ is the centroid of S determined by (5) and VS is
its volume obtained in (6). As in Section 3.1, we compute
the covariance C of the 3D cell S by decomposing it into
twelve tetrahedra T`, computing their non-central moments,
and combining these moments to compute the second cen-
tral moment of the cell S. In this section, we choose the
common vertex v0 used to form the 12 tetrahedra to be the
mean value µ of S. This choice is convenient because it is
equivalent to translating the 3D cell so that its mean value
is at the origin, making its central and non-central moments
coincide. The other three vertices of each tetrahedron T` are
the same as in Section 3.1 and maintain the positive orien-
tation of the tetrahedra. Summing the non-central moments
of the 12 constituent tetrahedra will result in the central mo-
ments of the cell S.

In particular, let

u = B`x (8)

with

B` =
[
vi − µ vj − µ vk − µ

]
. (9)

As in Section 3.1, B` maps the orthogonal unit tetrahe-
dron To = conv{0, e1, e2, e3} to the tetrahedron T ∗` =
conv{0,vi − µ,vj − µ,vk − µ}, that is essentially the
desired tetrahedron T` = conv{µ,vi,vj ,vk} translated by
µ, i.e., T ∗` = T` − µ. Let C∗T` denote the second moment
of the tetrahedron T ∗` . Then, applying the change of coor-

dinates (8) we get

C∗T` =

∫
T ∗
`

uuT dVu =

∫
To
B`xx

TBT
` det(B`)dVx

= det(B`)B`

(∫
To

xxT dVx

)
BT

`

= det(B`)B`CToB
T
` , (10)

where

CTo =

∫ 1

x=0

∫ 1−x

y=0

∫ 1−x−y

z=0

xy
z

xy
z

T

dxdydz

=

 1/60 1/120 1/120
1/120 1/60 1/120
1/120 1/120 1/60

 . (11)

As in Section 3.1, after decomposing S into the twelve
tetrahedra T`, the covariance in (7) becomes

C =
1

VS

12∑
`=1

∫
T`

(u− µ)(u− µ)T dVu

=
1

VS

12∑
`=1

∫
T ∗
`

uuT dVu =
1

VS

12∑
`=1

C∗T` (12)

Since the point µ chosen to form the twelve tetrahedra T`
is an interior point of S, we have that sign(det(B`)) = +1
for all ` = 1, . . . , 12.

Note that for each tetrahedron T`, the vertices of the face
that does not contain µ must have a clockwise orientation
so that the normal vector to this face points away from the
polyhedron S.

4. Simulation Results
We begin this section by presenting the method we used

to evaluate the effectiveness of our contributions. In all sim-
ulations, the image resolution is 1025×1025 pixels and the
focal length f is 731.93 pixels, corresponding to a field of
view of 70◦. The unit of length is always equal to the base-
line between the cameras in the stereo pair.

4.1. The Uncorrected Method

Throughout these simulations, we will compare our
method, which will be referred to as the corrected method,
with an approximation, which will be referred to as the un-
corrected method. The uncorrected method does not ad-
dress bias and approximates the covariance by propagating
the covariance of the image noise to 3D, similarly to the
work of Matthies and Shafer [10]. Let the image coordi-
nates for a 3D target be xL, xR, y denoting the x coordinate
in the left and right image and the common y coordinate in



both images, respectively. We will assume that these coor-
dinates are corrupted by independent, uniform quantization
noise, which we will approximate as Gaussian. Then the
covariance of the image observations is

Q ≈ diag
[
σ2
L σ2

R σ2
y

]
, (13)

where σ2
L, σ2

R, and σ2
y denote the variance of the corre-

sponding observation. In the absence of other informa-
tion, we assume that all three variances are equal. The
coordinates of a reconstructed 3D point pi in a coordinate
frame anchored to the left camera center, without correc-
tion, based on these observations are

pi , p(xLi, xRi, yi) =


bxLi

xLi−xRi

byi

xLi−xRi

bf
xLi−xRi

 , (14)

where f denotes the focal length of the camera and b is the
baseline of the stereo pair. The Jacobian of pi is given by

Ji =
1

(xLi − xRi)2

−bxRi bxLi 0
−byi byi b(xLi − xRi)
−bf bf 0

 ,
(15)

and the covariance of pi in the camera coordinate system
can be approximated by

Ui = cov[p(xLi, xRi, yi)] ≈ JiQJT
i . (16)

4.2. Single-frame Bias Correction

We uniformly generated ten million sample points in
front of a stereo camera pair, projected them on the images
and triangulated the location of each point with and with-
out the proposed correction. The sample space was a cube,
and it extended in all directions up to the range at disparity
1. We discard any points that were not visible to both cam-
eras or that corresponded to cells with disparity 1, which
have extremely large volume. Due to the elongation of the
cells as one moves away from the cameras, the samples are
dominated by those with small disparities.

The left axis in Fig. 4(a) plots the average absolute er-
rors, defined as the Euclidean distance between each recon-
structed 3D point and the ground truth, for each disparity
region that contained at least 200 sample points, and the
right axis measures the height of the bars – the amount of
samples at each disparity used to determine the averages.
Both methods suffer from severe errors at small disparities
in Fig. 4(a). This error is unavoidable due to pixelation,
even though the corrected method suffers less on average.

Figure 4(b) verifies the zero bias claims of Section 3.1,
plotting the average biases for each method at each disparity
on the left axes, along with bar graphs to show the number
of samples used to compute the each average bias on the

(a) Average absolute error

(b) Bias per axis

Figure 4. Average absolute error (top) and bias (bottom) versus
disparity in units of baselines. Red and blue curves are the aver-
age values for the uncorrected and corrected methods. The bars,
measured by the right vertical axes, indicate the number of sam-
ples at each disparity.

right vertical axes. Samples were symmetric about the op-
tical (Z) axis, so in order to observe bias orthogonal to the
viewing direction, which would otherwise average out, we
partitioned the sample space into half spaces. In the first
two boxes of Fig. 4(b), we observe the average bias at each
disparity for samples in the +X and +Y half spaces. We do
not plot the results for samples that fell in the −X and −Y
half spaces, since their average biases were equal in mag-
nitude and opposite in direction compared to the biases for
+X and +Y .

4.3. Verification of Covariance Estimation

We assessed the accuracy of the proposed covariance es-
timation method by testing the distribution of the squared
Mahalanobis distances from each input 3D point to its rep-



Figure 5. The average squared Mahalanobis distance from the
samples to their representative points in units of baselines. Red
and blue curves are the average values for the uncorrected and
corrected methods. The bar graph, measured on the right vertical
axis, depicts the number of samples at each disparity

resentative point, i.e., the ray intersection if we use the un-
corrected method and the centroid if we use the corrected
method. If µi and Ci are the representative point and pre-
dicted covariance of cell Si, respectively, then the squared
Mahalanobis distance from a 3D point pj ∈ Si to µi is

d2 = (pj − µi)
TC−1i (pj − µi). (17)

Setting
qj = C

− 1
2

i (pj − µi), (18)

we obtain a set of new 3D vectors qj whose coordinates
(qj)k are i.i.d. white Gaussian variables. The squared Ma-
halanobis distance can be written as

d2 = qT
j qj =

3∑
k=1

(qj)
2
k. (19)

But the sum of squares of n i.i.d. N(0, 1) random variables
is distributed according to the χ2 distribution with param-
eter n, where n is also equal to the mean. Thus, in our
settings, the mean of the squared Mahalanobis distance d2

has to be equal to 3, if the distribution mean and covariance
have been estimated accurately.

We computed the average of d2 from (17) among sam-
ples to their representative point for every disparity for each
method using the data from Section 4.2. Figure 5 plots these
averages. Note that, while the corrected method relies on
the geometry of the 3D cells to predict covariance, the un-
corrected method requires parameters σ2

L, σ2
R, and σ2

y from
(13), which we set to 1/12, the variance of uniform noise
on the unit interval. While the resulting uncorrected co-
variance is a reasonable approximation for large disparities
where bias is small, the squared Mahalanbois distance de-
viates from the ideal value at small disparities, where the
majority of world-points are found. The corrected method

Figure 6. An example of the camera localization simulation. The
black arrow is ground truth, the red and blue arrows are the uncor-
rected and corrected estimates, and the grey arrow is the coordi-
nate origin. Units are in baselines

obtains the theoretically expected vale of d2 for all dispari-
ties.

4.4. Camera Localization

In this simulation, we attempt to estimate the location of
a stereo rig that observes a set of known 3D landmarks. This
is accomplished by reconstructing the landmarks based on
their image projections and by using Horn’s absolute orien-
tation algorithm [7] to estimate the camera’s pose. We uni-
formly generated 100 sets of 5,000 points in a cubic region.
For each set of 5,000 points, we placed the stereo cameras
in a uniformly random location within the cube. The cam-
eras were always oriented toward the center of the cube to
ensure that some landmarks would be visible. Since the dif-
ference between the corrected and uncorrected method is
only significant for long ranges, we needed to prevent the
rig from using only nearby points for localization, so only
samples that projected to pixels with disparity between 3
and 10 were used. This restriction, along with the lower
sample density than in Section 4.2, meant that only about
223 landmarks were available in each trial. One such sce-
nario is shown in Fig. 6.

Statistics for 100 camera localization simulations are
presented in Table 1. The corrected method dominates in
terms of position error. The difference is smaller in terms
of orientation because distant landmarks serve as reasonable
bearing constraints for both methods.

4.5. Relative Pose Estimation

This set of simulations is similar to Section 4.4, but now
the coordinates of the landmarks are unknown. The stereo
pair makes one observation from an unknown location us-
ing the same pose generation parameters as Section 4.4.
Then, the cameras undergo another motion that is unknown
to them and make an observation from the new pose. The



Error Camera Localization
Statistics Uncorrected Corrected

Position Mean 20.20 6.25
Median 19.96 5.65

Orientation Mean 1.21 1.16
Median 1.13 1.08

Table 1. Position and orientation errors for the camera self local-
ization simulations (Section 4.4) in baselines and degrees

goal is to estimate the relative motion between the two ob-
servations by registering the two reconstructed sets of land-
marks. The main difference between this simulation and the
one of Section 4.4 is that now both point sets are noisy.

In each relative pose simulation, we generated 12,000
features because the two random poses may not have large
overlapping fields of view, and we wanted to ensure that
at least 150 landmarks would be mutually visible. Using
this density of samples, and still restricting to disparities 3
through 10, the average number of mutually visible sam-
ples was 168. Statistics for 100 relative pose simulations
are presented in Table 2, which shows that the correction is
effective in this case as well despite the overall increase in
noise.

Error Relative Pose Estimation
Statistics Uncorrected Corrected

Position Mean 51.49 34.08
Median 47.34 23.71

Orientation Mean 7.89 6.88
Median 5.87 5.15

Table 2. Position and orientation errors for the relative pose esti-
mation simulations (Section 4.5) in baselines and degrees

5. Conclusions
We presented a new method for 3D reconstruction that

does not suffer from bias in range or in horizontal displace-
ment. This is accomplished by analytically deriving the bias
of conventional triangulation and applying the appropriate
corrections to the reconstructed points. We verified that
there is no remaining bias in a wide variety of simulations.
We also derived the covariance matrix of the expected er-
ror of a reconstructed point. These covariance matrices can
be calculated easily and accurately using elementary ma-
trix operations. We proved in simulation that this covari-
ance is correct. Since the proposed correction has minimal
overhead, we are optimistic that it will be adopted by the
research community.

Our findings are directly applicable to the majority of
current stereo matching algorithms that treat disparity as a
discrete variable. Most of the top performing methods par-

ticipating in the evaluations hosted by Middlebury [15] and
KITTI [5], including those using Markov Random Fields or
Semi-Global Matching for optimization, treat disparity as
a discrete variable. When needed, subpixel disparity esti-
mates are typically obtained by “cost refinement” as defined
by Szeliski and Scharstein [17]. The most common imple-
mentation of cost refinement is fitting a parabola around the
detected minimum. This does not remove the bias directly
since the interpolation is based on cost computations at in-
teger disparity values. The mapping from these disparity
values to depth is biased and interpolation adjusts the re-
constructed 3D point ignoring the bias. We claim that if the
triangulated points corresponding to the integer disparities
are corrected using our method, cost refinement will lead to
more accurate approximation of the continuous 3D coordi-
nates of the reconstructed point.

Szeliski and Scharstein [17] recommend upsampling the
images via cubic interpolation before computing the match-
ing costs. This would reduce the size of the 3D cells, thus
reducing bias, but to the best of our knowledge, this rec-
ommendation has been ignored by the research community.
This may be due to the use of percentage of “bad pixels”,
with disparity errors above a certain threshold, as the most
popular error metric by the benchmarks [15, 5]. We leave
the analysis of matching methods that interpolate the input
images, as well as of methods that treat disparity as a con-
tinuous variable by fitting planes to image patches or by
relying on variational techniques, for future work. A possi-
ble approach would be to build upon the work of Robinson
and Milanfar [13] on performance limits in image registra-
tion. We refer interested readers to recent work by Pinggera
et al. [12] that evaluates the subpixel accuracy of stereo
matching methods, using discrete and continuous disparity
representations, on the problem of estimating the disparity
and velocity of a single plane at large distances from the
cameras.
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